"docs/vscode:/vscode.git/clone" did not exist on "2883eda607a312848e247e2137991a4eb6f9e3ff"
loaders.py 120 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import copy
15
import os
16
import re
17
import warnings
18
from collections import defaultdict
19
20
from contextlib import nullcontext
from io import BytesIO
1lint's avatar
1lint committed
21
from pathlib import Path
22
from typing import Callable, Dict, List, Optional, Union
23

24
import requests
25
import safetensors
26
import torch
27
from huggingface_hub import hf_hub_download, model_info
Will Berman's avatar
Will Berman committed
28
from torch import nn
29

30
31
32
33
34
from .utils import (
    DIFFUSERS_CACHE,
    HF_HUB_OFFLINE,
    _get_model_file,
    deprecate,
35
36
    is_accelerate_available,
    is_omegaconf_available,
37
38
39
    is_transformers_available,
    logging,
)
40
from .utils.import_utils import BACKENDS_MAPPING
41
42


43
if is_transformers_available():
44
    from transformers import CLIPTextModel, CLIPTextModelWithProjection, PreTrainedModel, PreTrainedTokenizer
45

46
47
48
if is_accelerate_available():
    from accelerate import init_empty_weights
    from accelerate.utils import set_module_tensor_to_device
49
50
51

logger = logging.get_logger(__name__)

52
53
TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"
54
55

LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
56
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
57

58
59
60
TEXT_INVERSION_NAME = "learned_embeds.bin"
TEXT_INVERSION_NAME_SAFE = "learned_embeds.safetensors"

61
62
63
CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin"
CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors"

64

Will Berman's avatar
Will Berman committed
65
66
67
class PatchedLoraProjection(nn.Module):
    def __init__(self, regular_linear_layer, lora_scale=1, network_alpha=None, rank=4, dtype=None):
        super().__init__()
68
        from .models.lora import LoRALinearLayer
69

Will Berman's avatar
Will Berman committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
        self.regular_linear_layer = regular_linear_layer

        device = self.regular_linear_layer.weight.device

        if dtype is None:
            dtype = self.regular_linear_layer.weight.dtype

        self.lora_linear_layer = LoRALinearLayer(
            self.regular_linear_layer.in_features,
            self.regular_linear_layer.out_features,
            network_alpha=network_alpha,
            device=device,
            dtype=dtype,
            rank=rank,
        )

        self.lora_scale = lora_scale

Patrick von Platen's avatar
Patrick von Platen committed
88
89
90
91
92
93
94
95
96
97
    # overwrite PyTorch's `state_dict` to be sure that only the 'regular_linear_layer' weights are saved
    # when saving the whole text encoder model and when LoRA is unloaded or fused
    def state_dict(self, *args, destination=None, prefix="", keep_vars=False):
        if self.lora_linear_layer is None:
            return self.regular_linear_layer.state_dict(
                *args, destination=destination, prefix=prefix, keep_vars=keep_vars
            )

        return super().state_dict(*args, destination=destination, prefix=prefix, keep_vars=keep_vars)

98
    def _fuse_lora(self, lora_scale=1.0):
Patrick von Platen's avatar
Patrick von Platen committed
99
100
101
102
103
104
105
106
107
108
109
110
        if self.lora_linear_layer is None:
            return

        dtype, device = self.regular_linear_layer.weight.data.dtype, self.regular_linear_layer.weight.data.device

        w_orig = self.regular_linear_layer.weight.data.float()
        w_up = self.lora_linear_layer.up.weight.data.float()
        w_down = self.lora_linear_layer.down.weight.data.float()

        if self.lora_linear_layer.network_alpha is not None:
            w_up = w_up * self.lora_linear_layer.network_alpha / self.lora_linear_layer.rank

111
        fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
Patrick von Platen's avatar
Patrick von Platen committed
112
113
114
115
116
117
118
119
        self.regular_linear_layer.weight.data = fused_weight.to(device=device, dtype=dtype)

        # we can drop the lora layer now
        self.lora_linear_layer = None

        # offload the up and down matrices to CPU to not blow the memory
        self.w_up = w_up.cpu()
        self.w_down = w_down.cpu()
120
        self.lora_scale = lora_scale
Patrick von Platen's avatar
Patrick von Platen committed
121
122
123
124
125
126
127
128

    def _unfuse_lora(self):
        if not (hasattr(self, "w_up") and hasattr(self, "w_down")):
            return

        fused_weight = self.regular_linear_layer.weight.data
        dtype, device = fused_weight.dtype, fused_weight.device

Patrick von Platen's avatar
Patrick von Platen committed
129
130
131
        w_up = self.w_up.to(device=device).float()
        w_down = self.w_down.to(device).float()

132
        unfused_weight = fused_weight.float() - (self.lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
Patrick von Platen's avatar
Patrick von Platen committed
133
134
135
136
137
        self.regular_linear_layer.weight.data = unfused_weight.to(device=device, dtype=dtype)

        self.w_up = None
        self.w_down = None

Will Berman's avatar
Will Berman committed
138
    def forward(self, input):
139
140
141
        # print(f"{self.__class__.__name__} has a lora_scale of {self.lora_scale}")
        if self.lora_scale is None:
            self.lora_scale = 1.0
Patrick von Platen's avatar
Patrick von Platen committed
142
143
        if self.lora_linear_layer is None:
            return self.regular_linear_layer(input)
144
        return self.regular_linear_layer(input) + (self.lora_scale * self.lora_linear_layer(input))
Will Berman's avatar
Will Berman committed
145
146
147
148
149


def text_encoder_attn_modules(text_encoder):
    attn_modules = []

150
    if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
Will Berman's avatar
Will Berman committed
151
152
153
154
155
156
157
158
159
160
        for i, layer in enumerate(text_encoder.text_model.encoder.layers):
            name = f"text_model.encoder.layers.{i}.self_attn"
            mod = layer.self_attn
            attn_modules.append((name, mod))
    else:
        raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}")

    return attn_modules


161
162
163
164
165
166
167
168
169
170
171
172
173
174
def text_encoder_mlp_modules(text_encoder):
    mlp_modules = []

    if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
        for i, layer in enumerate(text_encoder.text_model.encoder.layers):
            mlp_mod = layer.mlp
            name = f"text_model.encoder.layers.{i}.mlp"
            mlp_modules.append((name, mlp_mod))
    else:
        raise ValueError(f"do not know how to get mlp modules for: {text_encoder.__class__.__name__}")

    return mlp_modules


Will Berman's avatar
Will Berman committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
def text_encoder_lora_state_dict(text_encoder):
    state_dict = {}

    for name, module in text_encoder_attn_modules(text_encoder):
        for k, v in module.q_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v

        for k, v in module.k_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v

        for k, v in module.v_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v

        for k, v in module.out_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v

    return state_dict


194
195
196
197
class AttnProcsLayers(torch.nn.Module):
    def __init__(self, state_dict: Dict[str, torch.Tensor]):
        super().__init__()
        self.layers = torch.nn.ModuleList(state_dict.values())
198
        self.mapping = dict(enumerate(state_dict.keys()))
199
200
        self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}

201
202
        # .processor for unet, .self_attn for text encoder
        self.split_keys = [".processor", ".self_attn"]
203

204
205
206
207
208
209
210
211
212
213
214
        # we add a hook to state_dict() and load_state_dict() so that the
        # naming fits with `unet.attn_processors`
        def map_to(module, state_dict, *args, **kwargs):
            new_state_dict = {}
            for key, value in state_dict.items():
                num = int(key.split(".")[1])  # 0 is always "layers"
                new_key = key.replace(f"layers.{num}", module.mapping[num])
                new_state_dict[new_key] = value

            return new_state_dict

215
216
217
218
219
220
221
222
223
        def remap_key(key, state_dict):
            for k in self.split_keys:
                if k in key:
                    return key.split(k)[0] + k

            raise ValueError(
                f"There seems to be a problem with the state_dict: {set(state_dict.keys())}. {key} has to have one of {self.split_keys}."
            )

224
225
226
        def map_from(module, state_dict, *args, **kwargs):
            all_keys = list(state_dict.keys())
            for key in all_keys:
227
                replace_key = remap_key(key, state_dict)
228
229
230
231
232
233
234
235
236
                new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
                state_dict[new_key] = state_dict[key]
                del state_dict[key]

        self._register_state_dict_hook(map_to)
        self._register_load_state_dict_pre_hook(map_from, with_module=True)


class UNet2DConditionLoadersMixin:
237
238
239
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME

240
241
    def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
        r"""
Steven Liu's avatar
Steven Liu committed
242
        Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be
243
        defined in
Patrick von Platen's avatar
Patrick von Platen committed
244
        [`attention_processor.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py)
245
246
247
248
249
250
        and be a `torch.nn.Module` class.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

Steven Liu's avatar
Steven Liu committed
251
252
253
254
                    - A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a directory (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
255
256
257
258
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
259
260
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
261
262
263
264
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
265
266
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
267
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
268
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
269
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
270
271
272
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
273
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
274
275
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
276
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
277
278
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
279
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
280
                The subfolder location of a model file within a larger model repository on the Hub or locally.
281
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
282
283
284
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
285
286

        """
287
288
289
        from .models.attention_processor import (
            CustomDiffusionAttnProcessor,
        )
290
        from .models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer
291
292
293
294
295
296
297
298
299

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
300
        weight_name = kwargs.pop("weight_name", None)
301
        use_safetensors = kwargs.pop("use_safetensors", None)
302
303
        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
304
        network_alphas = kwargs.pop("network_alphas", None)
305
        is_network_alphas_none = network_alphas is None
306
307

        allow_pickle = False
308

309
        if use_safetensors is None:
310
            use_safetensors = True
311
            allow_pickle = True
312
313
314
315
316
317

