loaders.py 137 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
15
import re
16
from collections import defaultdict
17
18
from contextlib import nullcontext
from io import BytesIO
1lint's avatar
1lint committed
19
from pathlib import Path
20
from typing import Callable, Dict, List, Optional, Union
21

22
import requests
23
import safetensors
24
import torch
25
from huggingface_hub import hf_hub_download, model_info
Will Berman's avatar
Will Berman committed
26
from torch import nn
27

28
from .models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta
29
30
31
32
33
from .utils import (
    DIFFUSERS_CACHE,
    HF_HUB_OFFLINE,
    _get_model_file,
    deprecate,
34
35
    is_accelerate_available,
    is_omegaconf_available,
36
37
38
    is_transformers_available,
    logging,
)
39
from .utils.import_utils import BACKENDS_MAPPING
40
41


42
if is_transformers_available():
43
    from transformers import CLIPTextModel, CLIPTextModelWithProjection
44

45
46
if is_accelerate_available():
    from accelerate import init_empty_weights
47
    from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
48
49
50

logger = logging.get_logger(__name__)

51
52
TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"
53
54

LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
55
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
56

57
58
59
TEXT_INVERSION_NAME = "learned_embeds.bin"
TEXT_INVERSION_NAME_SAFE = "learned_embeds.safetensors"

60
61
62
CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin"
CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors"

63

Will Berman's avatar
Will Berman committed
64
65
66
class PatchedLoraProjection(nn.Module):
    def __init__(self, regular_linear_layer, lora_scale=1, network_alpha=None, rank=4, dtype=None):
        super().__init__()
67
        from .models.lora import LoRALinearLayer
68

Will Berman's avatar
Will Berman committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        self.regular_linear_layer = regular_linear_layer

        device = self.regular_linear_layer.weight.device

        if dtype is None:
            dtype = self.regular_linear_layer.weight.dtype

        self.lora_linear_layer = LoRALinearLayer(
            self.regular_linear_layer.in_features,
            self.regular_linear_layer.out_features,
            network_alpha=network_alpha,
            device=device,
            dtype=dtype,
            rank=rank,
        )

        self.lora_scale = lora_scale

Patrick von Platen's avatar
Patrick von Platen committed
87
88
89
90
91
92
93
94
95
96
    # overwrite PyTorch's `state_dict` to be sure that only the 'regular_linear_layer' weights are saved
    # when saving the whole text encoder model and when LoRA is unloaded or fused
    def state_dict(self, *args, destination=None, prefix="", keep_vars=False):
        if self.lora_linear_layer is None:
            return self.regular_linear_layer.state_dict(
                *args, destination=destination, prefix=prefix, keep_vars=keep_vars
            )

        return super().state_dict(*args, destination=destination, prefix=prefix, keep_vars=keep_vars)

97
    def _fuse_lora(self, lora_scale=1.0):
Patrick von Platen's avatar
Patrick von Platen committed
98
99
100
101
102
103
104
105
106
107
108
109
        if self.lora_linear_layer is None:
            return

        dtype, device = self.regular_linear_layer.weight.data.dtype, self.regular_linear_layer.weight.data.device

        w_orig = self.regular_linear_layer.weight.data.float()
        w_up = self.lora_linear_layer.up.weight.data.float()
        w_down = self.lora_linear_layer.down.weight.data.float()

        if self.lora_linear_layer.network_alpha is not None:
            w_up = w_up * self.lora_linear_layer.network_alpha / self.lora_linear_layer.rank

110
        fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
Patrick von Platen's avatar
Patrick von Platen committed
111
112
113
114
115
116
117
118
        self.regular_linear_layer.weight.data = fused_weight.to(device=device, dtype=dtype)

        # we can drop the lora layer now
        self.lora_linear_layer = None

        # offload the up and down matrices to CPU to not blow the memory
        self.w_up = w_up.cpu()
        self.w_down = w_down.cpu()
119
        self.lora_scale = lora_scale
Patrick von Platen's avatar
Patrick von Platen committed
120
121

    def _unfuse_lora(self):
122
        if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None):
Patrick von Platen's avatar
Patrick von Platen committed
123
124
125
126
127
            return

        fused_weight = self.regular_linear_layer.weight.data
        dtype, device = fused_weight.dtype, fused_weight.device

Patrick von Platen's avatar
Patrick von Platen committed
128
129
130
        w_up = self.w_up.to(device=device).float()
        w_down = self.w_down.to(device).float()

131
        unfused_weight = fused_weight.float() - (self.lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
Patrick von Platen's avatar
Patrick von Platen committed
132
133
134
135
136
        self.regular_linear_layer.weight.data = unfused_weight.to(device=device, dtype=dtype)

        self.w_up = None
        self.w_down = None

Will Berman's avatar
Will Berman committed
137
    def forward(self, input):
138
139
        if self.lora_scale is None:
            self.lora_scale = 1.0
Patrick von Platen's avatar
Patrick von Platen committed
140
141
        if self.lora_linear_layer is None:
            return self.regular_linear_layer(input)
142
        return self.regular_linear_layer(input) + (self.lora_scale * self.lora_linear_layer(input))
Will Berman's avatar
Will Berman committed
143
144
145
146
147


def text_encoder_attn_modules(text_encoder):
    attn_modules = []

148
    if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
Will Berman's avatar
Will Berman committed
149
150
151
152
153
154
155
156
157
158
        for i, layer in enumerate(text_encoder.text_model.encoder.layers):
            name = f"text_model.encoder.layers.{i}.self_attn"
            mod = layer.self_attn
            attn_modules.append((name, mod))
    else:
        raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}")

    return attn_modules


159
160
161
162
163
164
165
166
167
168
169
170
171
172
def text_encoder_mlp_modules(text_encoder):
    mlp_modules = []

    if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
        for i, layer in enumerate(text_encoder.text_model.encoder.layers):
            mlp_mod = layer.mlp
            name = f"text_model.encoder.layers.{i}.mlp"
            mlp_modules.append((name, mlp_mod))
    else:
        raise ValueError(f"do not know how to get mlp modules for: {text_encoder.__class__.__name__}")

    return mlp_modules


Will Berman's avatar
Will Berman committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
def text_encoder_lora_state_dict(text_encoder):
    state_dict = {}

    for name, module in text_encoder_attn_modules(text_encoder):
        for k, v in module.q_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v

        for k, v in module.k_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v

        for k, v in module.v_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v

        for k, v in module.out_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v

    return state_dict


192
193
194
195
class AttnProcsLayers(torch.nn.Module):
    def __init__(self, state_dict: Dict[str, torch.Tensor]):
        super().__init__()
        self.layers = torch.nn.ModuleList(state_dict.values())
196
        self.mapping = dict(enumerate(state_dict.keys()))
197
198
        self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}

199
200
        # .processor for unet, .self_attn for text encoder
        self.split_keys = [".processor", ".self_attn"]
201

202
203
204
205
206
207
208
209
210
211
212
        # we add a hook to state_dict() and load_state_dict() so that the
        # naming fits with `unet.attn_processors`
        def map_to(module, state_dict, *args, **kwargs):
            new_state_dict = {}
            for key, value in state_dict.items():
                num = int(key.split(".")[1])  # 0 is always "layers"
                new_key = key.replace(f"layers.{num}", module.mapping[num])
                new_state_dict[new_key] = value

            return new_state_dict

213
214
215
216
217
218
219
220
221
        def remap_key(key, state_dict):
            for k in self.split_keys:
                if k in key:
                    return key.split(k)[0] + k

            raise ValueError(
                f"There seems to be a problem with the state_dict: {set(state_dict.keys())}. {key} has to have one of {self.split_keys}."
            )

222
223
224
        def map_from(module, state_dict, *args, **kwargs):
            all_keys = list(state_dict.keys())
            for key in all_keys:
225
                replace_key = remap_key(key, state_dict)
226
227
228
229
230
231
232
233
234
                new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
                state_dict[new_key] = state_dict[key]
                del state_dict[key]

        self._register_state_dict_hook(map_to)
        self._register_load_state_dict_pre_hook(map_from, with_module=True)


class UNet2DConditionLoadersMixin:
235
236
237
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME

238
239
    def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
        r"""
Steven Liu's avatar
Steven Liu committed
240
        Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be
241
        defined in
Patrick von Platen's avatar
Patrick von Platen committed
242
        [`attention_processor.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py)
243
244
245
246
247
248
        and be a `torch.nn.Module` class.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

Steven Liu's avatar
Steven Liu committed
249
250
251
252
                    - A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a directory (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
253
254
255
256
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
257
258
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
259
260
261
262
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
263
264
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
265
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
266
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
267
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
268
269
270
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
271
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
272
273
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
274
275
276
277
278
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
279
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
280
281
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
282
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
283
                The subfolder location of a model file within a larger model repository on the Hub or locally.
284
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
285
286
287
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
288
289

        """
290
291
292
        from .models.attention_processor import (
            CustomDiffusionAttnProcessor,
        )
293
        from .models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer
294
295
296
297
298
299
300
301
302

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
303
        weight_name = kwargs.pop("weight_name", None)
304
        use_safetensors = kwargs.pop("use_safetensors", None)
305
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
306
307
        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
308
        network_alphas = kwargs.pop("network_alphas", None)
309
310
311

        _pipeline = kwargs.pop("_pipeline", None)

312
        is_network_alphas_none = network_alphas is None
313
314

        allow_pickle = False
315

316
        if use_safetensors is None:
317
            use_safetensors = True
318
            allow_pickle = True
319
320
321
322
323
324

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

325
326
327
328
329
330
331
332
333
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

334
        model_file = None
335
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
336
            # Let's first try to load .safetensors weights
337
            if (use_safetensors and weight_name is None) or (
338
339
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
340
341
342
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
343
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
344
345
346
347
348
349
350
351
352
353
354
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
355
356
357
                except IOError as e:
                    if not allow_pickle:
                        raise e
358
359
                    # try loading non-safetensors weights
                    pass
360
361
362
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
363
                    weights_name=weight_name or LORA_WEIGHT_NAME,
364
365
366
367
368
369
370
371
372
373
374
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
375
376
377
378
        else:
            state_dict = pretrained_model_name_or_path_or_dict

        # fill attn processors
379
        lora_layers_list = []
380

381
        is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys())
382
        is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())
383
384

        if is_lora:
385
386
            # correct keys
            state_dict, network_alphas = self.convert_state_dict_legacy_attn_format(state_dict, network_alphas)
387

388
389
390
391
            if network_alphas is not None:
                network_alphas_keys = list(network_alphas.keys())
                used_network_alphas_keys = set()

392
            lora_grouped_dict = defaultdict(dict)
393
394
395
396
397
            mapped_network_alphas = {}

            all_keys = list(state_dict.keys())
            for key in all_keys:
                value = state_dict.pop(key)
398
399
400
                attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                lora_grouped_dict[attn_processor_key][sub_key] = value

