"tests/python/vscode:/vscode.git/clone" did not exist on "95d62394830a8e99ba4c39eae82e5d512485f80d"
loaders.py 73 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
15
import warnings
16
from collections import defaultdict
1lint's avatar
1lint committed
17
from pathlib import Path
18
from typing import Callable, Dict, List, Optional, Union
19
20

import torch
21
import torch.nn.functional as F
1lint's avatar
1lint committed
22
from huggingface_hub import hf_hub_download
23

24
from .models.attention_processor import (
Will Berman's avatar
Will Berman committed
25
26
    AttnAddedKVProcessor,
    AttnAddedKVProcessor2_0,
27
28
    CustomDiffusionAttnProcessor,
    CustomDiffusionXFormersAttnProcessor,
Will Berman's avatar
Will Berman committed
29
    LoRAAttnAddedKVProcessor,
30
    LoRAAttnProcessor,
31
    LoRAAttnProcessor2_0,
32
    LoRAXFormersAttnProcessor,
Will Berman's avatar
Will Berman committed
33
    SlicedAttnAddedKVProcessor,
34
    XFormersAttnProcessor,
35
)
36
37
38
from .utils import (
    DIFFUSERS_CACHE,
    HF_HUB_OFFLINE,
39
    TEXT_ENCODER_ATTN_MODULE,
40
41
42
43
44
45
    _get_model_file,
    deprecate,
    is_safetensors_available,
    is_transformers_available,
    logging,
)
46
47
48
49


if is_safetensors_available():
    import safetensors
50

51
52
53
if is_transformers_available():
    from transformers import PreTrainedModel, PreTrainedTokenizer

54
55
56

logger = logging.get_logger(__name__)

57
58
TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"
59
60

LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
61
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
62

63
64
65
TEXT_INVERSION_NAME = "learned_embeds.bin"
TEXT_INVERSION_NAME_SAFE = "learned_embeds.safetensors"

66
67
68
CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin"
CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors"

69
70
71
72
73

class AttnProcsLayers(torch.nn.Module):
    def __init__(self, state_dict: Dict[str, torch.Tensor]):
        super().__init__()
        self.layers = torch.nn.ModuleList(state_dict.values())
74
        self.mapping = dict(enumerate(state_dict.keys()))
75
76
        self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}

77
78
        # .processor for unet, .self_attn for text encoder
        self.split_keys = [".processor", ".self_attn"]
79

80
81
82
83
84
85
86
87
88
89
90
        # we add a hook to state_dict() and load_state_dict() so that the
        # naming fits with `unet.attn_processors`
        def map_to(module, state_dict, *args, **kwargs):
            new_state_dict = {}
            for key, value in state_dict.items():
                num = int(key.split(".")[1])  # 0 is always "layers"
                new_key = key.replace(f"layers.{num}", module.mapping[num])
                new_state_dict[new_key] = value

            return new_state_dict

91
92
93
94
95
96
97
98
99
        def remap_key(key, state_dict):
            for k in self.split_keys:
                if k in key:
                    return key.split(k)[0] + k

            raise ValueError(
                f"There seems to be a problem with the state_dict: {set(state_dict.keys())}. {key} has to have one of {self.split_keys}."
            )

100
101
102
        def map_from(module, state_dict, *args, **kwargs):
            all_keys = list(state_dict.keys())
            for key in all_keys:
103
                replace_key = remap_key(key, state_dict)
104
105
106
107
108
109
110
111
112
                new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
                state_dict[new_key] = state_dict[key]
                del state_dict[key]

        self._register_state_dict_hook(map_to)
        self._register_load_state_dict_pre_hook(map_from, with_module=True)


class UNet2DConditionLoadersMixin:
113
114
115
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME

116
117
    def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
        r"""
Steven Liu's avatar
Steven Liu committed
118
        Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be
119
        defined in
120
        [`cross_attention.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py)
121
122
123
124
125
126
        and be a `torch.nn.Module` class.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