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

318
        model_file = None
319
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
320
            # Let's first try to load .safetensors weights
321
            if (use_safetensors and weight_name is None) or (
322
323
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
324
325
326
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
327
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
328
329
330
331
332
333
334
335
336
337
338
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
339
340
341
                except IOError as e:
                    if not allow_pickle:
                        raise e
342
343
                    # try loading non-safetensors weights
                    pass
344
345
346
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
347
                    weights_name=weight_name or LORA_WEIGHT_NAME,
348
349
350
351
352
353
354
355
356
357
358
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
359
360
361
362
        else:
            state_dict = pretrained_model_name_or_path_or_dict

        # fill attn processors
363
        lora_layers_list = []
364

365
        is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys())
366
        is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())
367
368

        if is_lora:
369
370
            # correct keys
            state_dict, network_alphas = self.convert_state_dict_legacy_attn_format(state_dict, network_alphas)
371

372
            lora_grouped_dict = defaultdict(dict)
373
374
375
376
377
            mapped_network_alphas = {}

            all_keys = list(state_dict.keys())
            for key in all_keys:
                value = state_dict.pop(key)
378
379
380
                attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                lora_grouped_dict[attn_processor_key][sub_key] = value

381
382
                # Create another `mapped_network_alphas` dictionary so that we can properly map them.
                if network_alphas is not None:
383
384
                    network_alphas_ = copy.deepcopy(network_alphas)
                    for k in network_alphas_:
385
                        if k.replace(".alpha", "") in key:
386
387
388
389
390
391
392
                            mapped_network_alphas.update({attn_processor_key: network_alphas.pop(k)})

            if not is_network_alphas_none:
                if len(network_alphas) > 0:
                    raise ValueError(
                        f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
                    )
393
394
395

            if len(state_dict) > 0:
                raise ValueError(
396
                    f"The `state_dict` has to be empty at this point but has the following keys \n\n {', '.join(state_dict.keys())}"
397
398
                )

399
            for key, value_dict in lora_grouped_dict.items():
Will Berman's avatar
Will Berman committed
400
401
402
403
                attn_processor = self
                for sub_key in key.split("."):
                    attn_processor = getattr(attn_processor, sub_key)

404
405
                # Process non-attention layers, which don't have to_{k,v,q,out_proj}_lora layers
                # or add_{k,v,q,out_proj}_proj_lora layers.
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
                rank = value_dict["lora.down.weight"].shape[0]

                if isinstance(attn_processor, LoRACompatibleConv):
                    in_features = attn_processor.in_channels
                    out_features = attn_processor.out_channels
                    kernel_size = attn_processor.kernel_size

                    lora = LoRAConv2dLayer(
                        in_features=in_features,
                        out_features=out_features,
                        rank=rank,
                        kernel_size=kernel_size,
                        stride=attn_processor.stride,
                        padding=attn_processor.padding,
                        network_alpha=mapped_network_alphas.get(key),
                    )
                elif isinstance(attn_processor, LoRACompatibleLinear):
                    lora = LoRALinearLayer(
                        attn_processor.in_features,
                        attn_processor.out_features,
                        rank,
                        mapped_network_alphas.get(key),
                    )
Will Berman's avatar
Will Berman committed
429
                else:
430
                    raise ValueError(f"Module {key} is not a LoRACompatibleConv or LoRACompatibleLinear module.")
Will Berman's avatar
Will Berman committed
431

432
433
434
                value_dict = {k.replace("lora.", ""): v for k, v in value_dict.items()}
                lora.load_state_dict(value_dict)
                lora_layers_list.append((attn_processor, lora))
435

436
        elif is_custom_diffusion:
437
            attn_processors = {}
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
            custom_diffusion_grouped_dict = defaultdict(dict)
            for key, value in state_dict.items():
                if len(value) == 0:
                    custom_diffusion_grouped_dict[key] = {}
                else:
                    if "to_out" in key:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                    else:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
                    custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value

            for key, value_dict in custom_diffusion_grouped_dict.items():
                if len(value_dict) == 0:
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
                    )
                else:
                    cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
                    hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
                    train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=True,
                        train_q_out=train_q_out,
                        hidden_size=hidden_size,
                        cross_attention_dim=cross_attention_dim,
                    )
                    attn_processors[key].load_state_dict(value_dict)
465
466

            self.set_attn_processor(attn_processors)
467
        else:
468
469
470
            raise ValueError(
                f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training."
            )
471
472

        # set correct dtype & device
473
        lora_layers_list = [(t, l.to(device=self.device, dtype=self.dtype)) for t, l in lora_layers_list]
474

475
476
        # set lora layers
        for target_module, lora_layer in lora_layers_list:
477
            target_module.set_lora_layer(lora_layer)
478

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
    def convert_state_dict_legacy_attn_format(self, state_dict, network_alphas):
        is_new_lora_format = all(
            key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys()
        )
        if is_new_lora_format:
            # Strip the `"unet"` prefix.
            is_text_encoder_present = any(key.startswith(self.text_encoder_name) for key in state_dict.keys())
            if is_text_encoder_present:
                warn_message = "The state_dict contains LoRA params corresponding to the text encoder which are not being used here. To use both UNet and text encoder related LoRA params, use [`pipe.load_lora_weights()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights)."
                logger.warn(warn_message)
            unet_keys = [k for k in state_dict.keys() if k.startswith(self.unet_name)]
            state_dict = {k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}

        # change processor format to 'pure' LoRACompatibleLinear format
        if any("processor" in k.split(".") for k in state_dict.keys()):

            def format_to_lora_compatible(key):
                if "processor" not in key.split("."):
                    return key
                return key.replace(".processor", "").replace("to_out_lora", "to_out.0.lora").replace("_lora", ".lora")

            state_dict = {format_to_lora_compatible(k): v for k, v in state_dict.items()}

            if network_alphas is not None:
                network_alphas = {format_to_lora_compatible(k): v for k, v in network_alphas.items()}
        return state_dict, network_alphas

506
507
508
509
    def save_attn_procs(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
510
        weight_name: str = None,
511
        save_function: Callable = None,
512
513
        safe_serialization: bool = True,
        **kwargs,
514
515
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
516
        Save an attention processor to a directory so that it can be reloaded using the
517
        [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method.
518
519
520

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
521
                Directory to save an attention processor to. Will be created if it doesn't exist.
522
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
523
524
525
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
526
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
527
528
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
529
                `DIFFUSERS_SAVE_MODE`.
530
531
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
532
        """
533
534
535
536
537
        from .models.attention_processor import (
            CustomDiffusionAttnProcessor,
            CustomDiffusionXFormersAttnProcessor,
        )

538
539
540
541
542
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
543
544
545
546
547
548
549
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save
550
551
552

        os.makedirs(save_directory, exist_ok=True)

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
        is_custom_diffusion = any(
            isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor))
            for (_, x) in self.attn_processors.items()
        )
        if is_custom_diffusion:
            model_to_save = AttnProcsLayers(
                {
                    y: x
                    for (y, x) in self.attn_processors.items()
                    if isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor))
                }
            )
            state_dict = model_to_save.state_dict()
            for name, attn in self.attn_processors.items():
                if len(attn.state_dict()) == 0:
                    state_dict[name] = {}
        else:
            model_to_save = AttnProcsLayers(self.attn_processors)
            state_dict = model_to_save.state_dict()
572

573
        if weight_name is None:
574
            if safe_serialization:
575
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE
576
            else:
577
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME
578

579
        # Save the model
580
581
        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
582

583
584
    def fuse_lora(self, lora_scale=1.0):
        self.lora_scale = lora_scale
Patrick von Platen's avatar
Patrick von Platen committed
585
586
587
588
        self.apply(self._fuse_lora_apply)

    def _fuse_lora_apply(self, module):
        if hasattr(module, "_fuse_lora"):
589
            module._fuse_lora(self.lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
590
591
592
593
594
595
596
597

    def unfuse_lora(self):
        self.apply(self._unfuse_lora_apply)

    def _unfuse_lora_apply(self, module):
        if hasattr(module, "_unfuse_lora"):
            module._unfuse_lora()

598
599
600

class TextualInversionLoaderMixin:
    r"""
Steven Liu's avatar
Steven Liu committed
601
    Load textual inversion tokens and embeddings to the tokenizer and text encoder.
602
603
    """

604
    def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"):
605
        r"""
Steven Liu's avatar
Steven Liu committed
606
607
608
        Processes prompts that include a special token corresponding to a multi-vector textual inversion embedding to
        be replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or if the textual inversion token is a single vector, the input prompt is returned.
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

        Parameters:
            prompt (`str` or list of `str`):
                The prompt or prompts to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str` or list of `str`: The converted prompt
        """
        if not isinstance(prompt, List):
            prompts = [prompt]
        else:
            prompts = prompt

        prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts]

        if not isinstance(prompt, List):
            return prompts[0]

        return prompts

631
    def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"):
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
        r"""
        Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds
        to a multi-vector textual inversion embedding, this function will process the prompt so that the special token
        is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or a textual inversion token that is a single vector, the input prompt is simply returned.

