"tests/python/pytorch/nn/test_nn.py" did not exist on "9e7fbf9567164d235080f139a4658a839cdd4d48"
loaders.py 98 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
15
import warnings
16
from collections import defaultdict
17
18
from contextlib import nullcontext
from io import BytesIO
1lint's avatar
1lint committed
19
from pathlib import Path
20
from typing import Callable, Dict, List, Optional, Union
21

22
import requests
23
import torch
24
import torch.nn.functional as F
1lint's avatar
1lint committed
25
from huggingface_hub import hf_hub_download
Will Berman's avatar
Will Berman committed
26
from torch import nn
27

28
29
30
31
32
from .utils import (
    DIFFUSERS_CACHE,
    HF_HUB_OFFLINE,
    _get_model_file,
    deprecate,
33
34
    is_accelerate_available,
    is_omegaconf_available,
35
36
37
38
    is_safetensors_available,
    is_transformers_available,
    logging,
)
39
from .utils.import_utils import BACKENDS_MAPPING
40
41
42
43


if is_safetensors_available():
    import safetensors
44

45
if is_transformers_available():
46
    from transformers import CLIPTextModel, CLIPTextModelWithProjection, PreTrainedModel, PreTrainedTokenizer
47

48
49
50
if is_accelerate_available():
    from accelerate import init_empty_weights
    from accelerate.utils import set_module_tensor_to_device
51
52
53

logger = logging.get_logger(__name__)

54
55
TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"
56
57

LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
58
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
59
TOTAL_EXAMPLE_KEYS = 5
60

61
62
63
TEXT_INVERSION_NAME = "learned_embeds.bin"
TEXT_INVERSION_NAME_SAFE = "learned_embeds.safetensors"

64
65
66
CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin"
CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors"

67

Will Berman's avatar
Will Berman committed
68
69
70
class PatchedLoraProjection(nn.Module):
    def __init__(self, regular_linear_layer, lora_scale=1, network_alpha=None, rank=4, dtype=None):
        super().__init__()
71
        from .models.lora import LoRALinearLayer
72

Will Berman's avatar
Will Berman committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
        self.regular_linear_layer = regular_linear_layer

        device = self.regular_linear_layer.weight.device

        if dtype is None:
            dtype = self.regular_linear_layer.weight.dtype

        self.lora_linear_layer = LoRALinearLayer(
            self.regular_linear_layer.in_features,
            self.regular_linear_layer.out_features,
            network_alpha=network_alpha,
            device=device,
            dtype=dtype,
            rank=rank,
        )

        self.lora_scale = lora_scale

    def forward(self, input):
        return self.regular_linear_layer(input) + self.lora_scale * self.lora_linear_layer(input)


def text_encoder_attn_modules(text_encoder):
    attn_modules = []

98
    if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
Will Berman's avatar
Will Berman committed
99
100
101
102
103
104
105
106
107
108
        for i, layer in enumerate(text_encoder.text_model.encoder.layers):
            name = f"text_model.encoder.layers.{i}.self_attn"
            mod = layer.self_attn
            attn_modules.append((name, mod))
    else:
        raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}")

    return attn_modules


109
110
111
112
113
114
115
116
117
118
119
120
121
122
def text_encoder_mlp_modules(text_encoder):
    mlp_modules = []

    if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
        for i, layer in enumerate(text_encoder.text_model.encoder.layers):
            mlp_mod = layer.mlp
            name = f"text_model.encoder.layers.{i}.mlp"
            mlp_modules.append((name, mlp_mod))
    else:
        raise ValueError(f"do not know how to get mlp modules for: {text_encoder.__class__.__name__}")

    return mlp_modules


Will Berman's avatar
Will Berman committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
def text_encoder_lora_state_dict(text_encoder):
    state_dict = {}

    for name, module in text_encoder_attn_modules(text_encoder):
        for k, v in module.q_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v

        for k, v in module.k_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v

        for k, v in module.v_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v

        for k, v in module.out_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v

    return state_dict


142
143
144
145
class AttnProcsLayers(torch.nn.Module):
    def __init__(self, state_dict: Dict[str, torch.Tensor]):
        super().__init__()
        self.layers = torch.nn.ModuleList(state_dict.values())
146
        self.mapping = dict(enumerate(state_dict.keys()))
147
148
        self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}

149
150
        # .processor for unet, .self_attn for text encoder
        self.split_keys = [".processor", ".self_attn"]
151

152
153
154
155
156
157
158
159
160
161
162
        # we add a hook to state_dict() and load_state_dict() so that the
        # naming fits with `unet.attn_processors`
        def map_to(module, state_dict, *args, **kwargs):
            new_state_dict = {}
            for key, value in state_dict.items():
                num = int(key.split(".")[1])  # 0 is always "layers"
                new_key = key.replace(f"layers.{num}", module.mapping[num])
                new_state_dict[new_key] = value

            return new_state_dict

163
164
165
166
167
168
169
170
171
        def remap_key(key, state_dict):
            for k in self.split_keys:
                if k in key:
                    return key.split(k)[0] + k

            raise ValueError(
                f"There seems to be a problem with the state_dict: {set(state_dict.keys())}. {key} has to have one of {self.split_keys}."
            )

172
173
174
        def map_from(module, state_dict, *args, **kwargs):
            all_keys = list(state_dict.keys())
            for key in all_keys:
175
                replace_key = remap_key(key, state_dict)
176
177
178
179
180
181
182
183
184
                new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
                state_dict[new_key] = state_dict[key]
                del state_dict[key]

        self._register_state_dict_hook(map_to)
        self._register_load_state_dict_pre_hook(map_from, with_module=True)


class UNet2DConditionLoadersMixin:
185
186
187
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME

188
189
    def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
        r"""
Steven Liu's avatar
Steven Liu committed
190
        Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be
191
        defined in
192
        [`cross_attention.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py)
193
194
195
196
197
198
        and be a `torch.nn.Module` class.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

Steven Liu's avatar
Steven Liu committed
199
200
201
202
                    - A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a directory (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
203
204
205
206
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
207
208
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
209
210
211
212
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
213
214
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
215
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
216
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
217
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
218
219
220
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
221
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
222
223
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
224
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
225
226
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
227
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
228
                The subfolder location of a model file within a larger model repository on the Hub or locally.
229
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
230
231
232
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
233
234

        """
235
236
237
238
239
240
241
242
243
244
245
        from .models.attention_processor import (
            AttnAddedKVProcessor,
            AttnAddedKVProcessor2_0,
            CustomDiffusionAttnProcessor,
            LoRAAttnAddedKVProcessor,
            LoRAAttnProcessor,
            LoRAAttnProcessor2_0,
            LoRAXFormersAttnProcessor,
            SlicedAttnAddedKVProcessor,
            XFormersAttnProcessor,
        )
246
        from .models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer
247
248
249
250
251
252
253
254
255

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
256
        weight_name = kwargs.pop("weight_name", None)
257
        use_safetensors = kwargs.pop("use_safetensors", None)
258
259
260
        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
        network_alpha = kwargs.pop("network_alpha", None)
261
262
263

        if use_safetensors and not is_safetensors_available():
            raise ValueError(
264
                "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors"
265
266
267
268
269
270
            )

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = is_safetensors_available()
            allow_pickle = True
271
272
273
274
275
276