401
402
                # Create another `mapped_network_alphas` dictionary so that we can properly map them.
                if network_alphas is not None:
403
                    for k in network_alphas_keys:
404
                        if k.replace(".alpha", "") in key:
405
406
                            mapped_network_alphas.update({attn_processor_key: network_alphas.get(k)})
                            used_network_alphas_keys.add(k)
407
408

            if not is_network_alphas_none:
409
                if len(set(network_alphas_keys) - used_network_alphas_keys) > 0:
410
411
412
                    raise ValueError(
                        f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
                    )
413
414
415

            if len(state_dict) > 0:
                raise ValueError(
416
                    f"The `state_dict` has to be empty at this point but has the following keys \n\n {', '.join(state_dict.keys())}"
417
418
                )

419
            for key, value_dict in lora_grouped_dict.items():
Will Berman's avatar
Will Berman committed
420
421
422
423
                attn_processor = self
                for sub_key in key.split("."):
                    attn_processor = getattr(attn_processor, sub_key)

424
425
                # Process non-attention layers, which don't have to_{k,v,q,out_proj}_lora layers
                # or add_{k,v,q,out_proj}_proj_lora layers.
426
427
428
429
430
431
432
                rank = value_dict["lora.down.weight"].shape[0]

                if isinstance(attn_processor, LoRACompatibleConv):
                    in_features = attn_processor.in_channels
                    out_features = attn_processor.out_channels
                    kernel_size = attn_processor.kernel_size

433
434
435
436
437
438
439
440
441
442
443
                    ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
                    with ctx():
                        lora = LoRAConv2dLayer(
                            in_features=in_features,
                            out_features=out_features,
                            rank=rank,
                            kernel_size=kernel_size,
                            stride=attn_processor.stride,
                            padding=attn_processor.padding,
                            network_alpha=mapped_network_alphas.get(key),
                        )
444
                elif isinstance(attn_processor, LoRACompatibleLinear):
445
446
447
448
449
450
451
452
                    ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
                    with ctx():
                        lora = LoRALinearLayer(
                            attn_processor.in_features,
                            attn_processor.out_features,
                            rank,
                            mapped_network_alphas.get(key),
                        )
Will Berman's avatar
Will Berman committed
453
                else:
454
                    raise ValueError(f"Module {key} is not a LoRACompatibleConv or LoRACompatibleLinear module.")
Will Berman's avatar
Will Berman committed
455

456
457
                value_dict = {k.replace("lora.", ""): v for k, v in value_dict.items()}
                lora_layers_list.append((attn_processor, lora))
458

459
460
461
462
463
464
                if low_cpu_mem_usage:
                    device = next(iter(value_dict.values())).device
                    dtype = next(iter(value_dict.values())).dtype
                    load_model_dict_into_meta(lora, value_dict, device=device, dtype=dtype)
                else:
                    lora.load_state_dict(value_dict)
465

466
        elif is_custom_diffusion:
467
            attn_processors = {}
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
            custom_diffusion_grouped_dict = defaultdict(dict)
            for key, value in state_dict.items():
                if len(value) == 0:
                    custom_diffusion_grouped_dict[key] = {}
                else:
                    if "to_out" in key:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                    else:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
                    custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value

            for key, value_dict in custom_diffusion_grouped_dict.items():
                if len(value_dict) == 0:
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
                    )
                else:
                    cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
                    hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
                    train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=True,
                        train_q_out=train_q_out,
                        hidden_size=hidden_size,
                        cross_attention_dim=cross_attention_dim,
                    )
                    attn_processors[key].load_state_dict(value_dict)
495
        else:
496
497
498
            raise ValueError(
                f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training."
            )
499

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
        # <Unsafe code
        # We can be sure that the following works as it just sets attention processors, lora layers and puts all in the same dtype
        # Now we remove any existing hooks to
        is_model_cpu_offload = False
        is_sequential_cpu_offload = False
        if _pipeline is not None:
            for _, component in _pipeline.components.items():
                if isinstance(component, nn.Module):
                    if hasattr(component, "_hf_hook"):
                        is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
                        is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
                        logger.info(
                            "Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
                        )
                        remove_hook_from_module(component, recurse=is_sequential_cpu_offload)

        # only custom diffusion needs to set attn processors
        if is_custom_diffusion:
            self.set_attn_processor(attn_processors)

520
521
        # set lora layers
        for target_module, lora_layer in lora_layers_list:
522
            target_module.set_lora_layer(lora_layer)
523

524
525
        self.to(dtype=self.dtype, device=self.device)

526
527
528
529
530
531
532
        # Offload back.
        if is_model_cpu_offload:
            _pipeline.enable_model_cpu_offload()
        elif is_sequential_cpu_offload:
            _pipeline.enable_sequential_cpu_offload()
        # Unsafe code />

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
    def convert_state_dict_legacy_attn_format(self, state_dict, network_alphas):
        is_new_lora_format = all(
            key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys()
        )
        if is_new_lora_format:
            # Strip the `"unet"` prefix.
            is_text_encoder_present = any(key.startswith(self.text_encoder_name) for key in state_dict.keys())
            if is_text_encoder_present:
                warn_message = "The state_dict contains LoRA params corresponding to the text encoder which are not being used here. To use both UNet and text encoder related LoRA params, use [`pipe.load_lora_weights()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights)."
                logger.warn(warn_message)
            unet_keys = [k for k in state_dict.keys() if k.startswith(self.unet_name)]
            state_dict = {k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}

        # change processor format to 'pure' LoRACompatibleLinear format
        if any("processor" in k.split(".") for k in state_dict.keys()):

            def format_to_lora_compatible(key):
                if "processor" not in key.split("."):
                    return key
                return key.replace(".processor", "").replace("to_out_lora", "to_out.0.lora").replace("_lora", ".lora")

            state_dict = {format_to_lora_compatible(k): v for k, v in state_dict.items()}

            if network_alphas is not None:
                network_alphas = {format_to_lora_compatible(k): v for k, v in network_alphas.items()}
        return state_dict, network_alphas

560
561
562
563
    def save_attn_procs(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
564
        weight_name: str = None,
565
        save_function: Callable = None,
566
567
        safe_serialization: bool = True,
        **kwargs,
568
569
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
570
        Save an attention processor to a directory so that it can be reloaded using the
571
        [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method.
572
573
574

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
575
                Directory to save an attention processor to. Will be created if it doesn't exist.
576
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
577
578
579
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
580
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
581
582
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
583
                `DIFFUSERS_SAVE_MODE`.
584
585
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
586
        """
587
588
        from .models.attention_processor import (
            CustomDiffusionAttnProcessor,
589
            CustomDiffusionAttnProcessor2_0,
590
591
592
            CustomDiffusionXFormersAttnProcessor,
        )

593
594
595
596
597
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
598
599
600
601
602
603
604
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save
605
606
607

        os.makedirs(save_directory, exist_ok=True)

608
        is_custom_diffusion = any(
609
610
611
612
            isinstance(
                x,
                (CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor),
            )
613
614
615
616
617
618
619
            for (_, x) in self.attn_processors.items()
        )
        if is_custom_diffusion:
            model_to_save = AttnProcsLayers(
                {
                    y: x
                    for (y, x) in self.attn_processors.items()
620
621
622
623
624
625
626
627
                    if isinstance(
                        x,
                        (
                            CustomDiffusionAttnProcessor,
                            CustomDiffusionAttnProcessor2_0,
                            CustomDiffusionXFormersAttnProcessor,
                        ),
                    )
628
629
630
631
632
633
634
635
636
                }
            )
            state_dict = model_to_save.state_dict()
            for name, attn in self.attn_processors.items():
                if len(attn.state_dict()) == 0:
                    state_dict[name] = {}
        else:
            model_to_save = AttnProcsLayers(self.attn_processors)
            state_dict = model_to_save.state_dict()
637

638
        if weight_name is None:
639
            if safe_serialization:
640
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE
641
            else:
642
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME
643

644
        # Save the model
645
646
        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
647

648
649
    def fuse_lora(self, lora_scale=1.0):
        self.lora_scale = lora_scale
Patrick von Platen's avatar
Patrick von Platen committed
650
651
652
653
        self.apply(self._fuse_lora_apply)

    def _fuse_lora_apply(self, module):
        if hasattr(module, "_fuse_lora"):
654
            module._fuse_lora(self.lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
655
656
657
658
659
660
661
662

    def unfuse_lora(self):
        self.apply(self._unfuse_lora_apply)

    def _unfuse_lora_apply(self, module):
        if hasattr(module, "_unfuse_lora"):
            module._unfuse_lora()

663

664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
def load_textual_inversion_state_dicts(pretrained_model_name_or_paths, **kwargs):
    cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
    force_download = kwargs.pop("force_download", False)
    resume_download = kwargs.pop("resume_download", False)
    proxies = kwargs.pop("proxies", None)
    local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
    use_auth_token = kwargs.pop("use_auth_token", None)
    revision = kwargs.pop("revision", None)
    subfolder = kwargs.pop("subfolder", None)
    weight_name = kwargs.pop("weight_name", None)
    use_safetensors = kwargs.pop("use_safetensors", None)

    allow_pickle = False
    if use_safetensors is None:
        use_safetensors = True
        allow_pickle = True

    user_agent = {
        "file_type": "text_inversion",
        "framework": "pytorch",
    }
    state_dicts = []
    for pretrained_model_name_or_path in pretrained_model_name_or_paths:
        if not isinstance(pretrained_model_name_or_path, (dict, torch.Tensor)):
            # 3.1. Load textual inversion file
            model_file = None

            # Let's first try to load .safetensors weights
            if (use_safetensors and weight_name is None) or (
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path,
                        weights_name=weight_name or TEXT_INVERSION_NAME_SAFE,
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
                except Exception as e:
                    if not allow_pickle:
                        raise e

                    model_file = None

            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path,
                    weights_name=weight_name or TEXT_INVERSION_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
        else:
            state_dict = pretrained_model_name_or_path

        state_dicts.append(state_dict)

    return state_dicts


739
740
class TextualInversionLoaderMixin:
    r"""
Steven Liu's avatar
Steven Liu committed
741
    Load textual inversion tokens and embeddings to the tokenizer and text encoder.
742
743
    """

744
    def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"):  # noqa: F821
745
        r"""
Steven Liu's avatar
Steven Liu committed
746
747
748
        Processes prompts that include a special token corresponding to a multi-vector textual inversion embedding to
        be replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or if the textual inversion token is a single vector, the input prompt is returned.
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

        Parameters:
            prompt (`str` or list of `str`):
                The prompt or prompts to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str` or list of `str`: The converted prompt
        """
        if not isinstance(prompt, List):
            prompts = [prompt]
        else:
            prompts = prompt

        prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts]

        if not isinstance(prompt, List):
            return prompts[0]

        return prompts

771
    def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"):  # noqa: F821
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
        r"""
        Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds
        to a multi-vector textual inversion embedding, this function will process the prompt so that the special token
        is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or a textual inversion token that is a single vector, the input prompt is simply returned.