        Parameters:
            prompt (`str`):
                The prompt to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str`: The converted prompt
        """
        tokens = tokenizer.tokenize(prompt)
648
649
        unique_tokens = set(tokens)
        for token in unique_tokens:
650
651
652
653
            if token in tokenizer.added_tokens_encoder:
                replacement = token
                i = 1
                while f"{token}_{i}" in tokenizer.added_tokens_encoder:
654
                    replacement += f" {token}_{i}"
655
656
657
658
659
660
661
                    i += 1

                prompt = prompt.replace(token, replacement)

        return prompt

    def load_textual_inversion(
662
        self,
663
        pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]],
664
        token: Optional[Union[str, List[str]]] = None,
665
666
        tokenizer: Optional[PreTrainedTokenizer] = None,
        text_encoder: Optional[PreTrainedModel] = None,
667
        **kwargs,
668
669
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
670
671
        Load textual inversion embeddings into the text encoder of [`StableDiffusionPipeline`] (both 🤗 Diffusers and
        Automatic1111 formats are supported).
672
673

        Parameters:
674
            pretrained_model_name_or_path (`str` or `os.PathLike` or `List[str or os.PathLike]` or `Dict` or `List[Dict]`):
Steven Liu's avatar
Steven Liu committed
675
                Can be either one of the following or a list of them:
676

Steven Liu's avatar
Steven Liu committed
677
678
679
680
681
                    - A string, the *model id* (for example `sd-concepts-library/low-poly-hd-logos-icons`) of a
                      pretrained model hosted on the Hub.
                    - A path to a *directory* (for example `./my_text_inversion_directory/`) containing the textual
                      inversion weights.
                    - A path to a *file* (for example `./my_text_inversions.pt`) containing textual inversion weights.
682
683
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
684
685
686
687

            token (`str` or `List[str]`, *optional*):
                Override the token to use for the textual inversion weights. If `pretrained_model_name_or_path` is a
                list, then `token` must also be a list of equal length.
688
689
690
691
692
            text_encoder ([`~transformers.CLIPTextModel`], *optional*):
                Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
                If not specified, function will take self.tokenizer.
            tokenizer ([`~transformers.CLIPTokenizer`], *optional*):
                A `CLIPTokenizer` to tokenize text. If not specified, function will take self.tokenizer.
693
            weight_name (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
694
                Name of a custom weight file. This should be used when:
695

Steven Liu's avatar
Steven Liu committed
696
697
698
                    - The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight
                      name such as `text_inv.bin`.
                    - The saved textual inversion file is in the Automatic1111 format.
699
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
700
701
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
702
703
704
705
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
706
707
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
708
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
709
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
710
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
711
712
713
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
714
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
715
716
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
717
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
718
719
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
720
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
721
                The subfolder location of a model file within a larger model repository on the Hub or locally.
722
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
723
724
725
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
726
727
728

        Example:

Steven Liu's avatar
Steven Liu committed
729
        To load a textual inversion embedding vector in 🤗 Diffusers format:
1lint's avatar
1lint committed
730

731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

        pipe.load_textual_inversion("sd-concepts-library/cat-toy")

        prompt = "A <cat-toy> backpack"

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("cat-backpack.png")
        ```

Steven Liu's avatar
Steven Liu committed
746
747
748
        To load a textual inversion embedding vector in Automatic1111 format, make sure to download the vector first
        (for example from [civitAI](https://civitai.com/models/3036?modelVersionId=9857)) and then load the vector
        locally:
749
750
751
752
753
754
755
756

        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

757
        pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
758
759
760
761
762
763

        prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("character.png")
        ```
1lint's avatar
1lint committed
764

765
        """
766
767
768
769
        tokenizer = tokenizer or getattr(self, "tokenizer", None)
        text_encoder = text_encoder or getattr(self, "text_encoder", None)

        if tokenizer is None:
770
            raise ValueError(
771
                f"{self.__class__.__name__} requires `self.tokenizer` or passing a `tokenizer` of type `PreTrainedTokenizer` for calling"
772
773
774
                f" `{self.load_textual_inversion.__name__}`"
            )

775
        if text_encoder is None:
776
            raise ValueError(
777
                f"{self.__class__.__name__} requires `self.text_encoder` or passing a `text_encoder` of type `PreTrainedModel` for calling"
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
                f" `{self.load_textual_inversion.__name__}`"
            )

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)

        allow_pickle = False
        if use_safetensors is None:
794
            use_safetensors = True
795
796
797
798
799
800
801
            allow_pickle = True

        user_agent = {
            "file_type": "text_inversion",
            "framework": "pytorch",
        }

802
        if not isinstance(pretrained_model_name_or_path, list):
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
            pretrained_model_name_or_paths = [pretrained_model_name_or_path]
        else:
            pretrained_model_name_or_paths = pretrained_model_name_or_path

        if isinstance(token, str):
            tokens = [token]
        elif token is None:
            tokens = [None] * len(pretrained_model_name_or_paths)
        else:
            tokens = token

        if len(pretrained_model_name_or_paths) != len(tokens):
            raise ValueError(
                f"You have passed a list of models of length {len(pretrained_model_name_or_paths)}, and list of tokens of length {len(tokens)}"
                f"Make sure both lists have the same length."
            )

        valid_tokens = [t for t in tokens if t is not None]
        if len(set(valid_tokens)) < len(valid_tokens):
            raise ValueError(f"You have passed a list of tokens that contains duplicates: {tokens}")

        token_ids_and_embeddings = []

        for pretrained_model_name_or_path, token in zip(pretrained_model_name_or_paths, tokens):
827
            if not isinstance(pretrained_model_name_or_path, (dict, torch.Tensor)):
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
                # 1. Load textual inversion file
                model_file = None
                # Let's first try to load .safetensors weights
                if (use_safetensors and weight_name is None) or (
                    weight_name is not None and weight_name.endswith(".safetensors")
                ):
                    try:
                        model_file = _get_model_file(
                            pretrained_model_name_or_path,
                            weights_name=weight_name or TEXT_INVERSION_NAME_SAFE,
                            cache_dir=cache_dir,
                            force_download=force_download,
                            resume_download=resume_download,
                            proxies=proxies,
                            local_files_only=local_files_only,
                            use_auth_token=use_auth_token,
                            revision=revision,
                            subfolder=subfolder,
                            user_agent=user_agent,
                        )
                        state_dict = safetensors.torch.load_file(model_file, device="cpu")
                    except Exception as e:
                        if not allow_pickle:
                            raise e

                        model_file = None

                if model_file is None:
856
857
                    model_file = _get_model_file(
                        pretrained_model_name_or_path,
858
                        weights_name=weight_name or TEXT_INVERSION_NAME,
859
860
861
862
863
864
865
866
867
868
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
869
870
871
                    state_dict = torch.load(model_file, map_location="cpu")
            else:
                state_dict = pretrained_model_name_or_path
872
873

            # 2. Load token and embedding correcly from file
874
            loaded_token = None
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
            if isinstance(state_dict, torch.Tensor):
                if token is None:
                    raise ValueError(
                        "You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`."
                    )
                embedding = state_dict
            elif len(state_dict) == 1:
                # diffusers
                loaded_token, embedding = next(iter(state_dict.items()))
            elif "string_to_param" in state_dict:
                # A1111
                loaded_token = state_dict["name"]
                embedding = state_dict["string_to_param"]["*"]

            if token is not None and loaded_token != token:
                logger.info(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.")
            else:
                token = loaded_token

894
            embedding = embedding.to(dtype=text_encoder.dtype, device=text_encoder.device)
895

896
            # 3. Make sure we don't mess up the tokenizer or text encoder
897
            vocab = tokenizer.get_vocab()
898
            if token in vocab:
899
                raise ValueError(
900
                    f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder."
901
                )
902
903
904
            elif f"{token}_1" in vocab:
                multi_vector_tokens = [token]
                i = 1
905
                while f"{token}_{i}" in tokenizer.added_tokens_encoder:
906
907
                    multi_vector_tokens.append(f"{token}_{i}")
                    i += 1
908

909
910
911
                raise ValueError(
                    f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder."
                )
912

913
            is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1
914

915
916
917
918
919
920
            if is_multi_vector:
                tokens = [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])]
                embeddings = [e for e in embedding]  # noqa: C416
            else:
                tokens = [token]
                embeddings = [embedding[0]] if len(embedding.shape) > 1 else [embedding]
921

922
            # add tokens and get ids
923
924
            tokenizer.add_tokens(tokens)
            token_ids = tokenizer.convert_tokens_to_ids(tokens)
925
            token_ids_and_embeddings += zip(token_ids, embeddings)
926

927
            logger.info(f"Loaded textual inversion embedding for {token}.")
928

929
        # resize token embeddings and set all new embeddings
930
        text_encoder.resize_token_embeddings(len(tokenizer))
931
        for token_id, embedding in token_ids_and_embeddings:
932
            text_encoder.get_input_embeddings().weight.data[token_id] = embedding
933

934
935
936

class LoraLoaderMixin:
    r"""
Steven Liu's avatar
Steven Liu committed
937
938
    Load LoRA layers into [`UNet2DConditionModel`] and
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
939
    """
940
941
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME
942
    num_fused_loras = 0
943
944

    def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
Will Berman's avatar
Will Berman committed
945
        """
946
947
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
        `self.text_encoder`.
Will Berman's avatar
Will Berman committed
948
949
950
951
952
953
954
955
956
957
958
959
960
961

        All kwargs are forwarded to `self.lora_state_dict`.

        See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.

        See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into
        `self.unet`.