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

277
        model_file = None
278
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
279
            # Let's first try to load .safetensors weights
280
            if (use_safetensors and weight_name is None) or (
281
282
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
283
284
285
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
286
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
287
288
289
290
291
292
293
294
295
296
297
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
298
299
300
                except IOError as e:
                    if not allow_pickle:
                        raise e
301
302
                    # try loading non-safetensors weights
                    pass
303
304
305
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
306
                    weights_name=weight_name or LORA_WEIGHT_NAME,
307
308
309
310
311
312
313
314
315
316
317
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
318
319
320
321
322
        else:
            state_dict = pretrained_model_name_or_path_or_dict

        # fill attn processors
        attn_processors = {}
323
        non_attn_lora_layers = []
324
325

        is_lora = all("lora" in k for k in state_dict.keys())
326
        is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())
327
328

        if is_lora:
329
330
331
332
333
334
335
336
337
338
339
340
            is_new_lora_format = all(
                key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys()
            )
            if is_new_lora_format:
                # Strip the `"unet"` prefix.
                is_text_encoder_present = any(key.startswith(self.text_encoder_name) for key in state_dict.keys())
                if is_text_encoder_present:
                    warn_message = "The state_dict contains LoRA params corresponding to the text encoder which are not being used here. To use both UNet and text encoder related LoRA params, use [`pipe.load_lora_weights()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights)."
                    warnings.warn(warn_message)
                unet_keys = [k for k in state_dict.keys() if k.startswith(self.unet_name)]
                state_dict = {k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}

341
342
343
344
345
346
            lora_grouped_dict = defaultdict(dict)
            for key, value in state_dict.items():
                attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                lora_grouped_dict[attn_processor_key][sub_key] = value

            for key, value_dict in lora_grouped_dict.items():
Will Berman's avatar
Will Berman committed
347
348
349
350
                attn_processor = self
                for sub_key in key.split("."):
                    attn_processor = getattr(attn_processor, sub_key)

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
                # Process non-attention layers, which don't have to_{k,v,q,out_proj}_lora layers
                # or add_{k,v,q,out_proj}_proj_lora layers.
                if "lora.down.weight" in value_dict:
                    rank = value_dict["lora.down.weight"].shape[0]
                    hidden_size = value_dict["lora.up.weight"].shape[0]

                    if isinstance(attn_processor, LoRACompatibleConv):
                        lora = LoRAConv2dLayer(hidden_size, hidden_size, rank, network_alpha)
                    elif isinstance(attn_processor, LoRACompatibleLinear):
                        lora = LoRALinearLayer(
                            attn_processor.in_features, attn_processor.out_features, rank, network_alpha
                        )
                    else:
                        raise ValueError(f"Module {key} is not a LoRACompatibleConv or LoRACompatibleLinear module.")

                    value_dict = {k.replace("lora.", ""): v for k, v in value_dict.items()}
                    lora.load_state_dict(value_dict)
                    non_attn_lora_layers.append((attn_processor, lora))
                    continue

                rank = value_dict["to_k_lora.down.weight"].shape[0]
                hidden_size = value_dict["to_k_lora.up.weight"].shape[0]

Will Berman's avatar
Will Berman committed
374
375
376
377
378
379
380
                if isinstance(
                    attn_processor, (AttnAddedKVProcessor, SlicedAttnAddedKVProcessor, AttnAddedKVProcessor2_0)
                ):
                    cross_attention_dim = value_dict["add_k_proj_lora.down.weight"].shape[1]
                    attn_processor_class = LoRAAttnAddedKVProcessor
                else:
                    cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[1]
381
382
383
                    if isinstance(attn_processor, (XFormersAttnProcessor, LoRAXFormersAttnProcessor)):
                        attn_processor_class = LoRAXFormersAttnProcessor
                    else:
384
385
386
                        attn_processor_class = (
                            LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
                        )
Will Berman's avatar
Will Berman committed
387
388

                attn_processors[key] = attn_processor_class(
389
390
391
392
                    hidden_size=hidden_size,
                    cross_attention_dim=cross_attention_dim,
                    rank=rank,
                    network_alpha=network_alpha,
393
394
                )
                attn_processors[key].load_state_dict(value_dict)
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
        elif is_custom_diffusion:
            custom_diffusion_grouped_dict = defaultdict(dict)
            for key, value in state_dict.items():
                if len(value) == 0:
                    custom_diffusion_grouped_dict[key] = {}
                else:
                    if "to_out" in key:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                    else:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
                    custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value

            for key, value_dict in custom_diffusion_grouped_dict.items():
                if len(value_dict) == 0:
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
                    )
                else:
                    cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
                    hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
                    train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=True,
                        train_q_out=train_q_out,
                        hidden_size=hidden_size,
                        cross_attention_dim=cross_attention_dim,
                    )
                    attn_processors[key].load_state_dict(value_dict)
423
        else:
424
425
426
            raise ValueError(
                f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training."
            )
427
428
429

        # set correct dtype & device
        attn_processors = {k: v.to(device=self.device, dtype=self.dtype) for k, v in attn_processors.items()}
430
        non_attn_lora_layers = [(t, l.to(device=self.device, dtype=self.dtype)) for t, l in non_attn_lora_layers]
431
432
433
434

        # set layers
        self.set_attn_processor(attn_processors)

435
436
437
438
439
        # set ff layers
        for target_module, lora_layer in non_attn_lora_layers:
            if hasattr(target_module, "set_lora_layer"):
                target_module.set_lora_layer(lora_layer)

440
441
442
443
    def save_attn_procs(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
444
        weight_name: str = None,
445
        save_function: Callable = None,
446
        safe_serialization: bool = False,
447
        **kwargs,
448
449
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
450
        Save an attention processor to a directory so that it can be reloaded using the
451
        [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method.
452
453
454

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
455
                Directory to save an attention processor to. Will be created if it doesn't exist.
456
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
457
458
459
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
460
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
461
462
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
463
                `DIFFUSERS_SAVE_MODE`.
Steven Liu's avatar
Steven Liu committed
464

465
        """
466
467
468
469
470
        from .models.attention_processor import (
            CustomDiffusionAttnProcessor,
            CustomDiffusionXFormersAttnProcessor,
        )

471
472
        weight_name = weight_name or deprecate(
            "weights_name",
473
            "0.20.0",
474
475
476
            "`weights_name` is deprecated, please use `weight_name` instead.",
            take_from=kwargs,
        )
477
478
479
480
481
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
482
483
484
485
486
487
488
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save
489
490
491

        os.makedirs(save_directory, exist_ok=True)

492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
        is_custom_diffusion = any(
            isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor))
            for (_, x) in self.attn_processors.items()
        )
        if is_custom_diffusion:
            model_to_save = AttnProcsLayers(
                {
                    y: x
                    for (y, x) in self.attn_processors.items()
                    if isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor))
                }
            )
            state_dict = model_to_save.state_dict()
            for name, attn in self.attn_processors.items():
                if len(attn.state_dict()) == 0:
                    state_dict[name] = {}
        else:
            model_to_save = AttnProcsLayers(self.attn_processors)
            state_dict = model_to_save.state_dict()
511

512
        if weight_name is None:
513
            if safe_serialization:
514
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE
515
            else:
516
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME
517

518
        # Save the model
519
520
        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
521
522
523
524


class TextualInversionLoaderMixin:
    r"""
Steven Liu's avatar
Steven Liu committed
525
    Load textual inversion tokens and embeddings to the tokenizer and text encoder.
526
527
    """

528
    def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"):
529
        r"""
Steven Liu's avatar
Steven Liu committed
530
531
532
        Processes prompts that include a special token corresponding to a multi-vector textual inversion embedding to
        be replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or if the textual inversion token is a single vector, the input prompt is returned.
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

        Parameters:
            prompt (`str` or list of `str`):
                The prompt or prompts to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str` or list of `str`: The converted prompt
        """
        if not isinstance(prompt, List):
            prompts = [prompt]
        else:
            prompts = prompt

        prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts]

        if not isinstance(prompt, List):
            return prompts[0]

        return prompts

555
    def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"):
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
        r"""
        Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds
        to a multi-vector textual inversion embedding, this function will process the prompt so that the special token
        is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or a textual inversion token that is a single vector, the input prompt is simply returned.