        Parameters:
            prompt (`str`):
                The prompt to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str`: The converted prompt
        """
        tokens = tokenizer.tokenize(prompt)
788
789
        unique_tokens = set(tokens)
        for token in unique_tokens:
790
791
792
793
            if token in tokenizer.added_tokens_encoder:
                replacement = token
                i = 1
                while f"{token}_{i}" in tokenizer.added_tokens_encoder:
794
                    replacement += f" {token}_{i}"
795
796
797
798
799
800
                    i += 1

                prompt = prompt.replace(token, replacement)

        return prompt

801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
    def _check_text_inv_inputs(self, tokenizer, text_encoder, pretrained_model_name_or_paths, tokens):
        if tokenizer is None:
            raise ValueError(
                f"{self.__class__.__name__} requires `self.tokenizer` or passing a `tokenizer` of type `PreTrainedTokenizer` for calling"
                f" `{self.load_textual_inversion.__name__}`"
            )

        if text_encoder is None:
            raise ValueError(
                f"{self.__class__.__name__} requires `self.text_encoder` or passing a `text_encoder` of type `PreTrainedModel` for calling"
                f" `{self.load_textual_inversion.__name__}`"
            )

        if len(pretrained_model_name_or_paths) != len(tokens):
            raise ValueError(
                f"You have passed a list of models of length {len(pretrained_model_name_or_paths)}, and list of tokens of length {len(tokens)} "
                f"Make sure both lists have the same length."
            )

        valid_tokens = [t for t in tokens if t is not None]
        if len(set(valid_tokens)) < len(valid_tokens):
            raise ValueError(f"You have passed a list of tokens that contains duplicates: {tokens}")

    @staticmethod
    def _retrieve_tokens_and_embeddings(tokens, state_dicts, tokenizer):
        all_tokens = []
        all_embeddings = []
        for state_dict, token in zip(state_dicts, tokens):
            if isinstance(state_dict, torch.Tensor):
                if token is None:
                    raise ValueError(
                        "You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`."
                    )
                loaded_token = token
                embedding = state_dict
            elif len(state_dict) == 1:
                # diffusers
                loaded_token, embedding = next(iter(state_dict.items()))
            elif "string_to_param" in state_dict:
                # A1111
                loaded_token = state_dict["name"]
                embedding = state_dict["string_to_param"]["*"]
            else:
                raise ValueError(
                    f"Loaded state dictonary is incorrect: {state_dict}. \n\n"
                    "Please verify that the loaded state dictionary of the textual embedding either only has a single key or includes the `string_to_param`"
                    " input key."
                )

            if token is not None and loaded_token != token:
                logger.info(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.")
            else:
                token = loaded_token

            if token in tokenizer.get_vocab():
                raise ValueError(
                    f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder."
                )

            all_tokens.append(token)
            all_embeddings.append(embedding)

        return all_tokens, all_embeddings

    @staticmethod
    def _extend_tokens_and_embeddings(tokens, embeddings, tokenizer):
        all_tokens = []
        all_embeddings = []

        for embedding, token in zip(embeddings, tokens):
            if f"{token}_1" in tokenizer.get_vocab():
                multi_vector_tokens = [token]
                i = 1
                while f"{token}_{i}" in tokenizer.added_tokens_encoder:
                    multi_vector_tokens.append(f"{token}_{i}")
                    i += 1

                raise ValueError(
                    f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder."
                )

            is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1
            if is_multi_vector:
                all_tokens += [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])]
                all_embeddings += [e for e in embedding]  # noqa: C416
            else:
                all_tokens += [token]
                all_embeddings += [embedding[0]] if len(embedding.shape) > 1 else [embedding]

        return all_tokens, all_embeddings

892
    def load_textual_inversion(
893
        self,
894
        pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]],
895
        token: Optional[Union[str, List[str]]] = None,
896
897
        tokenizer: Optional["PreTrainedTokenizer"] = None,  # noqa: F821
        text_encoder: Optional["PreTrainedModel"] = None,  # noqa: F821
898
        **kwargs,
899
900
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
901
902
        Load textual inversion embeddings into the text encoder of [`StableDiffusionPipeline`] (both 🤗 Diffusers and
        Automatic1111 formats are supported).
903
904

        Parameters:
905
            pretrained_model_name_or_path (`str` or `os.PathLike` or `List[str or os.PathLike]` or `Dict` or `List[Dict]`):
Steven Liu's avatar
Steven Liu committed
906
                Can be either one of the following or a list of them:
907

Steven Liu's avatar
Steven Liu committed
908
909
910
911
912
                    - A string, the *model id* (for example `sd-concepts-library/low-poly-hd-logos-icons`) of a
                      pretrained model hosted on the Hub.
                    - A path to a *directory* (for example `./my_text_inversion_directory/`) containing the textual
                      inversion weights.
                    - A path to a *file* (for example `./my_text_inversions.pt`) containing textual inversion weights.
913
914
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
915
916
917
918

            token (`str` or `List[str]`, *optional*):
                Override the token to use for the textual inversion weights. If `pretrained_model_name_or_path` is a
                list, then `token` must also be a list of equal length.
919
920
921
922
923
            text_encoder ([`~transformers.CLIPTextModel`], *optional*):
                Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
                If not specified, function will take self.tokenizer.
            tokenizer ([`~transformers.CLIPTokenizer`], *optional*):
                A `CLIPTokenizer` to tokenize text. If not specified, function will take self.tokenizer.
924
            weight_name (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
925
                Name of a custom weight file. This should be used when:
926

Steven Liu's avatar
Steven Liu committed
927
928
929
                    - The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight
                      name such as `text_inv.bin`.
                    - The saved textual inversion file is in the Automatic1111 format.
930
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
931
932
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
933
934
935
936
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
937
938
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
939
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
940
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
941
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
942
943
944
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
945
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
946
947
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
948
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
949
950
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
951
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
952
                The subfolder location of a model file within a larger model repository on the Hub or locally.
953
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
954
955
956
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
957
958
959

        Example:

Steven Liu's avatar
Steven Liu committed
960
        To load a textual inversion embedding vector in 🤗 Diffusers format:
1lint's avatar
1lint committed
961

962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

        pipe.load_textual_inversion("sd-concepts-library/cat-toy")

        prompt = "A <cat-toy> backpack"

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("cat-backpack.png")
        ```

Steven Liu's avatar
Steven Liu committed
977
978
979
        To load a textual inversion embedding vector in Automatic1111 format, make sure to download the vector first
        (for example from [civitAI](https://civitai.com/models/3036?modelVersionId=9857)) and then load the vector
        locally:
980
981
982
983
984
985
986
987

        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

988
        pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
989
990
991
992
993
994

        prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("character.png")
        ```
1lint's avatar
1lint committed
995

996
        """
997
        # 1. Set correct tokenizer and text encoder
998
999
1000
        tokenizer = tokenizer or getattr(self, "tokenizer", None)
        text_encoder = text_encoder or getattr(self, "text_encoder", None)

1001
1002
1003
1004
1005
1006
1007
        # 2. Normalize inputs
        pretrained_model_name_or_paths = (
            [pretrained_model_name_or_path]
            if not isinstance(pretrained_model_name_or_path, list)
            else pretrained_model_name_or_path
        )
        tokens = len(pretrained_model_name_or_paths) * [token] if (isinstance(token, str) or token is None) else token
1008

1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
        # 3. Check inputs
        self._check_text_inv_inputs(tokenizer, text_encoder, pretrained_model_name_or_paths, tokens)

        # 4. Load state dicts of textual embeddings
        state_dicts = load_textual_inversion_state_dicts(pretrained_model_name_or_paths, **kwargs)

        # 4. Retrieve tokens and embeddings
        tokens, embeddings = self._retrieve_tokens_and_embeddings(tokens, state_dicts, tokenizer)

        # 5. Extend tokens and embeddings for multi vector
        tokens, embeddings = self._extend_tokens_and_embeddings(tokens, embeddings, tokenizer)

        # 6. Make sure all embeddings have the correct size
        expected_emb_dim = text_encoder.get_input_embeddings().weight.shape[-1]
        if any(expected_emb_dim != emb.shape[-1] for emb in embeddings):
1024
            raise ValueError(
1025
1026
                "Loaded embeddings are of incorrect shape. Expected each textual inversion embedding "
                "to be of shape {input_embeddings.shape[-1]}, but are {embeddings.shape[-1]} "
1027
1028
            )

1029
1030
1031
1032
        # 7. Now we can be sure that loading the embedding matrix works
        # < Unsafe code:

        # 7.1 Offload all hooks in case the pipeline was cpu offloaded before make sure, we offload and onload again
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
        is_model_cpu_offload = False
        is_sequential_cpu_offload = False
        for _, component in self.components.items():
            if isinstance(component, nn.Module):
                if hasattr(component, "_hf_hook"):
                    is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
                    is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
                    logger.info(
                        "Accelerate hooks detected. Since you have called `load_textual_inversion()`, the previous hooks will be first removed. Then the textual inversion parameters will be loaded and the hooks will be applied again."
                    )
1043
                    remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
1044

1045
1046
1047
        # 7.2 save expected device and dtype
        device = text_encoder.device
        dtype = text_encoder.dtype
1048

1049
1050
1051
        # 7.3 Increase token embedding matrix
        text_encoder.resize_token_embeddings(len(tokenizer) + len(tokens))
        input_embeddings = text_encoder.get_input_embeddings().weight
1052

1053
1054
        # 7.4 Load token and embedding
        for token, embedding in zip(tokens, embeddings):
1055
            # add tokens and get ids
1056
1057
1058
            tokenizer.add_tokens(token)
            token_id = tokenizer.convert_tokens_to_ids(token)
            input_embeddings.data[token_id] = embedding
1059
            logger.info(f"Loaded textual inversion embedding for {token}.")
1060

1061
        input_embeddings.to(dtype=dtype, device=device)
1062

1063
        # 7.5 Offload the model again
1064
1065
1066
1067
1068
        if is_model_cpu_offload:
            self.enable_model_cpu_offload()
        elif is_sequential_cpu_offload:
            self.enable_sequential_cpu_offload()

1069
1070
        # / Unsafe Code >

1071
1072
1073

class LoraLoaderMixin:
    r"""
Steven Liu's avatar
Steven Liu committed
1074
1075
    Load LoRA layers into [`UNet2DConditionModel`] and
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
1076
    """
1077
1078
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME
1079
    num_fused_loras = 0
1080
1081

    def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
Will Berman's avatar
Will Berman committed
1082
        """
1083
1084
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
        `self.text_encoder`.
Will Berman's avatar
Will Berman committed
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098

        All kwargs are forwarded to `self.lora_state_dict`.

        See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.

        See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into
        `self.unet`.