        See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded
        into `self.text_encoder`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
962
            kwargs (`dict`, *optional*):
Will Berman's avatar
Will Berman committed
963
964
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
        """
965
966
        state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
        self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
Will Berman's avatar
Will Berman committed
967
        self.load_lora_into_text_encoder(
968
            state_dict,
969
            network_alphas=network_alphas,
970
971
            text_encoder=self.text_encoder,
            lora_scale=self.lora_scale,
Will Berman's avatar
Will Berman committed
972
973
974
975
976
977
978
979
        )

    @classmethod
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
980
        r"""
981
        Return state dict for lora weights and the network alphas.
Will Berman's avatar
Will Berman committed
982
983
984
985
986
987
988
989

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>
990
991
992
993
994

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

Steven Liu's avatar
Steven Liu committed
995
996
997
998
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
999
1000
1001
1002
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1003
1004
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
1005
1006
1007
1008
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1009
1010
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
1011
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1012
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1013
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
1014
1015
1016
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
1017
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1018
1019
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1020
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1021
1022
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
1023
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
1024
                The subfolder location of a model file within a larger model repository on the Hub or locally.
1025
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1026
1027
1028
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041

        """
        # Load the main state dict first which has the LoRA layers for either of
        # UNet and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
1042
        unet_config = kwargs.pop("unet_config", None)
1043
1044
1045
1046
        use_safetensors = kwargs.pop("use_safetensors", None)

        allow_pickle = False
        if use_safetensors is None:
1047
            use_safetensors = True
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
            allow_pickle = True

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

        model_file = None
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
            # Let's first try to load .safetensors weights
            if (use_safetensors and weight_name is None) or (
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
                try:
1062
1063
1064
1065
1066
1067
1068
                    # Here we're relaxing the loading check to enable more Inference API
                    # friendliness where sometimes, it's not at all possible to automatically
                    # determine `weight_name`.
                    if weight_name is None:
                        weight_name = cls._best_guess_weight_name(
                            pretrained_model_name_or_path_or_dict, file_extension=".safetensors"
                        )
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
Will Berman's avatar
Will Berman committed
1083
                except (IOError, safetensors.SafetensorError) as e:
1084
1085
1086
                    if not allow_pickle:
                        raise e
                    # try loading non-safetensors weights
1087
                    model_file = None
1088
                    pass
1089

1090
            if model_file is None:
1091
1092
1093
1094
                if weight_name is None:
                    weight_name = cls._best_guess_weight_name(
                        pretrained_model_name_or_path_or_dict, file_extension=".bin"
                    )
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
                    weights_name=weight_name or LORA_WEIGHT_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
        else:
            state_dict = pretrained_model_name_or_path_or_dict

1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
        network_alphas = None
        if all(
            (
                k.startswith("lora_te_")
                or k.startswith("lora_unet_")
                or k.startswith("lora_te1_")
                or k.startswith("lora_te2_")
            )
            for k in state_dict.keys()
        ):
            # Map SDXL blocks correctly.
            if unet_config is not None:
                # use unet config to remap block numbers
1125
                state_dict = cls._maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
1126
            state_dict, network_alphas = cls._convert_kohya_lora_to_diffusers(state_dict)
Will Berman's avatar
Will Berman committed
1127

1128
        return state_dict, network_alphas
Will Berman's avatar
Will Berman committed
1129

1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
    @classmethod
    def _best_guess_weight_name(cls, pretrained_model_name_or_path_or_dict, file_extension=".safetensors"):
        targeted_files = []

        if os.path.isfile(pretrained_model_name_or_path_or_dict):
            return
        elif os.path.isdir(pretrained_model_name_or_path_or_dict):
            targeted_files = [
                f for f in os.listdir(pretrained_model_name_or_path_or_dict) if f.endswith(file_extension)
            ]
        else:
            files_in_repo = model_info(pretrained_model_name_or_path_or_dict).siblings
            targeted_files = [f.rfilename for f in files_in_repo if f.rfilename.endswith(file_extension)]
        if len(targeted_files) == 0:
            return

1146
1147
1148
1149
1150
1151
1152
1153
        # "scheduler" does not correspond to a LoRA checkpoint.
        # "optimizer" does not correspond to a LoRA checkpoint
        # only top-level checkpoints are considered and not the other ones, hence "checkpoint".
        unallowed_substrings = {"scheduler", "optimizer", "checkpoint"}
        targeted_files = list(
            filter(lambda x: all(substring not in x for substring in unallowed_substrings), targeted_files)
        )

1154
1155
1156
1157
1158
1159
1160
        if len(targeted_files) > 1:
            raise ValueError(
                f"Provided path contains more than one weights file in the {file_extension} format. Either specify `weight_name` in `load_lora_weights` or make sure there's only one  `.safetensors` or `.bin` file in  {pretrained_model_name_or_path_or_dict}."
            )
        weight_name = targeted_files[0]
        return weight_name

Will Berman's avatar
Will Berman committed
1161
    @classmethod
1162
1163
    def _maybe_map_sgm_blocks_to_diffusers(cls, state_dict, unet_config, delimiter="_", block_slice_pos=5):
        # 1. get all state_dict_keys
chillpixel's avatar
chillpixel committed
1164
        all_keys = list(state_dict.keys())
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
        sgm_patterns = ["input_blocks", "middle_block", "output_blocks"]

        # 2. check if needs remapping, if not return original dict
        is_in_sgm_format = False
        for key in all_keys:
            if any(p in key for p in sgm_patterns):
                is_in_sgm_format = True
                break

        if not is_in_sgm_format:
            return state_dict

        # 3. Else remap from SGM patterns
1178
1179
1180
1181
1182
        new_state_dict = {}
        inner_block_map = ["resnets", "attentions", "upsamplers"]

        # Retrieves # of down, mid and up blocks
        input_block_ids, middle_block_ids, output_block_ids = set(), set(), set()
1183
1184
1185
1186
1187

        for layer in all_keys:
            if "text" in layer:
                new_state_dict[layer] = state_dict.pop(layer)
            else:
1188
                layer_id = int(layer.split(delimiter)[:block_slice_pos][-1])
1189
                if sgm_patterns[0] in layer:
1190
                    input_block_ids.add(layer_id)
1191
                elif sgm_patterns[1] in layer:
1192
                    middle_block_ids.add(layer_id)
1193
                elif sgm_patterns[2] in layer:
1194
1195
                    output_block_ids.add(layer_id)
                else:
1196
                    raise ValueError(f"Checkpoint not supported because layer {layer} not supported.")
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258

        input_blocks = {
            layer_id: [key for key in state_dict if f"input_blocks{delimiter}{layer_id}" in key]
            for layer_id in input_block_ids
        }
        middle_blocks = {
            layer_id: [key for key in state_dict if f"middle_block{delimiter}{layer_id}" in key]
            for layer_id in middle_block_ids
        }
        output_blocks = {
            layer_id: [key for key in state_dict if f"output_blocks{delimiter}{layer_id}" in key]
            for layer_id in output_block_ids
        }

        # Rename keys accordingly
        for i in input_block_ids:
            block_id = (i - 1) // (unet_config.layers_per_block + 1)
            layer_in_block_id = (i - 1) % (unet_config.layers_per_block + 1)

            for key in input_blocks[i]:
                inner_block_id = int(key.split(delimiter)[block_slice_pos])
                inner_block_key = inner_block_map[inner_block_id] if "op" not in key else "downsamplers"
                inner_layers_in_block = str(layer_in_block_id) if "op" not in key else "0"
                new_key = delimiter.join(
                    key.split(delimiter)[: block_slice_pos - 1]
                    + [str(block_id), inner_block_key, inner_layers_in_block]
                    + key.split(delimiter)[block_slice_pos + 1 :]
                )
                new_state_dict[new_key] = state_dict.pop(key)

        for i in middle_block_ids:
            key_part = None
            if i == 0:
                key_part = [inner_block_map[0], "0"]
            elif i == 1:
                key_part = [inner_block_map[1], "0"]
            elif i == 2:
                key_part = [inner_block_map[0], "1"]
            else:
                raise ValueError(f"Invalid middle block id {i}.")

            for key in middle_blocks[i]:
                new_key = delimiter.join(
                    key.split(delimiter)[: block_slice_pos - 1] + key_part + key.split(delimiter)[block_slice_pos:]
                )
                new_state_dict[new_key] = state_dict.pop(key)

        for i in output_block_ids:
            block_id = i // (unet_config.layers_per_block + 1)
            layer_in_block_id = i % (unet_config.layers_per_block + 1)

            for key in output_blocks[i]:
                inner_block_id = int(key.split(delimiter)[block_slice_pos])
                inner_block_key = inner_block_map[inner_block_id]
                inner_layers_in_block = str(layer_in_block_id) if inner_block_id < 2 else "0"
                new_key = delimiter.join(
                    key.split(delimiter)[: block_slice_pos - 1]
                    + [str(block_id), inner_block_key, inner_layers_in_block]
                    + key.split(delimiter)[block_slice_pos + 1 :]
                )
                new_state_dict[new_key] = state_dict.pop(key)

1259
        if len(state_dict) > 0:
1260
1261
1262
1263
1264
1265
            raise ValueError("At this point all state dict entries have to be converted.")

        return new_state_dict

    @classmethod
    def load_lora_into_unet(cls, state_dict, network_alphas, unet):
Will Berman's avatar
Will Berman committed
1266
        """
1267
        This will load the LoRA layers specified in `state_dict` into `unet`.
Will Berman's avatar
Will Berman committed
1268
1269
1270
1271
1272
1273

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
1274
            network_alphas (`Dict[str, float]`):
Will Berman's avatar
Will Berman committed
1275
1276
1277
1278
                See `LoRALinearLayer` for more details.
            unet (`UNet2DConditionModel`):
                The UNet model to load the LoRA layers into.
        """
1279
1280
1281
1282
        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
        # their prefixes.
        keys = list(state_dict.keys())
1283

Will Berman's avatar
Will Berman committed
1284
        if all(key.startswith(cls.unet_name) or key.startswith(cls.text_encoder_name) for key in keys):
1285
            # Load the layers corresponding to UNet.
Will Berman's avatar
Will Berman committed
1286
            logger.info(f"Loading {cls.unet_name}.")
1287

1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
            unet_keys = [k for k in keys if k.startswith(cls.unet_name)]
            state_dict = {k.replace(f"{cls.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}

            if network_alphas is not None:
                alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.unet_name)]
                network_alphas = {
                    k.replace(f"{cls.unet_name}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
                }

        else:
            # Otherwise, we're dealing with the old format. This means the `state_dict` should only
            # contain the module names of the `unet` as its keys WITHOUT any prefix.
zideliu's avatar
zideliu committed
1300
            warn_message = "You have saved the LoRA weights using the old format. To convert the old LoRA weights to the new format, you can first load them in a dictionary and then create a new dictionary like the following: `new_state_dict = {f'unet.{module_name}': params for module_name, params in old_state_dict.items()}`."
1301
            warnings.warn(warn_message)
1302

1303
1304
1305
        # load loras into unet
        unet.load_attn_procs(state_dict, network_alphas=network_alphas)