        Parameters:
            prompt (`str`):
                The prompt to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str`: The converted prompt
        """
        tokens = tokenizer.tokenize(prompt)
572
573
        unique_tokens = set(tokens)
        for token in unique_tokens:
574
575
576
577
            if token in tokenizer.added_tokens_encoder:
                replacement = token
                i = 1
                while f"{token}_{i}" in tokenizer.added_tokens_encoder:
578
                    replacement += f" {token}_{i}"
579
580
581
582
583
584
585
                    i += 1

                prompt = prompt.replace(token, replacement)

        return prompt

    def load_textual_inversion(
586
        self,
587
        pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]],
588
589
        token: Optional[Union[str, List[str]]] = None,
        **kwargs,
590
591
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
592
593
        Load textual inversion embeddings into the text encoder of [`StableDiffusionPipeline`] (both 🤗 Diffusers and
        Automatic1111 formats are supported).
594
595

        Parameters:
596
            pretrained_model_name_or_path (`str` or `os.PathLike` or `List[str or os.PathLike]` or `Dict` or `List[Dict]`):
Steven Liu's avatar
Steven Liu committed
597
                Can be either one of the following or a list of them:
598

Steven Liu's avatar
Steven Liu committed
599
600
601
602
603
                    - A string, the *model id* (for example `sd-concepts-library/low-poly-hd-logos-icons`) of a
                      pretrained model hosted on the Hub.
                    - A path to a *directory* (for example `./my_text_inversion_directory/`) containing the textual
                      inversion weights.
                    - A path to a *file* (for example `./my_text_inversions.pt`) containing textual inversion weights.
604
605
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
606
607
608
609

            token (`str` or `List[str]`, *optional*):
                Override the token to use for the textual inversion weights. If `pretrained_model_name_or_path` is a
                list, then `token` must also be a list of equal length.
610
            weight_name (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
611
                Name of a custom weight file. This should be used when:
612

Steven Liu's avatar
Steven Liu committed
613
614
615
                    - The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight
                      name such as `text_inv.bin`.
                    - The saved textual inversion file is in the Automatic1111 format.
616
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
617
618
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
619
620
621
622
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
623
624
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
625
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
626
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
627
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
628
629
630
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
631
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
632
633
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
634
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
635
636
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
637
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
638
                The subfolder location of a model file within a larger model repository on the Hub or locally.
639
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
640
641
642
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
643
644
645

        Example:

Steven Liu's avatar
Steven Liu committed
646
        To load a textual inversion embedding vector in 🤗 Diffusers format:
1lint's avatar
1lint committed
647

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

        pipe.load_textual_inversion("sd-concepts-library/cat-toy")

        prompt = "A <cat-toy> backpack"

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("cat-backpack.png")
        ```

Steven Liu's avatar
Steven Liu committed
663
664
665
        To load a textual inversion embedding vector in Automatic1111 format, make sure to download the vector first
        (for example from [civitAI](https://civitai.com/models/3036?modelVersionId=9857)) and then load the vector
        locally:
666
667
668
669
670
671
672
673

        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

674
        pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
675
676
677
678
679
680

        prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("character.png")
        ```
1lint's avatar
1lint committed
681

682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
        """
        if not hasattr(self, "tokenizer") or not isinstance(self.tokenizer, PreTrainedTokenizer):
            raise ValueError(
                f"{self.__class__.__name__} requires `self.tokenizer` of type `PreTrainedTokenizer` for calling"
                f" `{self.load_textual_inversion.__name__}`"
            )

        if not hasattr(self, "text_encoder") or not isinstance(self.text_encoder, PreTrainedModel):
            raise ValueError(
                f"{self.__class__.__name__} requires `self.text_encoder` of type `PreTrainedModel` for calling"
                f" `{self.load_textual_inversion.__name__}`"
            )

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)

        if use_safetensors and not is_safetensors_available():
            raise ValueError(
708
                "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors"
709
710
711
712
713
714
715
716
717
718
719
720
            )

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = is_safetensors_available()
            allow_pickle = True

        user_agent = {
            "file_type": "text_inversion",
            "framework": "pytorch",
        }

721
        if not isinstance(pretrained_model_name_or_path, list):
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
            pretrained_model_name_or_paths = [pretrained_model_name_or_path]
        else:
            pretrained_model_name_or_paths = pretrained_model_name_or_path

        if isinstance(token, str):
            tokens = [token]
        elif token is None:
            tokens = [None] * len(pretrained_model_name_or_paths)
        else:
            tokens = token

        if len(pretrained_model_name_or_paths) != len(tokens):
            raise ValueError(
                f"You have passed a list of models of length {len(pretrained_model_name_or_paths)}, and list of tokens of length {len(tokens)}"
                f"Make sure both lists have the same length."
            )

        valid_tokens = [t for t in tokens if t is not None]
        if len(set(valid_tokens)) < len(valid_tokens):
            raise ValueError(f"You have passed a list of tokens that contains duplicates: {tokens}")

        token_ids_and_embeddings = []

        for pretrained_model_name_or_path, token in zip(pretrained_model_name_or_paths, tokens):
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
            if not isinstance(pretrained_model_name_or_path, dict):
                # 1. Load textual inversion file
                model_file = None
                # Let's first try to load .safetensors weights
                if (use_safetensors and weight_name is None) or (
                    weight_name is not None and weight_name.endswith(".safetensors")
                ):
                    try:
                        model_file = _get_model_file(
                            pretrained_model_name_or_path,
                            weights_name=weight_name or TEXT_INVERSION_NAME_SAFE,
                            cache_dir=cache_dir,
                            force_download=force_download,
                            resume_download=resume_download,
                            proxies=proxies,
                            local_files_only=local_files_only,
                            use_auth_token=use_auth_token,
                            revision=revision,
                            subfolder=subfolder,
                            user_agent=user_agent,
                        )
                        state_dict = safetensors.torch.load_file(model_file, device="cpu")
                    except Exception as e:
                        if not allow_pickle:
                            raise e

                        model_file = None

                if model_file is None:
775
776
                    model_file = _get_model_file(
                        pretrained_model_name_or_path,
777
                        weights_name=weight_name or TEXT_INVERSION_NAME,
778
779
780
781
782
783
784
785
786
787
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
788
789
790
                    state_dict = torch.load(model_file, map_location="cpu")
            else:
                state_dict = pretrained_model_name_or_path
791
792