        See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded
        into `self.text_encoder`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
1099
            kwargs (`dict`, *optional*):
Will Berman's avatar
Will Berman committed
1100
1101
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
        """
1102
1103
1104
1105
1106
1107
        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
        state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")
1108

1109
1110
1111
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)

        self.load_lora_into_unet(
1112
1113
1114
1115
1116
            state_dict,
            network_alphas=network_alphas,
            unet=self.unet,
            low_cpu_mem_usage=low_cpu_mem_usage,
            _pipeline=self,
1117
        )
Will Berman's avatar
Will Berman committed
1118
        self.load_lora_into_text_encoder(
1119
            state_dict,
1120
            network_alphas=network_alphas,
1121
1122
            text_encoder=self.text_encoder,
            lora_scale=self.lora_scale,
1123
            low_cpu_mem_usage=low_cpu_mem_usage,
1124
            _pipeline=self,
Will Berman's avatar
Will Berman committed
1125
1126
1127
1128
1129
1130
1131
1132
        )

    @classmethod
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
1133
        r"""
1134
        Return state dict for lora weights and the network alphas.
Will Berman's avatar
Will Berman committed
1135
1136
1137
1138
1139
1140
1141
1142

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>
1143
1144
1145
1146
1147

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

Steven Liu's avatar
Steven Liu committed
1148
1149
1150
1151
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
1152
1153
1154
1155
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1156
1157
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
1158
1159
1160
1161
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1162
1163
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
1164
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1165
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1166
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
1167
1168
1169
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
1170
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1171
1172
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1173
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1174
1175
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
1176
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
1177
                The subfolder location of a model file within a larger model repository on the Hub or locally.
1178
1179
1180
1181
1182
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
1183
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1184
1185
1186
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199

        """
        # Load the main state dict first which has the LoRA layers for either of
        # UNet and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
1200
        unet_config = kwargs.pop("unet_config", None)
1201
1202
1203
1204
        use_safetensors = kwargs.pop("use_safetensors", None)

        allow_pickle = False
        if use_safetensors is None:
1205
            use_safetensors = True
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
            allow_pickle = True

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

        model_file = None
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
            # Let's first try to load .safetensors weights
            if (use_safetensors and weight_name is None) or (
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
                try:
1220
1221
1222
1223
1224
1225
1226
                    # Here we're relaxing the loading check to enable more Inference API
                    # friendliness where sometimes, it's not at all possible to automatically
                    # determine `weight_name`.
                    if weight_name is None:
                        weight_name = cls._best_guess_weight_name(
                            pretrained_model_name_or_path_or_dict, file_extension=".safetensors"
                        )
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
Will Berman's avatar
Will Berman committed
1241
                except (IOError, safetensors.SafetensorError) as e:
1242
1243
1244
                    if not allow_pickle:
                        raise e
                    # try loading non-safetensors weights
1245
                    model_file = None
1246
                    pass
1247

1248
            if model_file is None:
1249
1250
1251
1252
                if weight_name is None:
                    weight_name = cls._best_guess_weight_name(
                        pretrained_model_name_or_path_or_dict, file_extension=".bin"
                    )
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
                    weights_name=weight_name or LORA_WEIGHT_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
        else:
            state_dict = pretrained_model_name_or_path_or_dict

1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
        network_alphas = None
        if all(
            (
                k.startswith("lora_te_")
                or k.startswith("lora_unet_")
                or k.startswith("lora_te1_")
                or k.startswith("lora_te2_")
            )
            for k in state_dict.keys()
        ):
            # Map SDXL blocks correctly.
            if unet_config is not None:
                # use unet config to remap block numbers
1283
                state_dict = cls._maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
1284
            state_dict, network_alphas = cls._convert_kohya_lora_to_diffusers(state_dict)
Will Berman's avatar
Will Berman committed
1285

1286
        return state_dict, network_alphas
Will Berman's avatar
Will Berman committed
1287

1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
    @classmethod
    def _best_guess_weight_name(cls, pretrained_model_name_or_path_or_dict, file_extension=".safetensors"):
        targeted_files = []

        if os.path.isfile(pretrained_model_name_or_path_or_dict):
            return
        elif os.path.isdir(pretrained_model_name_or_path_or_dict):
            targeted_files = [
                f for f in os.listdir(pretrained_model_name_or_path_or_dict) if f.endswith(file_extension)
            ]
        else:
            files_in_repo = model_info(pretrained_model_name_or_path_or_dict).siblings
            targeted_files = [f.rfilename for f in files_in_repo if f.rfilename.endswith(file_extension)]
        if len(targeted_files) == 0:
            return

1304
1305
1306
1307
1308
1309
1310
1311
        # "scheduler" does not correspond to a LoRA checkpoint.
        # "optimizer" does not correspond to a LoRA checkpoint
        # only top-level checkpoints are considered and not the other ones, hence "checkpoint".
        unallowed_substrings = {"scheduler", "optimizer", "checkpoint"}
        targeted_files = list(
            filter(lambda x: all(substring not in x for substring in unallowed_substrings), targeted_files)
        )

1312
1313
1314
1315
1316
1317
1318
        if len(targeted_files) > 1:
            raise ValueError(
                f"Provided path contains more than one weights file in the {file_extension} format. Either specify `weight_name` in `load_lora_weights` or make sure there's only one  `.safetensors` or `.bin` file in  {pretrained_model_name_or_path_or_dict}."
            )
        weight_name = targeted_files[0]
        return weight_name

Will Berman's avatar
Will Berman committed
1319
    @classmethod
1320
1321
    def _maybe_map_sgm_blocks_to_diffusers(cls, state_dict, unet_config, delimiter="_", block_slice_pos=5):
        # 1. get all state_dict_keys
chillpixel's avatar
chillpixel committed
1322
        all_keys = list(state_dict.keys())
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
        sgm_patterns = ["input_blocks", "middle_block", "output_blocks"]

        # 2. check if needs remapping, if not return original dict
        is_in_sgm_format = False
        for key in all_keys:
            if any(p in key for p in sgm_patterns):
                is_in_sgm_format = True
                break

        if not is_in_sgm_format:
            return state_dict

        # 3. Else remap from SGM patterns
1336
1337
1338
1339
1340
        new_state_dict = {}
        inner_block_map = ["resnets", "attentions", "upsamplers"]

        # Retrieves # of down, mid and up blocks
        input_block_ids, middle_block_ids, output_block_ids = set(), set(), set()
1341
1342
1343
1344
1345

        for layer in all_keys:
            if "text" in layer:
                new_state_dict[layer] = state_dict.pop(layer)
            else:
1346
                layer_id = int(layer.split(delimiter)[:block_slice_pos][-1])
1347
                if sgm_patterns[0] in layer:
1348
                    input_block_ids.add(layer_id)
1349
                elif sgm_patterns[1] in layer:
1350
                    middle_block_ids.add(layer_id)
1351
                elif sgm_patterns[2] in layer:
1352
1353
                    output_block_ids.add(layer_id)
                else:
1354
                    raise ValueError(f"Checkpoint not supported because layer {layer} not supported.")
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416

        input_blocks = {
            layer_id: [key for key in state_dict if f"input_blocks{delimiter}{layer_id}" in key]
            for layer_id in input_block_ids
        }
        middle_blocks = {
            layer_id: [key for key in state_dict if f"middle_block{delimiter}{layer_id}" in key]
            for layer_id in middle_block_ids
        }
        output_blocks = {
            layer_id: [key for key in state_dict if f"output_blocks{delimiter}{layer_id}" in key]
            for layer_id in output_block_ids
        }

        # Rename keys accordingly
        for i in input_block_ids:
            block_id = (i - 1) // (unet_config.layers_per_block + 1)
            layer_in_block_id = (i - 1) % (unet_config.layers_per_block + 1)

            for key in input_blocks[i]:
                inner_block_id = int(key.split(delimiter)[block_slice_pos])
                inner_block_key = inner_block_map[inner_block_id] if "op" not in key else "downsamplers"
                inner_layers_in_block = str(layer_in_block_id) if "op" not in key else "0"
                new_key = delimiter.join(
                    key.split(delimiter)[: block_slice_pos - 1]
                    + [str(block_id), inner_block_key, inner_layers_in_block]
                    + key.split(delimiter)[block_slice_pos + 1 :]
                )
                new_state_dict[new_key] = state_dict.pop(key)

        for i in middle_block_ids:
            key_part = None
            if i == 0:
                key_part = [inner_block_map[0], "0"]
            elif i == 1:
                key_part = [inner_block_map[1], "0"]
            elif i == 2:
                key_part = [inner_block_map[0], "1"]
            else:
                raise ValueError(f"Invalid middle block id {i}.")

            for key in middle_blocks[i]:
                new_key = delimiter.join(
                    key.split(delimiter)[: block_slice_pos - 1] + key_part + key.split(delimiter)[block_slice_pos:]
                )
                new_state_dict[new_key] = state_dict.pop(key)

        for i in output_block_ids:
            block_id = i // (unet_config.layers_per_block + 1)
            layer_in_block_id = i % (unet_config.layers_per_block + 1)

            for key in output_blocks[i]:
                inner_block_id = int(key.split(delimiter)[block_slice_pos])
                inner_block_key = inner_block_map[inner_block_id]
                inner_layers_in_block = str(layer_in_block_id) if inner_block_id < 2 else "0"
                new_key = delimiter.join(
                    key.split(delimiter)[: block_slice_pos - 1]
                    + [str(block_id), inner_block_key, inner_layers_in_block]
                    + key.split(delimiter)[block_slice_pos + 1 :]
                )
                new_state_dict[new_key] = state_dict.pop(key)

1417
        if len(state_dict) > 0:
1418
1419
1420
1421
1422
            raise ValueError("At this point all state dict entries have to be converted.")

        return new_state_dict

    @classmethod
1423
    def load_lora_into_unet(cls, state_dict, network_alphas, unet, low_cpu_mem_usage=None, _pipeline=None):
Will Berman's avatar
Will Berman committed
1424
        """
1425
        This will load the LoRA layers specified in `state_dict` into `unet`.
Will Berman's avatar
Will Berman committed
1426
1427
1428
1429
1430
1431

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
1432
            network_alphas (`Dict[str, float]`):
Will Berman's avatar
Will Berman committed
1433
1434
1435
                See `LoRALinearLayer` for more details.
            unet (`UNet2DConditionModel`):
                The UNet model to load the LoRA layers into.
1436
1437
1438
1439
1440
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
Will Berman's avatar
Will Berman committed
1441
        """
1442
        low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT
1443
1444
1445
1446
        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
        # their prefixes.
        keys = list(state_dict.keys())
1447

Will Berman's avatar
Will Berman committed
1448
        if all(key.startswith(cls.unet_name) or key.startswith(cls.text_encoder_name) for key in keys):
1449
            # Load the layers corresponding to UNet.
Will Berman's avatar
Will Berman committed
1450
            logger.info(f"Loading {cls.unet_name}.")
1451