Will Berman's avatar
Will Berman committed
1306
    @classmethod
1307
    def load_lora_into_text_encoder(cls, state_dict, network_alphas, text_encoder, prefix=None, lora_scale=1.0):
Will Berman's avatar
Will Berman committed
1308
1309
1310
1311
1312
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
1313
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
Will Berman's avatar
Will Berman committed
1314
                additional `text_encoder` to distinguish between unet lora layers.
1315
            network_alphas (`Dict[str, float]`):
Will Berman's avatar
Will Berman committed
1316
1317
1318
                See `LoRALinearLayer` for more details.
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
1319
1320
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
Will Berman's avatar
Will Berman committed
1321
1322
1323
1324
1325
1326
1327
1328
1329
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
        """

        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
        # their prefixes.
        keys = list(state_dict.keys())
1330
1331
        prefix = cls.text_encoder_name if prefix is None else prefix

1332
        # Safe prefix to check with.
1333
        if any(cls.text_encoder_name in key for key in keys):
Will Berman's avatar
Will Berman committed
1334
            # Load the layers corresponding to text encoder and make necessary adjustments.
1335
            text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split(".")[0] == prefix]
Will Berman's avatar
Will Berman committed
1336
            text_encoder_lora_state_dict = {
1337
                k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys
Will Berman's avatar
Will Berman committed
1338
            }
1339

Will Berman's avatar
Will Berman committed
1340
            if len(text_encoder_lora_state_dict) > 0:
1341
                logger.info(f"Loading {prefix}.")
1342
                rank = {}
Will Berman's avatar
Will Berman committed
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380

                if any("to_out_lora" in k for k in text_encoder_lora_state_dict.keys()):
                    # Convert from the old naming convention to the new naming convention.
                    #
                    # Previously, the old LoRA layers were stored on the state dict at the
                    # same level as the attention block i.e.
                    # `text_model.encoder.layers.11.self_attn.to_out_lora.up.weight`.
                    #
                    # This is no actual module at that point, they were monkey patched on to the
                    # existing module. We want to be able to load them via their actual state dict.
                    # They're in `PatchedLoraProjection.lora_linear_layer` now.
                    for name, _ in text_encoder_attn_modules(text_encoder):
                        text_encoder_lora_state_dict[
                            f"{name}.q_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_q_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.k_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_k_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.v_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_v_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.out_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_out_lora.up.weight")

                        text_encoder_lora_state_dict[
                            f"{name}.q_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_q_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.k_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_k_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.v_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_v_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.out_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_out_lora.down.weight")

1381
1382
1383
1384
                for name, _ in text_encoder_attn_modules(text_encoder):
                    rank_key = f"{name}.out_proj.lora_linear_layer.up.weight"
                    rank.update({rank_key: text_encoder_lora_state_dict[rank_key].shape[1]})

1385
                patch_mlp = any(".mlp." in key for key in text_encoder_lora_state_dict.keys())
1386
1387
1388
1389
1390
1391
                if patch_mlp:
                    for name, _ in text_encoder_mlp_modules(text_encoder):
                        rank_key_fc1 = f"{name}.fc1.lora_linear_layer.up.weight"
                        rank_key_fc2 = f"{name}.fc2.lora_linear_layer.up.weight"
                        rank.update({rank_key_fc1: text_encoder_lora_state_dict[rank_key_fc1].shape[1]})
                        rank.update({rank_key_fc2: text_encoder_lora_state_dict[rank_key_fc2].shape[1]})
Will Berman's avatar
Will Berman committed
1392

1393
1394
1395
1396
1397
1398
1399
1400
                if network_alphas is not None:
                    alpha_keys = [
                        k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix
                    ]
                    network_alphas = {
                        k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
                    }

1401
1402
1403
1404
1405
1406
1407
                cls._modify_text_encoder(
                    text_encoder,
                    lora_scale,
                    network_alphas,
                    rank=rank,
                    patch_mlp=patch_mlp,
                )
Will Berman's avatar
Will Berman committed
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419

                # set correct dtype & device
                text_encoder_lora_state_dict = {
                    k: v.to(device=text_encoder.device, dtype=text_encoder.dtype)
                    for k, v in text_encoder_lora_state_dict.items()
                }
                load_state_dict_results = text_encoder.load_state_dict(text_encoder_lora_state_dict, strict=False)
                if len(load_state_dict_results.unexpected_keys) != 0:
                    raise ValueError(
                        f"failed to load text encoder state dict, unexpected keys: {load_state_dict_results.unexpected_keys}"
                    )

1420
1421
1422
1423
1424
1425
    @property
    def lora_scale(self) -> float:
        # property function that returns the lora scale which can be set at run time by the pipeline.
        # if _lora_scale has not been set, return 1
        return self._lora_scale if hasattr(self, "_lora_scale") else 1.0

1426
    def _remove_text_encoder_monkey_patch(self):
Will Berman's avatar
Will Berman committed
1427
1428
1429
1430
1431
1432
        self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)

    @classmethod
    def _remove_text_encoder_monkey_patch_classmethod(cls, text_encoder):
        for _, attn_module in text_encoder_attn_modules(text_encoder):
            if isinstance(attn_module.q_proj, PatchedLoraProjection):
Patrick von Platen's avatar
Patrick von Platen committed
1433
1434
1435
1436
                attn_module.q_proj.lora_linear_layer = None
                attn_module.k_proj.lora_linear_layer = None
                attn_module.v_proj.lora_linear_layer = None
                attn_module.out_proj.lora_linear_layer = None
Will Berman's avatar
Will Berman committed
1437

1438
1439
        for _, mlp_module in text_encoder_mlp_modules(text_encoder):
            if isinstance(mlp_module.fc1, PatchedLoraProjection):
Patrick von Platen's avatar
Patrick von Platen committed
1440
1441
                mlp_module.fc1.lora_linear_layer = None
                mlp_module.fc2.lora_linear_layer = None
1442

Will Berman's avatar
Will Berman committed
1443
    @classmethod
1444
1445
1446
1447
    def _modify_text_encoder(
        cls,
        text_encoder,
        lora_scale=1,
1448
        network_alphas=None,
1449
        rank: Union[Dict[str, int], int] = 4,
1450
1451
1452
        dtype=None,
        patch_mlp=False,
    ):
1453
1454
1455
        r"""
        Monkey-patches the forward passes of attention modules of the text encoder.
        """
1456
1457

        # First, remove any monkey-patch that might have been applied before
Will Berman's avatar
Will Berman committed
1458
        cls._remove_text_encoder_monkey_patch_classmethod(text_encoder)
1459

Will Berman's avatar
Will Berman committed
1460
        lora_parameters = []
1461
        network_alphas = {} if network_alphas is None else network_alphas
1462
        is_network_alphas_populated = len(network_alphas) > 0
1463
1464

        for name, attn_module in text_encoder_attn_modules(text_encoder):
1465
1466
1467
1468
            query_alpha = network_alphas.pop(name + ".to_q_lora.down.weight.alpha", None)
            key_alpha = network_alphas.pop(name + ".to_k_lora.down.weight.alpha", None)
            value_alpha = network_alphas.pop(name + ".to_v_lora.down.weight.alpha", None)
            out_alpha = network_alphas.pop(name + ".to_out_lora.down.weight.alpha", None)
1469

1470
1471
1472
1473
1474
            if isinstance(rank, dict):
                current_rank = rank.pop(f"{name}.out_proj.lora_linear_layer.up.weight")
            else:
                current_rank = rank

Patrick von Platen's avatar
Patrick von Platen committed
1475
1476
1477
1478
1479
            q_linear_layer = (
                attn_module.q_proj.regular_linear_layer
                if isinstance(attn_module.q_proj, PatchedLoraProjection)
                else attn_module.q_proj
            )
Will Berman's avatar
Will Berman committed
1480
            attn_module.q_proj = PatchedLoraProjection(
Patrick von Platen's avatar
Patrick von Platen committed
1481
                q_linear_layer, lora_scale, network_alpha=query_alpha, rank=current_rank, dtype=dtype
1482
            )
Will Berman's avatar
Will Berman committed
1483
            lora_parameters.extend(attn_module.q_proj.lora_linear_layer.parameters())
1484

Patrick von Platen's avatar
Patrick von Platen committed
1485
1486
1487
1488
1489
            k_linear_layer = (
                attn_module.k_proj.regular_linear_layer
                if isinstance(attn_module.k_proj, PatchedLoraProjection)
                else attn_module.k_proj
            )
Will Berman's avatar
Will Berman committed
1490
            attn_module.k_proj = PatchedLoraProjection(
Patrick von Platen's avatar
Patrick von Platen committed
1491
                k_linear_layer, lora_scale, network_alpha=key_alpha, rank=current_rank, dtype=dtype
Will Berman's avatar
Will Berman committed
1492
1493
            )
            lora_parameters.extend(attn_module.k_proj.lora_linear_layer.parameters())
1494

Patrick von Platen's avatar
Patrick von Platen committed
1495
1496
1497
1498
1499
            v_linear_layer = (
                attn_module.v_proj.regular_linear_layer
                if isinstance(attn_module.v_proj, PatchedLoraProjection)
                else attn_module.v_proj
            )
Will Berman's avatar
Will Berman committed
1500
            attn_module.v_proj = PatchedLoraProjection(
Patrick von Platen's avatar
Patrick von Platen committed
1501
                v_linear_layer, lora_scale, network_alpha=value_alpha, rank=current_rank, dtype=dtype
Will Berman's avatar
Will Berman committed
1502
1503
            )
            lora_parameters.extend(attn_module.v_proj.lora_linear_layer.parameters())
1504

Patrick von Platen's avatar
Patrick von Platen committed
1505
1506
1507
1508
1509
            out_linear_layer = (
                attn_module.out_proj.regular_linear_layer
                if isinstance(attn_module.out_proj, PatchedLoraProjection)
                else attn_module.out_proj
            )
Will Berman's avatar
Will Berman committed
1510
            attn_module.out_proj = PatchedLoraProjection(
Patrick von Platen's avatar
Patrick von Platen committed
1511
                out_linear_layer, lora_scale, network_alpha=out_alpha, rank=current_rank, dtype=dtype
Will Berman's avatar
Will Berman committed
1512
1513
            )
            lora_parameters.extend(attn_module.out_proj.lora_linear_layer.parameters())
1514