            # 2. Load token and embedding correcly from file
793
            loaded_token = None
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
            if isinstance(state_dict, torch.Tensor):
                if token is None:
                    raise ValueError(
                        "You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`."
                    )
                embedding = state_dict
            elif len(state_dict) == 1:
                # diffusers
                loaded_token, embedding = next(iter(state_dict.items()))
            elif "string_to_param" in state_dict:
                # A1111
                loaded_token = state_dict["name"]
                embedding = state_dict["string_to_param"]["*"]

            if token is not None and loaded_token != token:
                logger.info(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.")
            else:
                token = loaded_token

            embedding = embedding.to(dtype=self.text_encoder.dtype, device=self.text_encoder.device)
814

815
816
817
            # 3. Make sure we don't mess up the tokenizer or text encoder
            vocab = self.tokenizer.get_vocab()
            if token in vocab:
818
                raise ValueError(
819
                    f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder."
820
                )
821
822
823
824
825
826
            elif f"{token}_1" in vocab:
                multi_vector_tokens = [token]
                i = 1
                while f"{token}_{i}" in self.tokenizer.added_tokens_encoder:
                    multi_vector_tokens.append(f"{token}_{i}")
                    i += 1
827

828
829
830
                raise ValueError(
                    f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder."
                )
831

832
            is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1
833

834
835
836
837
838
839
            if is_multi_vector:
                tokens = [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])]
                embeddings = [e for e in embedding]  # noqa: C416
            else:
                tokens = [token]
                embeddings = [embedding[0]] if len(embedding.shape) > 1 else [embedding]
840

841
842
843
844
            # add tokens and get ids
            self.tokenizer.add_tokens(tokens)
            token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
            token_ids_and_embeddings += zip(token_ids, embeddings)
845

846
            logger.info(f"Loaded textual inversion embedding for {token}.")
847

848
        # resize token embeddings and set all new embeddings
849
        self.text_encoder.resize_token_embeddings(len(self.tokenizer))
850
        for token_id, embedding in token_ids_and_embeddings:
851
852
            self.text_encoder.get_input_embeddings().weight.data[token_id] = embedding

853
854
855

class LoraLoaderMixin:
    r"""
Steven Liu's avatar
Steven Liu committed
856
857
    Load LoRA layers into [`UNet2DConditionModel`] and
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
858
    """
859
860
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME
861
862

    def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
Will Berman's avatar
Will Berman committed
863
        """
864
865
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
        `self.text_encoder`.
Will Berman's avatar
Will Berman committed
866
867
868
869
870
871
872
873
874
875
876
877
878
879

        All kwargs are forwarded to `self.lora_state_dict`.

        See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.

        See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into
        `self.unet`.

        See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded
        into `self.text_encoder`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
880
            kwargs (`dict`, *optional*):
Will Berman's avatar
Will Berman committed
881
882
883
884
885
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
        """
        state_dict, network_alpha = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
        self.load_lora_into_unet(state_dict, network_alpha=network_alpha, unet=self.unet)
        self.load_lora_into_text_encoder(
886
887
888
889
            state_dict,
            network_alpha=network_alpha,
            text_encoder=self.text_encoder,
            lora_scale=self.lora_scale,
Will Berman's avatar
Will Berman committed
890
891
892
893
894
895
896
897
        )

    @classmethod
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
898
        r"""
Will Berman's avatar
Will Berman committed
899
900
901
902
903
904
905
906
907
        Return state dict for lora weights

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>
908
909
910
911
912

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

Steven Liu's avatar
Steven Liu committed
913
914
915
916
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
917
918
919
920
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
921
922
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
923
924
925
926
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
927
928
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
929
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
930
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
931
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
932
933
934
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
935
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
936
937
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
938
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
939
940
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
941
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
942
                The subfolder location of a model file within a larger model repository on the Hub or locally.
943
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
944
945
946
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963

        """
        # Load the main state dict first which has the LoRA layers for either of
        # UNet and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)

        if use_safetensors and not is_safetensors_available():
            raise ValueError(
964
                "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors"
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
            )

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = is_safetensors_available()
            allow_pickle = True

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

        model_file = None
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
            # Let's first try to load .safetensors weights
            if (use_safetensors and weight_name is None) or (
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
Will Berman's avatar
Will Berman committed
998
                except (IOError, safetensors.SafetensorError) as e:
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
                    if not allow_pickle:
                        raise e
                    # try loading non-safetensors weights
                    pass
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
                    weights_name=weight_name or LORA_WEIGHT_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
        else:
            state_dict = pretrained_model_name_or_path_or_dict

1021
1022
1023
        # Convert kohya-ss Style LoRA attn procs to diffusers attn procs
        network_alpha = None
        if all((k.startswith("lora_te_") or k.startswith("lora_unet_")) for k in state_dict.keys()):
Will Berman's avatar
Will Berman committed
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
            state_dict, network_alpha = cls._convert_kohya_lora_to_diffusers(state_dict)

        return state_dict, network_alpha

    @classmethod
    def load_lora_into_unet(cls, state_dict, network_alpha, unet):
        """
        This will load the LoRA layers specified in `state_dict` into `unet`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            network_alpha (`float`):
                See `LoRALinearLayer` for more details.
            unet (`UNet2DConditionModel`):
                The UNet model to load the LoRA layers into.
        """
1043

1044
1045
1046
1047
        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
        # their prefixes.
        keys = list(state_dict.keys())
Will Berman's avatar
Will Berman committed
1048
        if all(key.startswith(cls.unet_name) or key.startswith(cls.text_encoder_name) for key in keys):
1049
            # Load the layers corresponding to UNet.
Will Berman's avatar
Will Berman committed
1050
1051
            unet_keys = [k for k in keys if k.startswith(cls.unet_name)]
            logger.info(f"Loading {cls.unet_name}.")
1052
            unet_lora_state_dict = {
Will Berman's avatar
Will Berman committed
1053
                k.replace(f"{cls.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys
1054
            }
Will Berman's avatar
Will Berman committed
1055
            unet.load_attn_procs(unet_lora_state_dict, network_alpha=network_alpha)
1056

1057
1058
1059
        # Otherwise, we're dealing with the old format. This means the `state_dict` should only
        # contain the module names of the `unet` as its keys WITHOUT any prefix.
        elif not all(
Will Berman's avatar
Will Berman committed
1060
            key.startswith(cls.unet_name) or key.startswith(cls.text_encoder_name) for key in state_dict.keys()
1061
        ):
1062
            unet.load_attn_procs(state_dict, network_alpha=network_alpha)
1063
1064
            warn_message = "You have saved the LoRA weights using the old format. To convert the old LoRA weights to the new format, you can first load them in a dictionary and then create a new dictionary like the following: `new_state_dict = {f'unet'.{module_name}: params for module_name, params in old_state_dict.items()}`."
            warnings.warn(warn_message)
1065

Will Berman's avatar
Will Berman committed
1066
    @classmethod
1067
    def load_lora_into_text_encoder(cls, state_dict, network_alpha, text_encoder, prefix=None, lora_scale=1.0):
Will Berman's avatar
Will Berman committed
1068
1069
1070
1071
1072
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
1073
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
Will Berman's avatar
Will Berman committed
1074
1075
1076
1077
1078
                additional `text_encoder` to distinguish between unet lora layers.
            network_alpha (`float`):
                See `LoRALinearLayer` for more details.
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
1079
1080
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
Will Berman's avatar
Will Berman committed
1081
1082
1083
1084
1085
1086
1087
1088
1089
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
        """