1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
            unet_keys = [k for k in keys if k.startswith(cls.unet_name)]
            state_dict = {k.replace(f"{cls.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}

            if network_alphas is not None:
                alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.unet_name)]
                network_alphas = {
                    k.replace(f"{cls.unet_name}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
                }

        else:
            # Otherwise, we're dealing with the old format. This means the `state_dict` should only
            # contain the module names of the `unet` as its keys WITHOUT any prefix.
zideliu's avatar
zideliu committed
1464
            warn_message = "You have saved the LoRA weights using the old format. To convert the old LoRA weights to the new format, you can first load them in a dictionary and then create a new dictionary like the following: `new_state_dict = {f'unet.{module_name}': params for module_name, params in old_state_dict.items()}`."
1465
            logger.warn(warn_message)
1466

1467
1468
1469
        unet.load_attn_procs(
            state_dict, network_alphas=network_alphas, low_cpu_mem_usage=low_cpu_mem_usage, _pipeline=_pipeline
        )
1470

Will Berman's avatar
Will Berman committed
1471
    @classmethod
1472
    def load_lora_into_text_encoder(
1473
1474
1475
1476
1477
1478
1479
1480
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        low_cpu_mem_usage=None,
        _pipeline=None,
1481
    ):
Will Berman's avatar
Will Berman committed
1482
1483
1484
1485
1486
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
1487
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
Will Berman's avatar
Will Berman committed
1488
                additional `text_encoder` to distinguish between unet lora layers.
1489
            network_alphas (`Dict[str, float]`):
Will Berman's avatar
Will Berman committed
1490
1491
1492
                See `LoRALinearLayer` for more details.
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
1493
1494
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
Will Berman's avatar
Will Berman committed
1495
1496
1497
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
1498
1499
1500
1501
1502
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
Will Berman's avatar
Will Berman committed
1503
        """
1504
        low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT
Will Berman's avatar
Will Berman committed
1505
1506
1507
1508
1509

        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
        # their prefixes.
        keys = list(state_dict.keys())
1510
1511
        prefix = cls.text_encoder_name if prefix is None else prefix

1512
        # Safe prefix to check with.
1513
        if any(cls.text_encoder_name in key for key in keys):
Will Berman's avatar
Will Berman committed
1514
            # Load the layers corresponding to text encoder and make necessary adjustments.
1515
            text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split(".")[0] == prefix]
Will Berman's avatar
Will Berman committed
1516
            text_encoder_lora_state_dict = {
1517
                k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys
Will Berman's avatar
Will Berman committed
1518
            }
1519

Will Berman's avatar
Will Berman committed
1520
            if len(text_encoder_lora_state_dict) > 0:
1521
                logger.info(f"Loading {prefix}.")
1522
                rank = {}
Will Berman's avatar
Will Berman committed
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560

                if any("to_out_lora" in k for k in text_encoder_lora_state_dict.keys()):
                    # Convert from the old naming convention to the new naming convention.
                    #
                    # Previously, the old LoRA layers were stored on the state dict at the
                    # same level as the attention block i.e.
                    # `text_model.encoder.layers.11.self_attn.to_out_lora.up.weight`.
                    #
                    # This is no actual module at that point, they were monkey patched on to the
                    # existing module. We want to be able to load them via their actual state dict.
                    # They're in `PatchedLoraProjection.lora_linear_layer` now.
                    for name, _ in text_encoder_attn_modules(text_encoder):
                        text_encoder_lora_state_dict[
                            f"{name}.q_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_q_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.k_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_k_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.v_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_v_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.out_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_out_lora.up.weight")

                        text_encoder_lora_state_dict[
                            f"{name}.q_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_q_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.k_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_k_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.v_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_v_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.out_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_out_lora.down.weight")

1561
1562
1563
1564
                for name, _ in text_encoder_attn_modules(text_encoder):
                    rank_key = f"{name}.out_proj.lora_linear_layer.up.weight"
                    rank.update({rank_key: text_encoder_lora_state_dict[rank_key].shape[1]})

1565
                patch_mlp = any(".mlp." in key for key in text_encoder_lora_state_dict.keys())
1566
1567
1568
1569
1570
1571
                if patch_mlp:
                    for name, _ in text_encoder_mlp_modules(text_encoder):
                        rank_key_fc1 = f"{name}.fc1.lora_linear_layer.up.weight"
                        rank_key_fc2 = f"{name}.fc2.lora_linear_layer.up.weight"
                        rank.update({rank_key_fc1: text_encoder_lora_state_dict[rank_key_fc1].shape[1]})
                        rank.update({rank_key_fc2: text_encoder_lora_state_dict[rank_key_fc2].shape[1]})
Will Berman's avatar
Will Berman committed
1572

1573
1574
1575
1576
1577
1578
1579
1580
                if network_alphas is not None:
                    alpha_keys = [
                        k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix
                    ]
                    network_alphas = {
                        k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
                    }

1581
1582
1583
1584
1585
1586
                cls._modify_text_encoder(
                    text_encoder,
                    lora_scale,
                    network_alphas,
                    rank=rank,
                    patch_mlp=patch_mlp,
1587
                    low_cpu_mem_usage=low_cpu_mem_usage,
1588
                )
Will Berman's avatar
Will Berman committed
1589

1590
1591
1592
1593
1594
1595
1596
1597
1598
                is_pipeline_offloaded = _pipeline is not None and any(
                    isinstance(c, torch.nn.Module) and hasattr(c, "_hf_hook") for c in _pipeline.components.values()
                )
                if is_pipeline_offloaded and low_cpu_mem_usage:
                    low_cpu_mem_usage = True
                    logger.info(
                        f"Pipeline {_pipeline.__class__} is offloaded. Therefore low cpu mem usage loading is forced."
                    )

1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
                if low_cpu_mem_usage:
                    device = next(iter(text_encoder_lora_state_dict.values())).device
                    dtype = next(iter(text_encoder_lora_state_dict.values())).dtype
                    unexpected_keys = load_model_dict_into_meta(
                        text_encoder, text_encoder_lora_state_dict, device=device, dtype=dtype
                    )
                else:
                    load_state_dict_results = text_encoder.load_state_dict(text_encoder_lora_state_dict, strict=False)
                    unexpected_keys = load_state_dict_results.unexpected_keys

                if len(unexpected_keys) != 0:
Will Berman's avatar
Will Berman committed
1610
1611
1612
1613
                    raise ValueError(
                        f"failed to load text encoder state dict, unexpected keys: {load_state_dict_results.unexpected_keys}"
                    )

1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
                # <Unsafe code
                # We can be sure that the following works as all we do is change the dtype and device of the text encoder
                # Now we remove any existing hooks to
                is_model_cpu_offload = False
                is_sequential_cpu_offload = False
                if _pipeline is not None:
                    for _, component in _pipeline.components.items():
                        if isinstance(component, torch.nn.Module):
                            if hasattr(component, "_hf_hook"):
                                is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
                                is_sequential_cpu_offload = isinstance(
                                    getattr(component, "_hf_hook"), AlignDevicesHook
                                )
                                logger.info(
                                    "Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
                                )
                                remove_hook_from_module(component, recurse=is_sequential_cpu_offload)

1632
1633
                text_encoder.to(device=text_encoder.device, dtype=text_encoder.dtype)

1634
1635
1636
1637
1638
1639
1640
                # Offload back.
                if is_model_cpu_offload:
                    _pipeline.enable_model_cpu_offload()
                elif is_sequential_cpu_offload:
                    _pipeline.enable_sequential_cpu_offload()
                # Unsafe code />

1641
1642
1643
1644
1645
1646
    @property
    def lora_scale(self) -> float:
        # property function that returns the lora scale which can be set at run time by the pipeline.
        # if _lora_scale has not been set, return 1
        return self._lora_scale if hasattr(self, "_lora_scale") else 1.0

1647
    def _remove_text_encoder_monkey_patch(self):
Will Berman's avatar
Will Berman committed
1648
1649
1650
1651
1652
1653
        self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)

    @classmethod
    def _remove_text_encoder_monkey_patch_classmethod(cls, text_encoder):
        for _, attn_module in text_encoder_attn_modules(text_encoder):
            if isinstance(attn_module.q_proj, PatchedLoraProjection):
Patrick von Platen's avatar
Patrick von Platen committed
1654
1655
1656
1657
                attn_module.q_proj.lora_linear_layer = None
                attn_module.k_proj.lora_linear_layer = None
                attn_module.v_proj.lora_linear_layer = None
                attn_module.out_proj.lora_linear_layer = None
Will Berman's avatar
Will Berman committed
1658

1659
1660
        for _, mlp_module in text_encoder_mlp_modules(text_encoder):
            if isinstance(mlp_module.fc1, PatchedLoraProjection):
Patrick von Platen's avatar
Patrick von Platen committed
1661
1662
                mlp_module.fc1.lora_linear_layer = None
                mlp_module.fc2.lora_linear_layer = None
1663

Will Berman's avatar
Will Berman committed
1664
    @classmethod
1665
1666
1667
1668
    def _modify_text_encoder(
        cls,
        text_encoder,
        lora_scale=1,
1669
        network_alphas=None,
1670
        rank: Union[Dict[str, int], int] = 4,
1671
1672
        dtype=None,
        patch_mlp=False,
1673
        low_cpu_mem_usage=False,
1674
    ):
1675
1676
1677
        r"""
        Monkey-patches the forward passes of attention modules of the text encoder.
        """
1678

1679
1680
1681
1682
1683
1684
1685
1686
1687
        def create_patched_linear_lora(model, network_alpha, rank, dtype, lora_parameters):
            linear_layer = model.regular_linear_layer if isinstance(model, PatchedLoraProjection) else model
            ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
            with ctx():
                model = PatchedLoraProjection(linear_layer, lora_scale, network_alpha, rank, dtype=dtype)

            lora_parameters.extend(model.lora_linear_layer.parameters())
            return model

1688
        # First, remove any monkey-patch that might have been applied before
Will Berman's avatar
Will Berman committed
1689
        cls._remove_text_encoder_monkey_patch_classmethod(text_encoder)
1690

Will Berman's avatar
Will Berman committed
1691
        lora_parameters = []
1692
        network_alphas = {} if network_alphas is None else network_alphas
1693
        is_network_alphas_populated = len(network_alphas) > 0
1694
1695

        for name, attn_module in text_encoder_attn_modules(text_encoder):
1696
1697
1698
1699
            query_alpha = network_alphas.pop(name + ".to_q_lora.down.weight.alpha", None)
            key_alpha = network_alphas.pop(name + ".to_k_lora.down.weight.alpha", None)
            value_alpha = network_alphas.pop(name + ".to_v_lora.down.weight.alpha", None)
            out_alpha = network_alphas.pop(name + ".to_out_lora.down.weight.alpha", None)
1700