1515
        if patch_mlp:
1516
            for name, mlp_module in text_encoder_mlp_modules(text_encoder):
1517
1518
1519
                fc1_alpha = network_alphas.pop(name + ".fc1.lora_linear_layer.down.weight.alpha", None)
                fc2_alpha = network_alphas.pop(name + ".fc2.lora_linear_layer.down.weight.alpha", None)

1520
1521
                current_rank_fc1 = rank.pop(f"{name}.fc1.lora_linear_layer.up.weight")
                current_rank_fc2 = rank.pop(f"{name}.fc2.lora_linear_layer.up.weight")
1522

Patrick von Platen's avatar
Patrick von Platen committed
1523
1524
1525
1526
1527
                fc1_linear_layer = (
                    mlp_module.fc1.regular_linear_layer
                    if isinstance(mlp_module.fc1, PatchedLoraProjection)
                    else mlp_module.fc1
                )
1528
                mlp_module.fc1 = PatchedLoraProjection(
Patrick von Platen's avatar
Patrick von Platen committed
1529
                    fc1_linear_layer, lora_scale, network_alpha=fc1_alpha, rank=current_rank_fc1, dtype=dtype
1530
1531
1532
                )
                lora_parameters.extend(mlp_module.fc1.lora_linear_layer.parameters())

Patrick von Platen's avatar
Patrick von Platen committed
1533
1534
1535
1536
1537
                fc2_linear_layer = (
                    mlp_module.fc2.regular_linear_layer
                    if isinstance(mlp_module.fc2, PatchedLoraProjection)
                    else mlp_module.fc2
                )
1538
                mlp_module.fc2 = PatchedLoraProjection(
Patrick von Platen's avatar
Patrick von Platen committed
1539
                    fc2_linear_layer, lora_scale, network_alpha=fc2_alpha, rank=current_rank_fc2, dtype=dtype
1540
1541
1542
                )
                lora_parameters.extend(mlp_module.fc2.lora_linear_layer.parameters())

1543
1544
1545
1546
1547
        if is_network_alphas_populated and len(network_alphas) > 0:
            raise ValueError(
                f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
            )

Will Berman's avatar
Will Berman committed
1548
        return lora_parameters
1549
1550
1551
1552
1553

    @classmethod
    def save_lora_weights(
        self,
        save_directory: Union[str, os.PathLike],
1554
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1555
1556
1557
1558
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
1559
        safe_serialization: bool = True,
1560
1561
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
1562
        Save the LoRA parameters corresponding to the UNet and text encoder.
1563
1564
1565

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
1566
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
1567
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
1568
1569
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
Steven Liu's avatar
Steven Liu committed
1570
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
1571
                encoder LoRA state dict because it comes from 🤗 Transformers.
1572
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
1573
1574
1575
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
1576
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
1577
1578
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
1579
                `DIFFUSERS_SAVE_MODE`.
1580
1581
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
1582
1583
1584
        """
        # Create a flat dictionary.
        state_dict = {}
1585
1586

        # Populate the dictionary.
1587
        if unet_lora_layers is not None:
1588
1589
1590
1591
1592
            weights = (
                unet_lora_layers.state_dict() if isinstance(unet_lora_layers, torch.nn.Module) else unet_lora_layers
            )

            unet_lora_state_dict = {f"{self.unet_name}.{module_name}": param for module_name, param in weights.items()}
1593
            state_dict.update(unet_lora_state_dict)
1594

1595
        if text_encoder_lora_layers is not None:
1596
1597
1598
1599
1600
1601
            weights = (
                text_encoder_lora_layers.state_dict()
                if isinstance(text_encoder_lora_layers, torch.nn.Module)
                else text_encoder_lora_layers
            )

1602
            text_encoder_lora_state_dict = {
1603
                f"{self.text_encoder_name}.{module_name}": param for module_name, param in weights.items()
1604
1605
1606
1607
            }
            state_dict.update(text_encoder_lora_state_dict)

        # Save the model
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
        self.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def write_lora_layers(
        state_dict: Dict[str, torch.Tensor],
        save_directory: str,
        is_main_process: bool,
        weight_name: str,
        save_function: Callable,
        safe_serialization: bool,
    ):
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save

        os.makedirs(save_directory, exist_ok=True)

1640
1641
1642
1643
1644
1645
1646
1647
        if weight_name is None:
            if safe_serialization:
                weight_name = LORA_WEIGHT_NAME_SAFE
            else:
                weight_name = LORA_WEIGHT_NAME

        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
1lint's avatar
1lint committed
1648

Will Berman's avatar
Will Berman committed
1649
1650
    @classmethod
    def _convert_kohya_lora_to_diffusers(cls, state_dict):
1651
1652
        unet_state_dict = {}
        te_state_dict = {}
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
        te2_state_dict = {}
        network_alphas = {}

        # every down weight has a corresponding up weight and potentially an alpha weight
        lora_keys = [k for k in state_dict.keys() if k.endswith("lora_down.weight")]
        for key in lora_keys:
            lora_name = key.split(".")[0]
            lora_name_up = lora_name + ".lora_up.weight"
            lora_name_alpha = lora_name + ".alpha"

            if lora_name.startswith("lora_unet_"):
                diffusers_name = key.replace("lora_unet_", "").replace("_", ".")

                if "input.blocks" in diffusers_name:
                    diffusers_name = diffusers_name.replace("input.blocks", "down_blocks")
                else:
1669
                    diffusers_name = diffusers_name.replace("down.blocks", "down_blocks")
1670
1671
1672
1673

                if "middle.block" in diffusers_name:
                    diffusers_name = diffusers_name.replace("middle.block", "mid_block")
                else:
1674
                    diffusers_name = diffusers_name.replace("mid.block", "mid_block")
1675
1676
1677
                if "output.blocks" in diffusers_name:
                    diffusers_name = diffusers_name.replace("output.blocks", "up_blocks")
                else:
1678
                    diffusers_name = diffusers_name.replace("up.blocks", "up_blocks")
1679

1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
                diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks")
                diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora")
                diffusers_name = diffusers_name.replace("proj.in", "proj_in")
                diffusers_name = diffusers_name.replace("proj.out", "proj_out")
                diffusers_name = diffusers_name.replace("emb.layers", "time_emb_proj")

                # SDXL specificity.
                if "emb" in diffusers_name:
                    pattern = r"\.\d+(?=\D*$)"
                    diffusers_name = re.sub(pattern, "", diffusers_name, count=1)
                if ".in." in diffusers_name:
                    diffusers_name = diffusers_name.replace("in.layers.2", "conv1")
                if ".out." in diffusers_name:
                    diffusers_name = diffusers_name.replace("out.layers.3", "conv2")
                if "downsamplers" in diffusers_name or "upsamplers" in diffusers_name:
                    diffusers_name = diffusers_name.replace("op", "conv")
                if "skip" in diffusers_name:
                    diffusers_name = diffusers_name.replace("skip.connection", "conv_shortcut")

                if "transformer_blocks" in diffusers_name:
                    if "attn1" in diffusers_name or "attn2" in diffusers_name:
                        diffusers_name = diffusers_name.replace("attn1", "attn1.processor")
                        diffusers_name = diffusers_name.replace("attn2", "attn2.processor")
                        unet_state_dict[diffusers_name] = state_dict.pop(key)
                        unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                    elif "ff" in diffusers_name:
                        unet_state_dict[diffusers_name] = state_dict.pop(key)
                        unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif any(key in diffusers_name for key in ("proj_in", "proj_out")):
                    unet_state_dict[diffusers_name] = state_dict.pop(key)
                    unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                else:
                    unet_state_dict[diffusers_name] = state_dict.pop(key)
                    unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            elif lora_name.startswith("lora_te_"):
                diffusers_name = key.replace("lora_te_", "").replace("_", ".")
                diffusers_name = diffusers_name.replace("text.model", "text_model")
                diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                if "self_attn" in diffusers_name:
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif "mlp" in diffusers_name:
                    # Be aware that this is the new diffusers convention and the rest of the code might
                    # not utilize it yet.
                    diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # (sayakpaul): Duplicate code. Needs to be cleaned.
            elif lora_name.startswith("lora_te1_"):
                diffusers_name = key.replace("lora_te1_", "").replace("_", ".")
                diffusers_name = diffusers_name.replace("text.model", "text_model")
                diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                if "self_attn" in diffusers_name:
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif "mlp" in diffusers_name:
                    # Be aware that this is the new diffusers convention and the rest of the code might
                    # not utilize it yet.
                    diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # (sayakpaul): Duplicate code. Needs to be cleaned.
            elif lora_name.startswith("lora_te2_"):
                diffusers_name = key.replace("lora_te2_", "").replace("_", ".")
                diffusers_name = diffusers_name.replace("text.model", "text_model")
                diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                if "self_attn" in diffusers_name:
                    te2_state_dict[diffusers_name] = state_dict.pop(key)
                    te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif "mlp" in diffusers_name:
                    # Be aware that this is the new diffusers convention and the rest of the code might
                    # not utilize it yet.
                    diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
                    te2_state_dict[diffusers_name] = state_dict.pop(key)
                    te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # Rename the alphas so that they can be mapped appropriately.
            if lora_name_alpha in state_dict:
                alpha = state_dict.pop(lora_name_alpha).item()
                if lora_name_alpha.startswith("lora_unet_"):
                    prefix = "unet."
                elif lora_name_alpha.startswith(("lora_te_", "lora_te1_")):
                    prefix = "text_encoder."
                else:
                    prefix = "text_encoder_2."
                new_name = prefix + diffusers_name.split(".lora.")[0] + ".alpha"
                network_alphas.update({new_name: alpha})

        if len(state_dict) > 0:
            raise ValueError(
                f"The following keys have not been correctly be renamed: \n\n {', '.join(state_dict.keys())}"
1789
            )
1790

1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
        logger.info("Kohya-style checkpoint detected.")
        unet_state_dict = {f"{cls.unet_name}.{module_name}": params for module_name, params in unet_state_dict.items()}
        te_state_dict = {
            f"{cls.text_encoder_name}.{module_name}": params for module_name, params in te_state_dict.items()
        }
        te2_state_dict = (
            {f"text_encoder_2.{module_name}": params for module_name, params in te2_state_dict.items()}
            if len(te2_state_dict) > 0
            else None
        )
        if te2_state_dict is not None:
            te_state_dict.update(te2_state_dict)

1804
        new_state_dict = {**unet_state_dict, **te_state_dict}
1805
        return new_state_dict, network_alphas
1806

1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
    def unload_lora_weights(self):
        """
        Unloads the LoRA parameters.