        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
        # their prefixes.
        keys = list(state_dict.keys())
1090
1091
1092
        prefix = cls.text_encoder_name if prefix is None else prefix

        if any(cls.text_encoder_name in key for key in keys):
Will Berman's avatar
Will Berman committed
1093
            # Load the layers corresponding to text encoder and make necessary adjustments.
1094
            text_encoder_keys = [k for k in keys if k.startswith(prefix)]
Will Berman's avatar
Will Berman committed
1095
            text_encoder_lora_state_dict = {
1096
                k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys
Will Berman's avatar
Will Berman committed
1097
            }
1098

Will Berman's avatar
Will Berman committed
1099
            if len(text_encoder_lora_state_dict) > 0:
1100
                logger.info(f"Loading {prefix}.")
Will Berman's avatar
Will Berman committed
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141

                if any("to_out_lora" in k for k in text_encoder_lora_state_dict.keys()):
                    # Convert from the old naming convention to the new naming convention.
                    #
                    # Previously, the old LoRA layers were stored on the state dict at the
                    # same level as the attention block i.e.
                    # `text_model.encoder.layers.11.self_attn.to_out_lora.up.weight`.
                    #
                    # This is no actual module at that point, they were monkey patched on to the
                    # existing module. We want to be able to load them via their actual state dict.
                    # They're in `PatchedLoraProjection.lora_linear_layer` now.
                    for name, _ in text_encoder_attn_modules(text_encoder):
                        text_encoder_lora_state_dict[
                            f"{name}.q_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_q_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.k_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_k_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.v_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_v_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.out_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_out_lora.up.weight")

                        text_encoder_lora_state_dict[
                            f"{name}.q_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_q_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.k_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_k_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.v_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_v_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.out_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_out_lora.down.weight")

                rank = text_encoder_lora_state_dict[
                    "text_model.encoder.layers.0.self_attn.out_proj.lora_linear_layer.up.weight"
                ].shape[1]
1142
                patch_mlp = any(".mlp." in key for key in text_encoder_lora_state_dict.keys())
Will Berman's avatar
Will Berman committed
1143

1144
                cls._modify_text_encoder(text_encoder, lora_scale, network_alpha, rank=rank, patch_mlp=patch_mlp)
Will Berman's avatar
Will Berman committed
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157

                # set correct dtype & device
                text_encoder_lora_state_dict = {
                    k: v.to(device=text_encoder.device, dtype=text_encoder.dtype)
                    for k, v in text_encoder_lora_state_dict.items()
                }

                load_state_dict_results = text_encoder.load_state_dict(text_encoder_lora_state_dict, strict=False)
                if len(load_state_dict_results.unexpected_keys) != 0:
                    raise ValueError(
                        f"failed to load text encoder state dict, unexpected keys: {load_state_dict_results.unexpected_keys}"
                    )

1158
1159
1160
1161
1162
1163
    @property
    def lora_scale(self) -> float:
        # property function that returns the lora scale which can be set at run time by the pipeline.
        # if _lora_scale has not been set, return 1
        return self._lora_scale if hasattr(self, "_lora_scale") else 1.0

1164
    def _remove_text_encoder_monkey_patch(self):
Will Berman's avatar
Will Berman committed
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
        self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)

    @classmethod
    def _remove_text_encoder_monkey_patch_classmethod(cls, text_encoder):
        for _, attn_module in text_encoder_attn_modules(text_encoder):
            if isinstance(attn_module.q_proj, PatchedLoraProjection):
                attn_module.q_proj = attn_module.q_proj.regular_linear_layer
                attn_module.k_proj = attn_module.k_proj.regular_linear_layer
                attn_module.v_proj = attn_module.v_proj.regular_linear_layer
                attn_module.out_proj = attn_module.out_proj.regular_linear_layer

1176
1177
1178
1179
1180
        for _, mlp_module in text_encoder_mlp_modules(text_encoder):
            if isinstance(mlp_module.fc1, PatchedLoraProjection):
                mlp_module.fc1 = mlp_module.fc1.regular_linear_layer
                mlp_module.fc2 = mlp_module.fc2.regular_linear_layer

Will Berman's avatar
Will Berman committed
1181
    @classmethod
1182
1183
1184
1185
1186
1187
1188
1189
1190
    def _modify_text_encoder(
        cls,
        text_encoder,
        lora_scale=1,
        network_alpha=None,
        rank=4,
        dtype=None,
        patch_mlp=False,
    ):
1191
1192
1193
        r"""
        Monkey-patches the forward passes of attention modules of the text encoder.
        """
1194
1195

        # First, remove any monkey-patch that might have been applied before
Will Berman's avatar
Will Berman committed
1196
        cls._remove_text_encoder_monkey_patch_classmethod(text_encoder)
1197

Will Berman's avatar
Will Berman committed
1198
        lora_parameters = []
1199

Will Berman's avatar
Will Berman committed
1200
1201
1202
        for _, attn_module in text_encoder_attn_modules(text_encoder):
            attn_module.q_proj = PatchedLoraProjection(
                attn_module.q_proj, lora_scale, network_alpha, rank=rank, dtype=dtype
1203
            )
Will Berman's avatar
Will Berman committed
1204
            lora_parameters.extend(attn_module.q_proj.lora_linear_layer.parameters())
1205

Will Berman's avatar
Will Berman committed
1206
1207
1208
1209
            attn_module.k_proj = PatchedLoraProjection(
                attn_module.k_proj, lora_scale, network_alpha, rank=rank, dtype=dtype
            )
            lora_parameters.extend(attn_module.k_proj.lora_linear_layer.parameters())
1210

Will Berman's avatar
Will Berman committed
1211
1212
1213
1214
            attn_module.v_proj = PatchedLoraProjection(
                attn_module.v_proj, lora_scale, network_alpha, rank=rank, dtype=dtype
            )
            lora_parameters.extend(attn_module.v_proj.lora_linear_layer.parameters())
1215

Will Berman's avatar
Will Berman committed
1216
1217
1218
1219
            attn_module.out_proj = PatchedLoraProjection(
                attn_module.out_proj, lora_scale, network_alpha, rank=rank, dtype=dtype
            )
            lora_parameters.extend(attn_module.out_proj.lora_linear_layer.parameters())
1220

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
        if patch_mlp:
            for _, mlp_module in text_encoder_mlp_modules(text_encoder):
                mlp_module.fc1 = PatchedLoraProjection(
                    mlp_module.fc1, lora_scale, network_alpha, rank=rank, dtype=dtype
                )
                lora_parameters.extend(mlp_module.fc1.lora_linear_layer.parameters())

                mlp_module.fc2 = PatchedLoraProjection(
                    mlp_module.fc2, lora_scale, network_alpha, rank=rank, dtype=dtype
                )
                lora_parameters.extend(mlp_module.fc2.lora_linear_layer.parameters())

Will Berman's avatar
Will Berman committed
1233
        return lora_parameters
1234
1235
1236
1237
1238

    @classmethod
    def save_lora_weights(
        self,
        save_directory: Union[str, os.PathLike],
1239
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1240
1241
1242
1243
1244
1245
1246
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = False,
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
1247
        Save the LoRA parameters corresponding to the UNet and text encoder.
1248
1249
1250