1701
1702
1703
1704
1705
            if isinstance(rank, dict):
                current_rank = rank.pop(f"{name}.out_proj.lora_linear_layer.up.weight")
            else:
                current_rank = rank

1706
1707
            attn_module.q_proj = create_patched_linear_lora(
                attn_module.q_proj, query_alpha, current_rank, dtype, lora_parameters
Patrick von Platen's avatar
Patrick von Platen committed
1708
            )
1709
1710
            attn_module.k_proj = create_patched_linear_lora(
                attn_module.k_proj, key_alpha, current_rank, dtype, lora_parameters
1711
            )
1712
1713
            attn_module.v_proj = create_patched_linear_lora(
                attn_module.v_proj, value_alpha, current_rank, dtype, lora_parameters
Patrick von Platen's avatar
Patrick von Platen committed
1714
            )
1715
1716
            attn_module.out_proj = create_patched_linear_lora(
                attn_module.out_proj, out_alpha, current_rank, dtype, lora_parameters
Will Berman's avatar
Will Berman committed
1717
            )
1718

1719
        if patch_mlp:
1720
            for name, mlp_module in text_encoder_mlp_modules(text_encoder):
1721
1722
1723
                fc1_alpha = network_alphas.pop(name + ".fc1.lora_linear_layer.down.weight.alpha", None)
                fc2_alpha = network_alphas.pop(name + ".fc2.lora_linear_layer.down.weight.alpha", None)

1724
1725
                current_rank_fc1 = rank.pop(f"{name}.fc1.lora_linear_layer.up.weight")
                current_rank_fc2 = rank.pop(f"{name}.fc2.lora_linear_layer.up.weight")
1726

1727
1728
                mlp_module.fc1 = create_patched_linear_lora(
                    mlp_module.fc1, fc1_alpha, current_rank_fc1, dtype, lora_parameters
Patrick von Platen's avatar
Patrick von Platen committed
1729
                )
1730
1731
                mlp_module.fc2 = create_patched_linear_lora(
                    mlp_module.fc2, fc2_alpha, current_rank_fc2, dtype, lora_parameters
1732
1733
                )

1734
1735
1736
1737
1738
        if is_network_alphas_populated and len(network_alphas) > 0:
            raise ValueError(
                f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
            )

Will Berman's avatar
Will Berman committed
1739
        return lora_parameters
1740
1741
1742
1743
1744

    @classmethod
    def save_lora_weights(
        self,
        save_directory: Union[str, os.PathLike],
1745
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1746
1747
1748
1749
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
1750
        safe_serialization: bool = True,
1751
1752
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
1753
        Save the LoRA parameters corresponding to the UNet and text encoder.
1754
1755
1756

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
1757
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
1758
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
1759
1760
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
Steven Liu's avatar
Steven Liu committed
1761
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
1762
                encoder LoRA state dict because it comes from 🤗 Transformers.
1763
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
1764
1765
1766
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
1767
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
1768
1769
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
1770
                `DIFFUSERS_SAVE_MODE`.
1771
1772
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
1773
1774
1775
        """
        # Create a flat dictionary.
        state_dict = {}
1776
1777

        # Populate the dictionary.
1778
        if unet_lora_layers is not None:
1779
1780
1781
1782
1783
            weights = (
                unet_lora_layers.state_dict() if isinstance(unet_lora_layers, torch.nn.Module) else unet_lora_layers
            )

            unet_lora_state_dict = {f"{self.unet_name}.{module_name}": param for module_name, param in weights.items()}
1784
            state_dict.update(unet_lora_state_dict)
1785

1786
        if text_encoder_lora_layers is not None:
1787
1788
1789
1790
1791
1792
            weights = (
                text_encoder_lora_layers.state_dict()
                if isinstance(text_encoder_lora_layers, torch.nn.Module)
                else text_encoder_lora_layers
            )

1793
            text_encoder_lora_state_dict = {
1794
                f"{self.text_encoder_name}.{module_name}": param for module_name, param in weights.items()
1795
1796
1797
1798
            }
            state_dict.update(text_encoder_lora_state_dict)

        # Save the model
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
        self.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def write_lora_layers(
        state_dict: Dict[str, torch.Tensor],
        save_directory: str,
        is_main_process: bool,
        weight_name: str,
        save_function: Callable,
        safe_serialization: bool,
    ):
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save

        os.makedirs(save_directory, exist_ok=True)

1831
1832
1833
1834
1835
1836
1837
1838
        if weight_name is None:
            if safe_serialization:
                weight_name = LORA_WEIGHT_NAME_SAFE
            else:
                weight_name = LORA_WEIGHT_NAME

        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
1lint's avatar
1lint committed
1839

Will Berman's avatar
Will Berman committed
1840
1841
    @classmethod
    def _convert_kohya_lora_to_diffusers(cls, state_dict):
1842
1843
        unet_state_dict = {}
        te_state_dict = {}
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
        te2_state_dict = {}
        network_alphas = {}

        # every down weight has a corresponding up weight and potentially an alpha weight
        lora_keys = [k for k in state_dict.keys() if k.endswith("lora_down.weight")]
        for key in lora_keys:
            lora_name = key.split(".")[0]
            lora_name_up = lora_name + ".lora_up.weight"
            lora_name_alpha = lora_name + ".alpha"

            if lora_name.startswith("lora_unet_"):
                diffusers_name = key.replace("lora_unet_", "").replace("_", ".")

                if "input.blocks" in diffusers_name:
                    diffusers_name = diffusers_name.replace("input.blocks", "down_blocks")
                else:
1860
                    diffusers_name = diffusers_name.replace("down.blocks", "down_blocks")
1861
1862
1863
1864

                if "middle.block" in diffusers_name:
                    diffusers_name = diffusers_name.replace("middle.block", "mid_block")
                else:
1865
                    diffusers_name = diffusers_name.replace("mid.block", "mid_block")
1866
1867
1868
                if "output.blocks" in diffusers_name:
                    diffusers_name = diffusers_name.replace("output.blocks", "up_blocks")
                else:
1869
                    diffusers_name = diffusers_name.replace("up.blocks", "up_blocks")
1870

1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
                diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks")
                diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora")
                diffusers_name = diffusers_name.replace("proj.in", "proj_in")
                diffusers_name = diffusers_name.replace("proj.out", "proj_out")
                diffusers_name = diffusers_name.replace("emb.layers", "time_emb_proj")

                # SDXL specificity.
Sayak Paul's avatar
Sayak Paul committed
1881
                if "emb" in diffusers_name and "time" not in diffusers_name:
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
                    pattern = r"\.\d+(?=\D*$)"
                    diffusers_name = re.sub(pattern, "", diffusers_name, count=1)
                if ".in." in diffusers_name:
                    diffusers_name = diffusers_name.replace("in.layers.2", "conv1")
                if ".out." in diffusers_name:
                    diffusers_name = diffusers_name.replace("out.layers.3", "conv2")
                if "downsamplers" in diffusers_name or "upsamplers" in diffusers_name:
                    diffusers_name = diffusers_name.replace("op", "conv")
                if "skip" in diffusers_name:
                    diffusers_name = diffusers_name.replace("skip.connection", "conv_shortcut")

Sayak Paul's avatar
Sayak Paul committed
1893
1894
1895
1896
1897
1898
1899
                # LyCORIS specificity.
                if "time" in diffusers_name:
                    diffusers_name = diffusers_name.replace("time.emb.proj", "time_emb_proj")
                if "conv.shortcut" in diffusers_name:
                    diffusers_name = diffusers_name.replace("conv.shortcut", "conv_shortcut")

                # General coverage.
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
                if "transformer_blocks" in diffusers_name:
                    if "attn1" in diffusers_name or "attn2" in diffusers_name:
                        diffusers_name = diffusers_name.replace("attn1", "attn1.processor")
                        diffusers_name = diffusers_name.replace("attn2", "attn2.processor")
                        unet_state_dict[diffusers_name] = state_dict.pop(key)
                        unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                    elif "ff" in diffusers_name:
                        unet_state_dict[diffusers_name] = state_dict.pop(key)
                        unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif any(key in diffusers_name for key in ("proj_in", "proj_out")):
                    unet_state_dict[diffusers_name] = state_dict.pop(key)
                    unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                else:
                    unet_state_dict[diffusers_name] = state_dict.pop(key)
                    unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            elif lora_name.startswith("lora_te_"):
                diffusers_name = key.replace("lora_te_", "").replace("_", ".")
                diffusers_name = diffusers_name.replace("text.model", "text_model")
                diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                if "self_attn" in diffusers_name:
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif "mlp" in diffusers_name:
                    # Be aware that this is the new diffusers convention and the rest of the code might
                    # not utilize it yet.
                    diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # (sayakpaul): Duplicate code. Needs to be cleaned.
            elif lora_name.startswith("lora_te1_"):
                diffusers_name = key.replace("lora_te1_", "").replace("_", ".")
                diffusers_name = diffusers_name.replace("text.model", "text_model")
                diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                if "self_attn" in diffusers_name:
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif "mlp" in diffusers_name:
                    # Be aware that this is the new diffusers convention and the rest of the code might
                    # not utilize it yet.
                    diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # (sayakpaul): Duplicate code. Needs to be cleaned.
            elif lora_name.startswith("lora_te2_"):
                diffusers_name = key.replace("lora_te2_", "").replace("_", ".")
                diffusers_name = diffusers_name.replace("text.model", "text_model")
                diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                if "self_attn" in diffusers_name:
                    te2_state_dict[diffusers_name] = state_dict.pop(key)
                    te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif "mlp" in diffusers_name:
                    # Be aware that this is the new diffusers convention and the rest of the code might
                    # not utilize it yet.
                    diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
                    te2_state_dict[diffusers_name] = state_dict.pop(key)
                    te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # Rename the alphas so that they can be mapped appropriately.
            if lora_name_alpha in state_dict:
                alpha = state_dict.pop(lora_name_alpha).item()
                if lora_name_alpha.startswith("lora_unet_"):
                    prefix = "unet."
                elif lora_name_alpha.startswith(("lora_te_", "lora_te1_")):
                    prefix = "text_encoder."
                else:
                    prefix = "text_encoder_2."
                new_name = prefix + diffusers_name.split(".lora.")[0] + ".alpha"
                network_alphas.update({new_name: alpha})

        if len(state_dict) > 0:
            raise ValueError(
                f"The following keys have not been correctly be renamed: \n\n {', '.join(state_dict.keys())}"
1987
            )
1988

1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
        logger.info("Kohya-style checkpoint detected.")
        unet_state_dict = {f"{cls.unet_name}.{module_name}": params for module_name, params in unet_state_dict.items()}
        te_state_dict = {
            f"{cls.text_encoder_name}.{module_name}": params for module_name, params in te_state_dict.items()
        }
        te2_state_dict = (
            {f"text_encoder_2.{module_name}": params for module_name, params in te2_state_dict.items()}
            if len(te2_state_dict) > 0
            else None
        )
        if te2_state_dict is not None:
            te_state_dict.update(te2_state_dict)

2002
        new_state_dict = {**unet_state_dict, **te_state_dict}
2003
        return new_state_dict, network_alphas
2004

2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
    def unload_lora_weights(self):
        """
        Unloads the LoRA parameters.