        Examples:

        ```python
        >>> # Assuming `pipeline` is already loaded with the LoRA parameters.
        >>> pipeline.unload_lora_weights()
        >>> ...
        ```
        """
1819
1820
1821
        for _, module in self.unet.named_modules():
            if hasattr(module, "set_lora_layer"):
                module.set_lora_layer(None)
1822

1823
1824
1825
        # Safe to call the following regardless of LoRA.
        self._remove_text_encoder_monkey_patch()

1826
    def fuse_lora(self, fuse_unet: bool = True, fuse_text_encoder: bool = True, lora_scale: float = 1.0):
Patrick von Platen's avatar
Patrick von Platen committed
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            fuse_unet (`bool`, defaults to `True`): Whether to fuse the UNet LoRA parameters.
            fuse_text_encoder (`bool`, defaults to `True`):
                Whether to fuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
                LoRA parameters then it won't have any effect.
1841
1842
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
Patrick von Platen's avatar
Patrick von Platen committed
1843
        """
1844
1845
1846
1847
1848
1849
1850
        if fuse_unet or fuse_text_encoder:
            self.num_fused_loras += 1
            if self.num_fused_loras > 1:
                logger.warn(
                    "The current API is supported for operating with a single LoRA file. You are trying to load and fuse more than one LoRA which is not well-supported.",
                )

Patrick von Platen's avatar
Patrick von Platen committed
1851
        if fuse_unet:
1852
            self.unet.fuse_lora(lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
1853
1854
1855
1856

        def fuse_text_encoder_lora(text_encoder):
            for _, attn_module in text_encoder_attn_modules(text_encoder):
                if isinstance(attn_module.q_proj, PatchedLoraProjection):
1857
1858
1859
1860
                    attn_module.q_proj._fuse_lora(lora_scale)
                    attn_module.k_proj._fuse_lora(lora_scale)
                    attn_module.v_proj._fuse_lora(lora_scale)
                    attn_module.out_proj._fuse_lora(lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
1861
1862
1863

            for _, mlp_module in text_encoder_mlp_modules(text_encoder):
                if isinstance(mlp_module.fc1, PatchedLoraProjection):
1864
1865
                    mlp_module.fc1._fuse_lora(lora_scale)
                    mlp_module.fc2._fuse_lora(lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911

        if fuse_text_encoder:
            if hasattr(self, "text_encoder"):
                fuse_text_encoder_lora(self.text_encoder)
            if hasattr(self, "text_encoder_2"):
                fuse_text_encoder_lora(self.text_encoder_2)

    def unfuse_lora(self, unfuse_unet: bool = True, unfuse_text_encoder: bool = True):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
            unfuse_text_encoder (`bool`, defaults to `True`):
                Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
                LoRA parameters then it won't have any effect.
        """
        if unfuse_unet:
            self.unet.unfuse_lora()

        def unfuse_text_encoder_lora(text_encoder):
            for _, attn_module in text_encoder_attn_modules(text_encoder):
                if isinstance(attn_module.q_proj, PatchedLoraProjection):
                    attn_module.q_proj._unfuse_lora()
                    attn_module.k_proj._unfuse_lora()
                    attn_module.v_proj._unfuse_lora()
                    attn_module.out_proj._unfuse_lora()

            for _, mlp_module in text_encoder_mlp_modules(text_encoder):
                if isinstance(mlp_module.fc1, PatchedLoraProjection):
                    mlp_module.fc1._unfuse_lora()
                    mlp_module.fc2._unfuse_lora()

        if unfuse_text_encoder:
            if hasattr(self, "text_encoder"):
                unfuse_text_encoder_lora(self.text_encoder)
            if hasattr(self, "text_encoder_2"):
                unfuse_text_encoder_lora(self.text_encoder_2)

1912
1913
        self.num_fused_loras -= 1

1lint's avatar
1lint committed
1914

Patrick von Platen's avatar
Patrick von Platen committed
1915
class FromSingleFileMixin:
Steven Liu's avatar
Steven Liu committed
1916
1917
1918
    """
    Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`].
    """
1lint's avatar
1lint committed
1919
1920

    @classmethod
Patrick von Platen's avatar
Patrick von Platen committed
1921
1922
1923
1924
1925
1926
1927
    def from_ckpt(cls, *args, **kwargs):
        deprecation_message = "The function `from_ckpt` is deprecated in favor of `from_single_file` and will be removed in diffusers v.0.21. Please make sure to use `StableDiffusionPipeline.from_single_file(...)` instead."
        deprecate("from_ckpt", "0.21.0", deprecation_message, standard_warn=False)
        return cls.from_single_file(*args, **kwargs)

    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
1lint's avatar
1lint committed
1928
        r"""
1929
1930
        Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors`
        format. The pipeline is set in evaluation mode (`model.eval()`) by default.
1lint's avatar
1lint committed
1931
1932
1933
1934

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
Steven Liu's avatar
Steven Liu committed
1935
1936
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
1lint's avatar
1lint committed
1937
1938
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
1939
1940
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
1lint's avatar
1lint committed
1941
1942
1943
1944
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1945
1946
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
1lint's avatar
1lint committed
1947
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1948
1949
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
1lint's avatar
1lint committed
1950
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1951
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1lint's avatar
1lint committed
1952
1953
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
1954
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
Steven Liu's avatar
Steven Liu committed
1955
                won't be downloaded from the Hub.
1lint's avatar
1lint committed
1956
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1957
1958
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1lint's avatar
1lint committed
1959
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1960
1961
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
1962
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
1963
1964
1965
1966
1967
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            extract_ema (`bool`, *optional*, defaults to `False`):
                Whether to extract the EMA weights or not. Pass `True` to extract the EMA weights which usually yield
1968
                higher quality images for inference. Non-EMA weights are usually better for continuing finetuning.
1lint's avatar
1lint committed
1969
            upcast_attention (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
1970
                Whether the attention computation should always be upcasted.
1lint's avatar
1lint committed
1971
            image_size (`int`, *optional*, defaults to 512):
Steven Liu's avatar
Steven Liu committed
1972
1973
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
1lint's avatar
1lint committed
1974
            prediction_type (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1975
1976
1977
                The prediction type the model was trained on. Use `'epsilon'` for all Stable Diffusion v1 models and
                the Stable Diffusion v2 base model. Use `'v_prediction'` for Stable Diffusion v2.
            num_in_channels (`int`, *optional*, defaults to `None`):
1978
                The number of input channels. If `None`, it is automatically inferred.
Steven Liu's avatar
Steven Liu committed
1979
            scheduler_type (`str`, *optional*, defaults to `"pndm"`):
1lint's avatar
1lint committed
1980
1981
1982
                Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm",
                "ddim"]`.
            load_safety_checker (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
1983
                Whether to load the safety checker or not.
1984
1985
1986
1987
            text_encoder ([`~transformers.CLIPTextModel`], *optional*, defaults to `None`):
                An instance of `CLIPTextModel` to use, specifically the
                [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. If this
                parameter is `None`, the function loads a new instance of `CLIPTextModel` by itself if needed.
1988
1989
1990
            vae (`AutoencoderKL`, *optional*, defaults to `None`):
                Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. If
                this parameter is `None`, the function will load a new instance of [CLIP] by itself, if needed.
1991
1992
1993
            tokenizer ([`~transformers.CLIPTokenizer`], *optional*, defaults to `None`):
                An instance of `CLIPTokenizer` to use. If this parameter is `None`, the function loads a new instance
                of `CLIPTokenizer` by itself if needed.
1994
1995
1996
            original_config_file (`str`):
                Path to `.yaml` config file corresponding to the original architecture. If `None`, will be
                automatically inferred by looking for a key that only exists in SD2.0 models.
1lint's avatar
1lint committed
1997
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
1998
1999
2000
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.
1lint's avatar
1lint committed
2001
2002
2003
2004
2005
2006
2007

        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
Patrick von Platen's avatar
Patrick von Platen committed
2008
        >>> pipeline = StableDiffusionPipeline.from_single_file(
1lint's avatar
1lint committed
2009
2010
2011
2012
2013
        ...     "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
        ... )

        >>> # Download pipeline from local file
        >>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
Patrick von Platen's avatar
Patrick von Platen committed
2014
        >>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly")
1lint's avatar
1lint committed
2015
2016

        >>> # Enable float16 and move to GPU
Patrick von Platen's avatar
Patrick von Platen committed
2017
        >>> pipeline = StableDiffusionPipeline.from_single_file(
1lint's avatar
1lint committed
2018
2019
2020
2021
2022
2023
2024
2025
2026
        ...     "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
        ...     torch_dtype=torch.float16,
        ... )
        >>> pipeline.to("cuda")
        ```
        """
        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt