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
1251
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
1252
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
1253
1254
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
Steven Liu's avatar
Steven Liu committed
1255
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
1256
                encoder LoRA state dict because it comes from 🤗 Transformers.
1257
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
1258
1259
1260
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
1261
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
1262
1263
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
1264
1265
1266
1267
                `DIFFUSERS_SAVE_MODE`.
        """
        # Create a flat dictionary.
        state_dict = {}
1268
1269

        # Populate the dictionary.
1270
        if unet_lora_layers is not None:
1271
1272
1273
1274
1275
            weights = (
                unet_lora_layers.state_dict() if isinstance(unet_lora_layers, torch.nn.Module) else unet_lora_layers
            )

            unet_lora_state_dict = {f"{self.unet_name}.{module_name}": param for module_name, param in weights.items()}
1276
            state_dict.update(unet_lora_state_dict)
1277

1278
        if text_encoder_lora_layers is not None:
1279
1280
1281
1282
1283
1284
            weights = (
                text_encoder_lora_layers.state_dict()
                if isinstance(text_encoder_lora_layers, torch.nn.Module)
                else text_encoder_lora_layers
            )

1285
            text_encoder_lora_state_dict = {
1286
                f"{self.text_encoder_name}.{module_name}": param for module_name, param in weights.items()
1287
1288
1289
1290
            }
            state_dict.update(text_encoder_lora_state_dict)

        # Save the model
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
        self.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def write_lora_layers(
        state_dict: Dict[str, torch.Tensor],
        save_directory: str,
        is_main_process: bool,
        weight_name: str,
        save_function: Callable,
        safe_serialization: bool,
    ):
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save

        os.makedirs(save_directory, exist_ok=True)

1323
1324
1325
1326
1327
1328
1329
1330
        if weight_name is None:
            if safe_serialization:
                weight_name = LORA_WEIGHT_NAME_SAFE
            else:
                weight_name = LORA_WEIGHT_NAME

        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
1lint's avatar
1lint committed
1331

Will Berman's avatar
Will Berman committed
1332
1333
    @classmethod
    def _convert_kohya_lora_to_diffusers(cls, state_dict):
1334
1335
1336
        unet_state_dict = {}
        te_state_dict = {}
        network_alpha = None
1337
        unloaded_keys = []
1338
1339

        for key, value in state_dict.items():
1340
1341
1342
            if "hada" in key or "skip" in key:
                unloaded_keys.append(key)
            elif "lora_down" in key:
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
                lora_name = key.split(".")[0]
                lora_name_up = lora_name + ".lora_up.weight"
                lora_name_alpha = lora_name + ".alpha"
                if lora_name_alpha in state_dict:
                    alpha = state_dict[lora_name_alpha].item()
                    if network_alpha is None:
                        network_alpha = alpha
                    elif network_alpha != alpha:
                        raise ValueError("Network alpha is not consistent")

                if lora_name.startswith("lora_unet_"):
                    diffusers_name = key.replace("lora_unet_", "").replace("_", ".")
                    diffusers_name = diffusers_name.replace("down.blocks", "down_blocks")
                    diffusers_name = diffusers_name.replace("mid.block", "mid_block")
                    diffusers_name = diffusers_name.replace("up.blocks", "up_blocks")
                    diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks")
                    diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
                    diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
                    diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
                    diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora")
1363
1364
                    diffusers_name = diffusers_name.replace("proj.in", "proj_in")
                    diffusers_name = diffusers_name.replace("proj.out", "proj_out")
1365
1366
1367
1368
1369
1370
                    if "transformer_blocks" in diffusers_name:
                        if "attn1" in diffusers_name or "attn2" in diffusers_name:
                            diffusers_name = diffusers_name.replace("attn1", "attn1.processor")
                            diffusers_name = diffusers_name.replace("attn2", "attn2.processor")
                            unet_state_dict[diffusers_name] = value
                            unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict[lora_name_up]
1371
1372
1373
1374
1375
1376
1377
                        elif "ff" in diffusers_name:
                            unet_state_dict[diffusers_name] = value
                            unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict[lora_name_up]
                    elif any(key in diffusers_name for key in ("proj_in", "proj_out")):
                        unet_state_dict[diffusers_name] = value
                        unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict[lora_name_up]

1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
                elif lora_name.startswith("lora_te_"):
                    diffusers_name = key.replace("lora_te_", "").replace("_", ".")
                    diffusers_name = diffusers_name.replace("text.model", "text_model")
                    diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                    diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                    diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                    diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                    diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                    if "self_attn" in diffusers_name:
                        te_state_dict[diffusers_name] = value
                        te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict[lora_name_up]
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
                    elif "mlp" in diffusers_name:
                        # Be aware that this is the new diffusers convention and the rest of the code might
                        # not utilize it yet.
                        diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
                        te_state_dict[diffusers_name] = value
                        te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict[lora_name_up]

        logger.info("Kohya-style checkpoint detected.")
        if len(unloaded_keys) > 0:
            example_unloaded_keys = ", ".join(x for x in unloaded_keys[:TOTAL_EXAMPLE_KEYS])
            logger.warning(
                f"There are some keys (such as: {example_unloaded_keys}) in the checkpoints we don't provide support for."
            )
1402
1403
1404
1405
1406
1407

        unet_state_dict = {f"{UNET_NAME}.{module_name}": params for module_name, params in unet_state_dict.items()}
        te_state_dict = {f"{TEXT_ENCODER_NAME}.{module_name}": params for module_name, params in te_state_dict.items()}
        new_state_dict = {**unet_state_dict, **te_state_dict}
        return new_state_dict, network_alpha

1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
    def unload_lora_weights(self):
        """
        Unloads the LoRA parameters.

        Examples:

        ```python
        >>> # Assuming `pipeline` is already loaded with the LoRA parameters.
        >>> pipeline.unload_lora_weights()
        >>> ...
        ```
        """
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
        from .models.attention_processor import (
            LORA_ATTENTION_PROCESSORS,
            AttnProcessor,
            AttnProcessor2_0,
            LoRAAttnAddedKVProcessor,
            LoRAAttnProcessor,
            LoRAAttnProcessor2_0,
            LoRAXFormersAttnProcessor,
            XFormersAttnProcessor,
        )

1431
1432
1433
1434
1435
1436
        unet_attention_classes = {type(processor) for _, processor in self.unet.attn_processors.items()}

        if unet_attention_classes.issubset(LORA_ATTENTION_PROCESSORS):
            # Handle attention processors that are a mix of regular attention and AddedKV
            # attention.
            if len(unet_attention_classes) > 1 or LoRAAttnAddedKVProcessor in unet_attention_classes:
1437
                self.unet.set_default_attn_processor()
1438
1439
1440
1441
1442
1443
1444
1445
            else:
                regular_attention_classes = {
                    LoRAAttnProcessor: AttnProcessor,
                    LoRAAttnProcessor2_0: AttnProcessor2_0,
                    LoRAXFormersAttnProcessor: XFormersAttnProcessor,
                }
                [attention_proc_class] = unet_attention_classes
                self.unet.set_attn_processor(regular_attention_classes[attention_proc_class]())
1446