        Examples:

        ```python
        >>> # Assuming `pipeline` is already loaded with the LoRA parameters.
        >>> pipeline.unload_lora_weights()
        >>> ...
        ```
        """
2017
2018
2019
        for _, module in self.unet.named_modules():
            if hasattr(module, "set_lora_layer"):
                module.set_lora_layer(None)
2020

2021
2022
2023
        # Safe to call the following regardless of LoRA.
        self._remove_text_encoder_monkey_patch()

2024
    def fuse_lora(self, fuse_unet: bool = True, fuse_text_encoder: bool = True, lora_scale: float = 1.0):
Patrick von Platen's avatar
Patrick von Platen committed
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            fuse_unet (`bool`, defaults to `True`): Whether to fuse the UNet LoRA parameters.
            fuse_text_encoder (`bool`, defaults to `True`):
                Whether to fuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
                LoRA parameters then it won't have any effect.
2039
2040
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
Patrick von Platen's avatar
Patrick von Platen committed
2041
        """
2042
2043
2044
2045
2046
2047
2048
        if fuse_unet or fuse_text_encoder:
            self.num_fused_loras += 1
            if self.num_fused_loras > 1:
                logger.warn(
                    "The current API is supported for operating with a single LoRA file. You are trying to load and fuse more than one LoRA which is not well-supported.",
                )

Patrick von Platen's avatar
Patrick von Platen committed
2049
        if fuse_unet:
2050
            self.unet.fuse_lora(lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
2051
2052
2053
2054

        def fuse_text_encoder_lora(text_encoder):
            for _, attn_module in text_encoder_attn_modules(text_encoder):
                if isinstance(attn_module.q_proj, PatchedLoraProjection):
2055
2056
2057
2058
                    attn_module.q_proj._fuse_lora(lora_scale)
                    attn_module.k_proj._fuse_lora(lora_scale)
                    attn_module.v_proj._fuse_lora(lora_scale)
                    attn_module.out_proj._fuse_lora(lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
2059
2060
2061

            for _, mlp_module in text_encoder_mlp_modules(text_encoder):
                if isinstance(mlp_module.fc1, PatchedLoraProjection):
2062
2063
                    mlp_module.fc1._fuse_lora(lora_scale)
                    mlp_module.fc2._fuse_lora(lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109

        if fuse_text_encoder:
            if hasattr(self, "text_encoder"):
                fuse_text_encoder_lora(self.text_encoder)
            if hasattr(self, "text_encoder_2"):
                fuse_text_encoder_lora(self.text_encoder_2)

    def unfuse_lora(self, unfuse_unet: bool = True, unfuse_text_encoder: bool = True):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
            unfuse_text_encoder (`bool`, defaults to `True`):
                Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
                LoRA parameters then it won't have any effect.
        """
        if unfuse_unet:
            self.unet.unfuse_lora()

        def unfuse_text_encoder_lora(text_encoder):
            for _, attn_module in text_encoder_attn_modules(text_encoder):
                if isinstance(attn_module.q_proj, PatchedLoraProjection):
                    attn_module.q_proj._unfuse_lora()
                    attn_module.k_proj._unfuse_lora()
                    attn_module.v_proj._unfuse_lora()
                    attn_module.out_proj._unfuse_lora()

            for _, mlp_module in text_encoder_mlp_modules(text_encoder):
                if isinstance(mlp_module.fc1, PatchedLoraProjection):
                    mlp_module.fc1._unfuse_lora()
                    mlp_module.fc2._unfuse_lora()

        if unfuse_text_encoder:
            if hasattr(self, "text_encoder"):
                unfuse_text_encoder_lora(self.text_encoder)
            if hasattr(self, "text_encoder_2"):
                unfuse_text_encoder_lora(self.text_encoder_2)

2110
2111
        self.num_fused_loras -= 1

1lint's avatar
1lint committed
2112

Patrick von Platen's avatar
Patrick von Platen committed
2113
class FromSingleFileMixin:
Steven Liu's avatar
Steven Liu committed
2114
2115
2116
    """
    Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`].
    """
1lint's avatar
1lint committed
2117
2118

    @classmethod
Patrick von Platen's avatar
Patrick von Platen committed
2119
2120
2121
2122
2123
2124
2125
    def from_ckpt(cls, *args, **kwargs):
        deprecation_message = "The function `from_ckpt` is deprecated in favor of `from_single_file` and will be removed in diffusers v.0.21. Please make sure to use `StableDiffusionPipeline.from_single_file(...)` instead."
        deprecate("from_ckpt", "0.21.0", deprecation_message, standard_warn=False)
        return cls.from_single_file(*args, **kwargs)

    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
1lint's avatar
1lint committed
2126
        r"""
2127
2128
        Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors`
        format. The pipeline is set in evaluation mode (`model.eval()`) by default.
1lint's avatar
1lint committed
2129
2130
2131
2132

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
Steven Liu's avatar
Steven Liu committed
2133
2134
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
1lint's avatar
1lint committed
2135
2136
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
2137
2138
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
1lint's avatar
1lint committed
2139
2140
2141
2142
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
2143
2144
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
1lint's avatar
1lint committed
2145
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
2146
2147
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
1lint's avatar
1lint committed
2148
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
2149
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1lint's avatar
1lint committed
2150
2151
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
2152
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
Steven Liu's avatar
Steven Liu committed
2153
                won't be downloaded from the Hub.
1lint's avatar
1lint committed
2154
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
2155
2156
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1lint's avatar
1lint committed
2157
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
2158
2159
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
2160
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
2161
2162
2163
2164
2165
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            extract_ema (`bool`, *optional*, defaults to `False`):
                Whether to extract the EMA weights or not. Pass `True` to extract the EMA weights which usually yield
2166
                higher quality images for inference. Non-EMA weights are usually better for continuing finetuning.
1lint's avatar
1lint committed
2167
            upcast_attention (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
2168
                Whether the attention computation should always be upcasted.
1lint's avatar
1lint committed
2169
            image_size (`int`, *optional*, defaults to 512):
Steven Liu's avatar
Steven Liu committed
2170
2171
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
1lint's avatar
1lint committed
2172
            prediction_type (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
2173
2174
2175
                The prediction type the model was trained on. Use `'epsilon'` for all Stable Diffusion v1 models and
                the Stable Diffusion v2 base model. Use `'v_prediction'` for Stable Diffusion v2.
            num_in_channels (`int`, *optional*, defaults to `None`):
2176
                The number of input channels. If `None`, it is automatically inferred.
Steven Liu's avatar
Steven Liu committed
2177
            scheduler_type (`str`, *optional*, defaults to `"pndm"`):
1lint's avatar
1lint committed
2178
2179
2180
                Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm",
                "ddim"]`.
            load_safety_checker (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
2181
                Whether to load the safety checker or not.
2182
2183
2184
2185
            text_encoder ([`~transformers.CLIPTextModel`], *optional*, defaults to `None`):
                An instance of `CLIPTextModel` to use, specifically the
                [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. If this
                parameter is `None`, the function loads a new instance of `CLIPTextModel` by itself if needed.
2186
2187
2188
            vae (`AutoencoderKL`, *optional*, defaults to `None`):
                Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. If
                this parameter is `None`, the function will load a new instance of [CLIP] by itself, if needed.
2189
2190
2191
            tokenizer ([`~transformers.CLIPTokenizer`], *optional*, defaults to `None`):
                An instance of `CLIPTokenizer` to use. If this parameter is `None`, the function loads a new instance
                of `CLIPTokenizer` by itself if needed.
2192
2193
2194
            original_config_file (`str`):
                Path to `.yaml` config file corresponding to the original architecture. If `None`, will be
                automatically inferred by looking for a key that only exists in SD2.0 models.
1lint's avatar
1lint committed
2195
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
2196
2197
2198
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.
1lint's avatar
1lint committed
2199
2200
2201
2202
2203
2204
2205

        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
Patrick von Platen's avatar
Patrick von Platen committed
2206
        >>> pipeline = StableDiffusionPipeline.from_single_file(
1lint's avatar
1lint committed
2207
2208
2209
2210
2211
        ...     "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
        ... )

        >>> # Download pipeline from local file
        >>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
Patrick von Platen's avatar
Patrick von Platen committed
2212
        >>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly")
1lint's avatar
1lint committed
2213
2214

        >>> # Enable float16 and move to GPU
Patrick von Platen's avatar
Patrick von Platen committed
2215
        >>> pipeline = StableDiffusionPipeline.from_single_file(
1lint's avatar
1lint committed
2216
2217
2218
2219
2220
2221
2222
2223
2224
        ...     "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
        ...     torch_dtype=torch.float16,
        ... )
        >>> pipeline.to("cuda")
        ```
        """
        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt

2225
        original_config_file = kwargs.pop("original_config_file", None)
2226
        config_files = kwargs.pop("config_files", None)
1lint's avatar
1lint committed
2227
2228
2229
2230
2231
2232
2233
2234
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        extract_ema = kwargs.pop("extract_ema", False)
2235
        image_size = kwargs.pop("image_size", None)
1lint's avatar
1lint committed
2236
2237
2238
2239
2240
        scheduler_type = kwargs.pop("scheduler_type", "pndm")
        num_in_channels = kwargs.pop("num_in_channels", None)
        upcast_attention = kwargs.pop("upcast_attention", None)
        load_safety_checker = kwargs.pop("load_safety_checker", True)
        prediction_type = kwargs.pop("prediction_type", None)
2241
        text_encoder = kwargs.pop("text_encoder", None)
2242
        vae = kwargs.pop("vae", None)
2243
        controlnet = kwargs.pop("controlnet", None)
2244
        tokenizer = kwargs.pop("tokenizer", None)
1lint's avatar
1lint committed
2245
2246
2247

        torch_dtype = kwargs.pop("torch_dtype", None)

2248
        use_safetensors = kwargs.pop("use_safetensors", None)
1lint's avatar
1lint committed
2249
2250
2251
2252
2253

        pipeline_name = cls.__name__
        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

2254
        if from_safetensors and use_safetensors is False:
1lint's avatar
1lint committed
2255
2256
2257
2258
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # TODO: For now we only support stable diffusion
        stable_unclip = None
2259
        model_type = None
1lint's avatar
1lint committed
2260

2261
2262
2263
2264
2265
2266
2267
2268
        if pipeline_name in [
            "StableDiffusionControlNetPipeline",
            "StableDiffusionControlNetImg2ImgPipeline",
            "StableDiffusionControlNetInpaintPipeline",
        ]:
            from .models.controlnet import ControlNetModel
            from .pipelines.controlnet.multicontrolnet import MultiControlNetModel