2027
        original_config_file = kwargs.pop("original_config_file", None)
1lint's avatar
1lint committed
2028
2029
2030
2031
2032
2033
2034
2035
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        extract_ema = kwargs.pop("extract_ema", False)
2036
        image_size = kwargs.pop("image_size", None)
1lint's avatar
1lint committed
2037
2038
2039
2040
2041
        scheduler_type = kwargs.pop("scheduler_type", "pndm")
        num_in_channels = kwargs.pop("num_in_channels", None)
        upcast_attention = kwargs.pop("upcast_attention", None)
        load_safety_checker = kwargs.pop("load_safety_checker", True)
        prediction_type = kwargs.pop("prediction_type", None)
2042
        text_encoder = kwargs.pop("text_encoder", None)
2043
        vae = kwargs.pop("vae", None)
2044
        controlnet = kwargs.pop("controlnet", None)
2045
        tokenizer = kwargs.pop("tokenizer", None)
1lint's avatar
1lint committed
2046
2047
2048

        torch_dtype = kwargs.pop("torch_dtype", None)

2049
        use_safetensors = kwargs.pop("use_safetensors", None)
1lint's avatar
1lint committed
2050
2051
2052
2053
2054

        pipeline_name = cls.__name__
        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

2055
        if from_safetensors and use_safetensors is False:
1lint's avatar
1lint committed
2056
2057
2058
2059
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # TODO: For now we only support stable diffusion
        stable_unclip = None
2060
        model_type = None
1lint's avatar
1lint committed
2061

2062
2063
2064
2065
2066
2067
2068
2069
        if pipeline_name in [
            "StableDiffusionControlNetPipeline",
            "StableDiffusionControlNetImg2ImgPipeline",
            "StableDiffusionControlNetInpaintPipeline",
        ]:
            from .models.controlnet import ControlNetModel
            from .pipelines.controlnet.multicontrolnet import MultiControlNetModel

2070
            # Model type will be inferred from the checkpoint.
2071
2072
            if not isinstance(controlnet, (ControlNetModel, MultiControlNetModel)):
                raise ValueError("ControlNet needs to be passed if loading from ControlNet pipeline.")
1lint's avatar
1lint committed
2073
        elif "StableDiffusion" in pipeline_name:
2074
2075
            # Model type will be inferred from the checkpoint.
            pass
1lint's avatar
1lint committed
2076
        elif pipeline_name == "StableUnCLIPPipeline":
2077
            model_type = "FrozenOpenCLIPEmbedder"
1lint's avatar
1lint committed
2078
2079
            stable_unclip = "txt2img"
        elif pipeline_name == "StableUnCLIPImg2ImgPipeline":
2080
            model_type = "FrozenOpenCLIPEmbedder"
1lint's avatar
1lint committed
2081
2082
            stable_unclip = "img2img"
        elif pipeline_name == "PaintByExamplePipeline":
2083
            model_type = "PaintByExample"
1lint's avatar
1lint committed
2084
        elif pipeline_name == "LDMTextToImagePipeline":
2085
            model_type = "LDMTextToImage"
1lint's avatar
1lint committed
2086
2087
2088
2089
        else:
            raise ValueError(f"Unhandled pipeline class: {pipeline_name}")

        # remove huggingface url
2090
2091
2092
        has_valid_url_prefix = False
        valid_url_prefixes = ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]
        for prefix in valid_url_prefixes:
1lint's avatar
1lint committed
2093
2094
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]
2095
                has_valid_url_prefix = True
1lint's avatar
1lint committed
2096
2097
2098
2099

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
2100
2101
2102
2103
2104
            if not has_valid_url_prefix:
                raise ValueError(
                    f"The provided path is either not a file or a valid huggingface URL was not provided. Valid URLs begin with {', '.join(valid_url_prefixes)}"
                )

1lint's avatar
1lint committed
2105
            # get repo_id and (potentially nested) file path of ckpt in repo
2106
2107
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])
1lint's avatar
1lint committed
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        pipe = download_from_original_stable_diffusion_ckpt(
            pretrained_model_link_or_path,
            pipeline_class=cls,
            model_type=model_type,
            stable_unclip=stable_unclip,
            controlnet=controlnet,
            from_safetensors=from_safetensors,
            extract_ema=extract_ema,
            image_size=image_size,
            scheduler_type=scheduler_type,
            num_in_channels=num_in_channels,
            upcast_attention=upcast_attention,
            load_safety_checker=load_safety_checker,
            prediction_type=prediction_type,
2141
            text_encoder=text_encoder,
2142
            vae=vae,
2143
            tokenizer=tokenizer,
2144
            original_config_file=original_config_file,
1lint's avatar
1lint committed
2145
2146
2147
2148
2149
2150
        )

        if torch_dtype is not None:
            pipe.to(torch_dtype=torch_dtype)

        return pipe
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254


class FromOriginalVAEMixin:
    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
        r"""
        Instantiate a [`AutoencoderKL`] from pretrained controlnet weights saved in the original `.ckpt` or
        `.safetensors` format. The pipeline is format. The pipeline is set in evaluation mode (`model.eval()`) by
        default.

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to True, the model
                won't be downloaded from the Hub.
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            image_size (`int`, *optional*, defaults to 512):
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            upcast_attention (`bool`, *optional*, defaults to `None`):
                Whether the attention computation should always be upcasted.
            scaling_factor (`float`, *optional*, defaults to 0.18215):
                The component-wise standard deviation of the trained latent space computed using the first batch of the
                training set. This is used to scale the latent space to have unit variance when training the diffusion
                model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
                diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z
                = 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution
                Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.

        <Tip warning={true}>

            Make sure to pass both `image_size` and `scaling_factor` to `from_single_file()` if you want to load
            a VAE that does accompany a stable diffusion model of v2 or higher or SDXL.

        </Tip>

        Examples:

        ```py
        from diffusers import AutoencoderKL

        url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"  # can also be local file
        model = AutoencoderKL.from_single_file(url)
        ```
        """
        if not is_omegaconf_available():
            raise ValueError(BACKENDS_MAPPING["omegaconf"][1])

        from omegaconf import OmegaConf

        from .models import AutoencoderKL

        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import (
            convert_ldm_vae_checkpoint,
            create_vae_diffusers_config,
        )

        config_file = kwargs.pop("config_file", None)
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        image_size = kwargs.pop("image_size", None)
        scaling_factor = kwargs.pop("scaling_factor", None)
        kwargs.pop("upcast_attention", None)

        torch_dtype = kwargs.pop("torch_dtype", None)

2255
        use_safetensors = kwargs.pop("use_safetensors", None)
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427

        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

        if from_safetensors and use_safetensors is False:
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # remove huggingface url
        for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
            # get repo_id and (potentially nested) file path of ckpt in repo
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        if from_safetensors:
            from safetensors import safe_open

            checkpoint = {}
            with safe_open(pretrained_model_link_or_path, framework="pt", device="cpu") as f:
                for key in f.keys():
                    checkpoint[key] = f.get_tensor(key)
        else:
            checkpoint = torch.load(pretrained_model_link_or_path, map_location="cpu")

        if "state_dict" in checkpoint:
            checkpoint = checkpoint["state_dict"]

        if config_file is None:
            config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
            config_file = BytesIO(requests.get(config_url).content)

        original_config = OmegaConf.load(config_file)

        # default to sd-v1-5
        image_size = image_size or 512

        vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
        converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)

        if scaling_factor is None:
            if (
                "model" in original_config
                and "params" in original_config.model
                and "scale_factor" in original_config.model.params
            ):
                vae_scaling_factor = original_config.model.params.scale_factor
            else:
                vae_scaling_factor = 0.18215  # default SD scaling factor

        vae_config["scaling_factor"] = vae_scaling_factor

        ctx = init_empty_weights if is_accelerate_available() else nullcontext
        with ctx():
            vae = AutoencoderKL(**vae_config)

        if is_accelerate_available():
            for param_name, param in converted_vae_checkpoint.items():
                set_module_tensor_to_device(vae, param_name, "cpu", value=param)
        else:
            vae.load_state_dict(converted_vae_checkpoint)

        if torch_dtype is not None:
            vae.to(torch_dtype=torch_dtype)

        return vae


class FromOriginalControlnetMixin:
    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
        r"""
        Instantiate a [`ControlNetModel`] from pretrained controlnet weights saved in the original `.ckpt` or
        `.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to True, the model
                won't be downloaded from the Hub.
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            image_size (`int`, *optional*, defaults to 512):
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
            upcast_attention (`bool`, *optional*, defaults to `None`):
                Whether the attention computation should always be upcasted.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.

        Examples:

        ```py
        from diffusers import StableDiffusionControlnetPipeline, ControlNetModel

        url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth"  # can also be a local path
        model = ControlNetModel.from_single_file(url)

        url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors"  # can also be a local path
        pipe = StableDiffusionControlnetPipeline.from_single_file(url, controlnet=controlnet)
        ```
        """
        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt

        config_file = kwargs.pop("config_file", None)
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        num_in_channels = kwargs.pop("num_in_channels", None)
        use_linear_projection = kwargs.pop("use_linear_projection", None)
        revision = kwargs.pop("revision", None)
        extract_ema = kwargs.pop("extract_ema", False)
        image_size = kwargs.pop("image_size", None)
        upcast_attention = kwargs.pop("upcast_attention", None)

        torch_dtype = kwargs.pop("torch_dtype", None)

2428
        use_safetensors = kwargs.pop("use_safetensors", None)
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486

        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

        if from_safetensors and use_safetensors is False:
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # remove huggingface url
        for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
            # get repo_id and (potentially nested) file path of ckpt in repo
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        if config_file is None:
            config_url = "https://raw.githubusercontent.com/lllyasviel/ControlNet/main/models/cldm_v15.yaml"
            config_file = BytesIO(requests.get(config_url).content)

        image_size = image_size or 512

        controlnet = download_controlnet_from_original_ckpt(
            pretrained_model_link_or_path,
            original_config_file=config_file,
            image_size=image_size,
            extract_ema=extract_ema,
            num_in_channels=num_in_channels,
            upcast_attention=upcast_attention,
            from_safetensors=from_safetensors,
            use_linear_projection=use_linear_projection,
        )

        if torch_dtype is not None:
            controlnet.to(torch_dtype=torch_dtype)

        return controlnet