1447
1448
1449
1450
            for _, module in self.unet.named_modules():
                if hasattr(module, "set_lora_layer"):
                    module.set_lora_layer(None)

1451
1452
1453
        # Safe to call the following regardless of LoRA.
        self._remove_text_encoder_monkey_patch()

1lint's avatar
1lint committed
1454

Patrick von Platen's avatar
Patrick von Platen committed
1455
class FromSingleFileMixin:
Steven Liu's avatar
Steven Liu committed
1456
1457
1458
    """
    Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`].
    """
1lint's avatar
1lint committed
1459
1460

    @classmethod
Patrick von Platen's avatar
Patrick von Platen committed
1461
1462
1463
1464
1465
1466
1467
    def from_ckpt(cls, *args, **kwargs):
        deprecation_message = "The function `from_ckpt` is deprecated in favor of `from_single_file` and will be removed in diffusers v.0.21. Please make sure to use `StableDiffusionPipeline.from_single_file(...)` instead."
        deprecate("from_ckpt", "0.21.0", deprecation_message, standard_warn=False)
        return cls.from_single_file(*args, **kwargs)

    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
1lint's avatar
1lint committed
1468
        r"""
1469
1470
        Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors`
        format. The pipeline is set in evaluation mode (`model.eval()`) by default.
1lint's avatar
1lint committed
1471
1472
1473
1474

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
Steven Liu's avatar
Steven Liu committed
1475
1476
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
1lint's avatar
1lint committed
1477
1478
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
1479
1480
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
1lint's avatar
1lint committed
1481
1482
1483
1484
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1485
1486
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
1lint's avatar
1lint committed
1487
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1488
1489
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
1lint's avatar
1lint committed
1490
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1491
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1lint's avatar
1lint committed
1492
1493
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
1494
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
Steven Liu's avatar
Steven Liu committed
1495
                won't be downloaded from the Hub.
1lint's avatar
1lint committed
1496
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1497
1498
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1lint's avatar
1lint committed
1499
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1500
1501
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
1502
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
1503
1504
1505
1506
1507
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            extract_ema (`bool`, *optional*, defaults to `False`):
                Whether to extract the EMA weights or not. Pass `True` to extract the EMA weights which usually yield
1508
                higher quality images for inference. Non-EMA weights are usually better for continuing finetuning.
1lint's avatar
1lint committed
1509
            upcast_attention (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
1510
                Whether the attention computation should always be upcasted.
1lint's avatar
1lint committed
1511
            image_size (`int`, *optional*, defaults to 512):
Steven Liu's avatar
Steven Liu committed
1512
1513
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
1lint's avatar
1lint committed
1514
            prediction_type (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1515
1516
1517
                The prediction type the model was trained on. Use `'epsilon'` for all Stable Diffusion v1 models and
                the Stable Diffusion v2 base model. Use `'v_prediction'` for Stable Diffusion v2.
            num_in_channels (`int`, *optional*, defaults to `None`):
1518
                The number of input channels. If `None`, it is automatically inferred.
Steven Liu's avatar
Steven Liu committed
1519
            scheduler_type (`str`, *optional*, defaults to `"pndm"`):
1lint's avatar
1lint committed
1520
1521
1522
                Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm",
                "ddim"]`.
            load_safety_checker (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
1523
                Whether to load the safety checker or not.
1524
1525
1526
1527
            text_encoder ([`~transformers.CLIPTextModel`], *optional*, defaults to `None`):
                An instance of `CLIPTextModel` to use, specifically the
                [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. If this
                parameter is `None`, the function loads a new instance of `CLIPTextModel` by itself if needed.
1528
1529
1530
            vae (`AutoencoderKL`, *optional*, defaults to `None`):
                Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. If
                this parameter is `None`, the function will load a new instance of [CLIP] by itself, if needed.
1531
1532
1533
            tokenizer ([`~transformers.CLIPTokenizer`], *optional*, defaults to `None`):
                An instance of `CLIPTokenizer` to use. If this parameter is `None`, the function loads a new instance
                of `CLIPTokenizer` by itself if needed.
1lint's avatar
1lint committed
1534
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
1535
1536
1537
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.
1lint's avatar
1lint committed
1538
1539
1540
1541
1542
1543
1544

        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
Patrick von Platen's avatar
Patrick von Platen committed
1545
        >>> pipeline = StableDiffusionPipeline.from_single_file(
1lint's avatar
1lint committed
1546
1547
1548
1549
1550
        ...     "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
        ... )

        >>> # Download pipeline from local file
        >>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
Patrick von Platen's avatar
Patrick von Platen committed
1551
        >>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly")
1lint's avatar
1lint committed
1552
1553

        >>> # Enable float16 and move to GPU
Patrick von Platen's avatar
Patrick von Platen committed
1554
        >>> pipeline = StableDiffusionPipeline.from_single_file(
1lint's avatar
1lint committed
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
        ...     "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
        ...     torch_dtype=torch.float16,
        ... )
        >>> pipeline.to("cuda")
        ```
        """
        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        extract_ema = kwargs.pop("extract_ema", False)
1572
        image_size = kwargs.pop("image_size", None)
1lint's avatar
1lint committed
1573
1574
1575
1576
1577
        scheduler_type = kwargs.pop("scheduler_type", "pndm")
        num_in_channels = kwargs.pop("num_in_channels", None)
        upcast_attention = kwargs.pop("upcast_attention", None)
        load_safety_checker = kwargs.pop("load_safety_checker", True)
        prediction_type = kwargs.pop("prediction_type", None)
1578
        text_encoder = kwargs.pop("text_encoder", None)
1579
        vae = kwargs.pop("vae", None)
1580
        controlnet = kwargs.pop("controlnet", None)
1581
        tokenizer = kwargs.pop("tokenizer", None)
1lint's avatar
1lint committed
1582
1583
1584
1585
1586
1587
1588
1589
1590

        torch_dtype = kwargs.pop("torch_dtype", None)

        use_safetensors = kwargs.pop("use_safetensors", None if is_safetensors_available() else False)

        pipeline_name = cls.__name__
        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

1591
        if from_safetensors and use_safetensors is False:
1lint's avatar
1lint committed
1592
1593
1594
1595
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # TODO: For now we only support stable diffusion
        stable_unclip = None
1596
        model_type = None
1lint's avatar
1lint committed
1597

1598
1599
1600
1601
1602
1603
1604
1605
        if pipeline_name in [
            "StableDiffusionControlNetPipeline",
            "StableDiffusionControlNetImg2ImgPipeline",
            "StableDiffusionControlNetInpaintPipeline",
        ]:
            from .models.controlnet import ControlNetModel
            from .pipelines.controlnet.multicontrolnet import MultiControlNetModel

1606
            # Model type will be inferred from the checkpoint.
1607
1608
            if not isinstance(controlnet, (ControlNetModel, MultiControlNetModel)):
                raise ValueError("ControlNet needs to be passed if loading from ControlNet pipeline.")
1lint's avatar
1lint committed
1609
        elif "StableDiffusion" in pipeline_name:
1610
1611
            # Model type will be inferred from the checkpoint.
            pass
1lint's avatar
1lint committed
1612
        elif pipeline_name == "StableUnCLIPPipeline":
1613
            model_type = "FrozenOpenCLIPEmbedder"
1lint's avatar
1lint committed
1614
1615
            stable_unclip = "txt2img"
        elif pipeline_name == "StableUnCLIPImg2ImgPipeline":
1616
            model_type = "FrozenOpenCLIPEmbedder"
1lint's avatar
1lint committed
1617
1618
            stable_unclip = "img2img"
        elif pipeline_name == "PaintByExamplePipeline":
1619
            model_type = "PaintByExample"
1lint's avatar
1lint committed
1620
        elif pipeline_name == "LDMTextToImagePipeline":
1621
            model_type = "LDMTextToImage"
1lint's avatar
1lint committed
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
        else:
            raise ValueError(f"Unhandled pipeline class: {pipeline_name}")