2269
            # Model type will be inferred from the checkpoint.
2270
2271
            if not isinstance(controlnet, (ControlNetModel, MultiControlNetModel)):
                raise ValueError("ControlNet needs to be passed if loading from ControlNet pipeline.")
1lint's avatar
1lint committed
2272
        elif "StableDiffusion" in pipeline_name:
2273
2274
            # Model type will be inferred from the checkpoint.
            pass
1lint's avatar
1lint committed
2275
        elif pipeline_name == "StableUnCLIPPipeline":
2276
            model_type = "FrozenOpenCLIPEmbedder"
1lint's avatar
1lint committed
2277
2278
            stable_unclip = "txt2img"
        elif pipeline_name == "StableUnCLIPImg2ImgPipeline":
2279
            model_type = "FrozenOpenCLIPEmbedder"
1lint's avatar
1lint committed
2280
2281
            stable_unclip = "img2img"
        elif pipeline_name == "PaintByExamplePipeline":
2282
            model_type = "PaintByExample"
1lint's avatar
1lint committed
2283
        elif pipeline_name == "LDMTextToImagePipeline":
2284
            model_type = "LDMTextToImage"
1lint's avatar
1lint committed
2285
2286
2287
2288
        else:
            raise ValueError(f"Unhandled pipeline class: {pipeline_name}")

        # remove huggingface url
2289
2290
2291
        has_valid_url_prefix = False
        valid_url_prefixes = ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]
        for prefix in valid_url_prefixes:
1lint's avatar
1lint committed
2292
2293
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]
2294
                has_valid_url_prefix = True
1lint's avatar
1lint committed
2295
2296
2297
2298

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
2299
2300
2301
2302
2303
            if not has_valid_url_prefix:
                raise ValueError(
                    f"The provided path is either not a file or a valid huggingface URL was not provided. Valid URLs begin with {', '.join(valid_url_prefixes)}"
                )

1lint's avatar
1lint committed
2304
            # get repo_id and (potentially nested) file path of ckpt in repo
2305
2306
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])
1lint's avatar
1lint committed
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        pipe = download_from_original_stable_diffusion_ckpt(
            pretrained_model_link_or_path,
            pipeline_class=cls,
            model_type=model_type,
            stable_unclip=stable_unclip,
            controlnet=controlnet,
            from_safetensors=from_safetensors,
            extract_ema=extract_ema,
            image_size=image_size,
            scheduler_type=scheduler_type,
            num_in_channels=num_in_channels,
            upcast_attention=upcast_attention,
            load_safety_checker=load_safety_checker,
            prediction_type=prediction_type,
2340
            text_encoder=text_encoder,
2341
            vae=vae,
2342
            tokenizer=tokenizer,
2343
            original_config_file=original_config_file,
2344
            config_files=config_files,
1lint's avatar
1lint committed
2345
2346
2347
2348
2349
2350
        )

        if torch_dtype is not None:
            pipe.to(torch_dtype=torch_dtype)

        return pipe
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454


class FromOriginalVAEMixin:
    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
        r"""
        Instantiate a [`AutoencoderKL`] from pretrained controlnet weights saved in the original `.ckpt` or
        `.safetensors` format. The pipeline is format. The pipeline is set in evaluation mode (`model.eval()`) by
        default.

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to True, the model
                won't be downloaded from the Hub.
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            image_size (`int`, *optional*, defaults to 512):
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            upcast_attention (`bool`, *optional*, defaults to `None`):
                Whether the attention computation should always be upcasted.
            scaling_factor (`float`, *optional*, defaults to 0.18215):
                The component-wise standard deviation of the trained latent space computed using the first batch of the
                training set. This is used to scale the latent space to have unit variance when training the diffusion
                model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
                diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z
                = 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution
                Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.

        <Tip warning={true}>

            Make sure to pass both `image_size` and `scaling_factor` to `from_single_file()` if you want to load
            a VAE that does accompany a stable diffusion model of v2 or higher or SDXL.

        </Tip>

        Examples:

        ```py
        from diffusers import AutoencoderKL

        url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"  # can also be local file
        model = AutoencoderKL.from_single_file(url)
        ```
        """
        if not is_omegaconf_available():
            raise ValueError(BACKENDS_MAPPING["omegaconf"][1])

        from omegaconf import OmegaConf

        from .models import AutoencoderKL

        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import (
            convert_ldm_vae_checkpoint,
            create_vae_diffusers_config,
        )

        config_file = kwargs.pop("config_file", None)
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        image_size = kwargs.pop("image_size", None)
        scaling_factor = kwargs.pop("scaling_factor", None)
        kwargs.pop("upcast_attention", None)

        torch_dtype = kwargs.pop("torch_dtype", None)

2455
        use_safetensors = kwargs.pop("use_safetensors", None)
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534

        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

        if from_safetensors and use_safetensors is False:
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # remove huggingface url
        for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
            # get repo_id and (potentially nested) file path of ckpt in repo
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        if from_safetensors:
            from safetensors import safe_open

            checkpoint = {}
            with safe_open(pretrained_model_link_or_path, framework="pt", device="cpu") as f:
                for key in f.keys():
                    checkpoint[key] = f.get_tensor(key)
        else:
            checkpoint = torch.load(pretrained_model_link_or_path, map_location="cpu")

        if "state_dict" in checkpoint:
            checkpoint = checkpoint["state_dict"]

        if config_file is None:
            config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
            config_file = BytesIO(requests.get(config_url).content)

        original_config = OmegaConf.load(config_file)

        # default to sd-v1-5
        image_size = image_size or 512

        vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
        converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)

        if scaling_factor is None:
            if (
                "model" in original_config
                and "params" in original_config.model
                and "scale_factor" in original_config.model.params
            ):
                vae_scaling_factor = original_config.model.params.scale_factor
            else:
                vae_scaling_factor = 0.18215  # default SD scaling factor

        vae_config["scaling_factor"] = vae_scaling_factor

        ctx = init_empty_weights if is_accelerate_available() else nullcontext
        with ctx():
            vae = AutoencoderKL(**vae_config)

        if is_accelerate_available():
2535
            load_model_dict_into_meta(vae, converted_vae_checkpoint, device="cpu")
2536
2537
2538
2539
        else:
            vae.load_state_dict(converted_vae_checkpoint)

        if torch_dtype is not None:
2540
            vae.to(dtype=torch_dtype)
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626

        return vae


class FromOriginalControlnetMixin:
    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
        r"""
        Instantiate a [`ControlNetModel`] from pretrained controlnet weights saved in the original `.ckpt` or
        `.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to True, the model
                won't be downloaded from the Hub.
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            image_size (`int`, *optional*, defaults to 512):
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
            upcast_attention (`bool`, *optional*, defaults to `None`):
                Whether the attention computation should always be upcasted.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.

        Examples:

        ```py
        from diffusers import StableDiffusionControlnetPipeline, ControlNetModel

        url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth"  # can also be a local path
        model = ControlNetModel.from_single_file(url)

        url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors"  # can also be a local path
        pipe = StableDiffusionControlnetPipeline.from_single_file(url, controlnet=controlnet)
        ```
        """
        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt

        config_file = kwargs.pop("config_file", None)
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        num_in_channels = kwargs.pop("num_in_channels", None)
        use_linear_projection = kwargs.pop("use_linear_projection", None)
        revision = kwargs.pop("revision", None)
        extract_ema = kwargs.pop("extract_ema", False)
        image_size = kwargs.pop("image_size", None)
        upcast_attention = kwargs.pop("upcast_attention", None)

        torch_dtype = kwargs.pop("torch_dtype", None)

2627
        use_safetensors = kwargs.pop("use_safetensors", None)
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685

        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

        if from_safetensors and use_safetensors is False:
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # remove huggingface url
        for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
            # get repo_id and (potentially nested) file path of ckpt in repo
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        if config_file is None:
            config_url = "https://raw.githubusercontent.com/lllyasviel/ControlNet/main/models/cldm_v15.yaml"
            config_file = BytesIO(requests.get(config_url).content)

        image_size = image_size or 512

        controlnet = download_controlnet_from_original_ckpt(
            pretrained_model_link_or_path,
            original_config_file=config_file,
            image_size=image_size,
            extract_ema=extract_ema,
            num_in_channels=num_in_channels,
            upcast_attention=upcast_attention,
            from_safetensors=from_safetensors,
            use_linear_projection=use_linear_projection,
        )

        if torch_dtype is not None:
            controlnet.to(torch_dtype=torch_dtype)

        return controlnet
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716


class StableDiffusionXLLoraLoaderMixin(LoraLoaderMixin):
    """This class overrides `LoraLoaderMixin` with LoRA loading/saving code that's specific to SDXL"""

    # Overrride to properly handle the loading and unloading of the additional text encoder.
    def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
        `self.text_encoder`.

        All kwargs are forwarded to `self.lora_state_dict`.

        See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.

        See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into
        `self.unet`.

        See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded
        into `self.text_encoder`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
            kwargs (`dict`, *optional*):
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
        """
        # We could have accessed the unet config from `lora_state_dict()` too. We pass
        # it here explicitly to be able to tell that it's coming from an SDXL
        # pipeline.

2717
        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
2718
2719
2720
2721
2722
        state_dict, network_alphas = self.lora_state_dict(
            pretrained_model_name_or_path_or_dict,
            unet_config=self.unet.config,
            **kwargs,
        )
2723
2724
2725
        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")
2726

2727
        self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet, _pipeline=self)
2728
2729
2730
2731
2732
2733
2734
2735
        text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
        if len(text_encoder_state_dict) > 0:
            self.load_lora_into_text_encoder(
                text_encoder_state_dict,
                network_alphas=network_alphas,
                text_encoder=self.text_encoder,
                prefix="text_encoder",
                lora_scale=self.lora_scale,
2736
                _pipeline=self,
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
            )

        text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
        if len(text_encoder_2_state_dict) > 0:
            self.load_lora_into_text_encoder(
                text_encoder_2_state_dict,
                network_alphas=network_alphas,
                text_encoder=self.text_encoder_2,
                prefix="text_encoder_2",
                lora_scale=self.lora_scale,
2747
                _pipeline=self,
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
            )

    @classmethod
    def save_lora_weights(
        self,
        save_directory: Union[str, os.PathLike],
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
    ):
        r"""
        Save the LoRA parameters corresponding to the UNet and text encoder.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
        """
        state_dict = {}

        def pack_weights(layers, prefix):
            layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
            layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
            return layers_state_dict

        if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
            raise ValueError(
                "You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`."
            )

        if unet_lora_layers:
            state_dict.update(pack_weights(unet_lora_layers, "unet"))

        if text_encoder_lora_layers and text_encoder_2_lora_layers:
            state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
            state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))

        self.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def _remove_text_encoder_monkey_patch(self):
        self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
        self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)