        # remove huggingface url
        for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
            # get repo_id and (potentially nested) file path of ckpt in repo
1634
1635
            repo_id = os.path.join(*ckpt_path.parts[:2])
            file_path = os.path.join(*ckpt_path.parts[2:])
1lint's avatar
1lint committed
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        pipe = download_from_original_stable_diffusion_ckpt(
            pretrained_model_link_or_path,
            pipeline_class=cls,
            model_type=model_type,
            stable_unclip=stable_unclip,
            controlnet=controlnet,
            from_safetensors=from_safetensors,
            extract_ema=extract_ema,
            image_size=image_size,
            scheduler_type=scheduler_type,
            num_in_channels=num_in_channels,
            upcast_attention=upcast_attention,
            load_safety_checker=load_safety_checker,
            prediction_type=prediction_type,
1669
            text_encoder=text_encoder,
1670
            vae=vae,
1671
            tokenizer=tokenizer,
1lint's avatar
1lint committed
1672
1673
1674
1675
1676
1677
        )

        if torch_dtype is not None:
            pipe.to(torch_dtype=torch_dtype)

        return pipe
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013


class FromOriginalVAEMixin:
    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
        r"""
        Instantiate a [`AutoencoderKL`] from pretrained controlnet weights saved in the original `.ckpt` or
        `.safetensors` format. The pipeline is format. The pipeline is set in evaluation mode (`model.eval()`) by
        default.

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to True, the model
                won't be downloaded from the Hub.
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            image_size (`int`, *optional*, defaults to 512):
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            upcast_attention (`bool`, *optional*, defaults to `None`):
                Whether the attention computation should always be upcasted.
            scaling_factor (`float`, *optional*, defaults to 0.18215):
                The component-wise standard deviation of the trained latent space computed using the first batch of the
                training set. This is used to scale the latent space to have unit variance when training the diffusion
                model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
                diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z
                = 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution
                Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.

        <Tip warning={true}>

            Make sure to pass both `image_size` and `scaling_factor` to `from_single_file()` if you want to load
            a VAE that does accompany a stable diffusion model of v2 or higher or SDXL.

        </Tip>

        Examples:

        ```py
        from diffusers import AutoencoderKL

        url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"  # can also be local file
        model = AutoencoderKL.from_single_file(url)
        ```
        """
        if not is_omegaconf_available():
            raise ValueError(BACKENDS_MAPPING["omegaconf"][1])

        from omegaconf import OmegaConf

        from .models import AutoencoderKL

        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import (
            convert_ldm_vae_checkpoint,
            create_vae_diffusers_config,
        )

        config_file = kwargs.pop("config_file", None)
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        image_size = kwargs.pop("image_size", None)
        scaling_factor = kwargs.pop("scaling_factor", None)
        kwargs.pop("upcast_attention", None)

        torch_dtype = kwargs.pop("torch_dtype", None)

        use_safetensors = kwargs.pop("use_safetensors", None if is_safetensors_available() else False)

        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

        if from_safetensors and use_safetensors is False:
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # remove huggingface url
        for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
            # get repo_id and (potentially nested) file path of ckpt in repo
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        if from_safetensors:
            from safetensors import safe_open

            checkpoint = {}
            with safe_open(pretrained_model_link_or_path, framework="pt", device="cpu") as f:
                for key in f.keys():
                    checkpoint[key] = f.get_tensor(key)
        else:
            checkpoint = torch.load(pretrained_model_link_or_path, map_location="cpu")

        if "state_dict" in checkpoint:
            checkpoint = checkpoint["state_dict"]

        if config_file is None:
            config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
            config_file = BytesIO(requests.get(config_url).content)

        original_config = OmegaConf.load(config_file)

        # default to sd-v1-5
        image_size = image_size or 512

        vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
        converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)

        if scaling_factor is None:
            if (
                "model" in original_config
                and "params" in original_config.model
                and "scale_factor" in original_config.model.params
            ):
                vae_scaling_factor = original_config.model.params.scale_factor
            else:
                vae_scaling_factor = 0.18215  # default SD scaling factor

        vae_config["scaling_factor"] = vae_scaling_factor

        ctx = init_empty_weights if is_accelerate_available() else nullcontext
        with ctx():
            vae = AutoencoderKL(**vae_config)

        if is_accelerate_available():
            for param_name, param in converted_vae_checkpoint.items():
                set_module_tensor_to_device(vae, param_name, "cpu", value=param)
        else:
            vae.load_state_dict(converted_vae_checkpoint)

        if torch_dtype is not None:
            vae.to(torch_dtype=torch_dtype)

        return vae


class FromOriginalControlnetMixin:
    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
        r"""
        Instantiate a [`ControlNetModel`] from pretrained controlnet weights saved in the original `.ckpt` or
        `.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to True, the model
                won't be downloaded from the Hub.
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            image_size (`int`, *optional*, defaults to 512):
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
            upcast_attention (`bool`, *optional*, defaults to `None`):
                Whether the attention computation should always be upcasted.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.

        Examples:

        ```py
        from diffusers import StableDiffusionControlnetPipeline, ControlNetModel

        url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth"  # can also be a local path
        model = ControlNetModel.from_single_file(url)

        url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors"  # can also be a local path
        pipe = StableDiffusionControlnetPipeline.from_single_file(url, controlnet=controlnet)
        ```
        """
        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt

        config_file = kwargs.pop("config_file", None)
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        num_in_channels = kwargs.pop("num_in_channels", None)
        use_linear_projection = kwargs.pop("use_linear_projection", None)
        revision = kwargs.pop("revision", None)
        extract_ema = kwargs.pop("extract_ema", False)
        image_size = kwargs.pop("image_size", None)
        upcast_attention = kwargs.pop("upcast_attention", None)

        torch_dtype = kwargs.pop("torch_dtype", None)

        use_safetensors = kwargs.pop("use_safetensors", None if is_safetensors_available() else False)

        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

        if from_safetensors and use_safetensors is False:
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # remove huggingface url
        for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
            # get repo_id and (potentially nested) file path of ckpt in repo
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        if config_file is None:
            config_url = "https://raw.githubusercontent.com/lllyasviel/ControlNet/main/models/cldm_v15.yaml"
            config_file = BytesIO(requests.get(config_url).content)

        image_size = image_size or 512

        controlnet = download_controlnet_from_original_ckpt(
            pretrained_model_link_or_path,
            original_config_file=config_file,
            image_size=image_size,
            extract_ema=extract_ema,
            num_in_channels=num_in_channels,
            upcast_attention=upcast_attention,
            from_safetensors=from_safetensors,
            use_linear_projection=use_linear_projection,
        )

        if torch_dtype is not None:
            controlnet.to(torch_dtype=torch_dtype)

        return controlnet