Steven Liu's avatar
Steven Liu committed
127
128
129
130
                    - A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a directory (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
131
132
133
134
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
135
136
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
137
138
139
140
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
141
142
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
143
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
144
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
145
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
146
147
148
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
149
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
150
151
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
152
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
153
154
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
155
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
156
                The subfolder location of a model file within a larger model repository on the Hub or locally.
157
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
158
159
160
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
161
162
163
164
165
166
167
168
169
170
171

        """

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
172
        weight_name = kwargs.pop("weight_name", None)
173
        use_safetensors = kwargs.pop("use_safetensors", None)
174
175
176
        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
        network_alpha = kwargs.pop("network_alpha", None)
177
178
179
180
181
182
183
184
185
186

        if use_safetensors and not is_safetensors_available():
            raise ValueError(
                "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetenstors"
            )

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = is_safetensors_available()
            allow_pickle = True
187
188
189
190
191
192

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

193
        model_file = None
194
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
195
            # Let's first try to load .safetensors weights
196
            if (use_safetensors and weight_name is None) or (
197
198
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
199
200
201
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
202
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
203
204
205
206
207
208
209
210
211
212
213
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
214
215
216
                except IOError as e:
                    if not allow_pickle:
                        raise e
217
218
                    # try loading non-safetensors weights
                    pass
219
220
221
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
222
                    weights_name=weight_name or LORA_WEIGHT_NAME,
223
224
225
226
227
228
229
230
231
232
233
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
234
235
236
237
238
239
240
        else:
            state_dict = pretrained_model_name_or_path_or_dict

        # fill attn processors
        attn_processors = {}

        is_lora = all("lora" in k for k in state_dict.keys())
241
        is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())
242
243

        if is_lora:
244
245
246
247
248
249
250
251
252
253
254
255
            is_new_lora_format = all(
                key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys()
            )
            if is_new_lora_format:
                # Strip the `"unet"` prefix.
                is_text_encoder_present = any(key.startswith(self.text_encoder_name) for key in state_dict.keys())
                if is_text_encoder_present:
                    warn_message = "The state_dict contains LoRA params corresponding to the text encoder which are not being used here. To use both UNet and text encoder related LoRA params, use [`pipe.load_lora_weights()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights)."
                    warnings.warn(warn_message)
                unet_keys = [k for k in state_dict.keys() if k.startswith(self.unet_name)]
                state_dict = {k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}

256
257
258
259
260
261
262
263
264
            lora_grouped_dict = defaultdict(dict)
            for key, value in state_dict.items():
                attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                lora_grouped_dict[attn_processor_key][sub_key] = value

            for key, value_dict in lora_grouped_dict.items():
                rank = value_dict["to_k_lora.down.weight"].shape[0]
                hidden_size = value_dict["to_k_lora.up.weight"].shape[0]

Will Berman's avatar
Will Berman committed
265
266
267
268
269
270
271
272
273
274
275
                attn_processor = self
                for sub_key in key.split("."):
                    attn_processor = getattr(attn_processor, sub_key)

                if isinstance(
                    attn_processor, (AttnAddedKVProcessor, SlicedAttnAddedKVProcessor, AttnAddedKVProcessor2_0)
                ):
                    cross_attention_dim = value_dict["add_k_proj_lora.down.weight"].shape[1]
                    attn_processor_class = LoRAAttnAddedKVProcessor
                else:
                    cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[1]
276
277
278
                    if isinstance(attn_processor, (XFormersAttnProcessor, LoRAXFormersAttnProcessor)):
                        attn_processor_class = LoRAXFormersAttnProcessor
                    else:
279
280
281
                        attn_processor_class = (
                            LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
                        )
Will Berman's avatar
Will Berman committed
282
283

                attn_processors[key] = attn_processor_class(
284
285
286
287
                    hidden_size=hidden_size,
                    cross_attention_dim=cross_attention_dim,
                    rank=rank,
                    network_alpha=network_alpha,
288
289
                )
                attn_processors[key].load_state_dict(value_dict)
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        elif is_custom_diffusion:
            custom_diffusion_grouped_dict = defaultdict(dict)
            for key, value in state_dict.items():
                if len(value) == 0:
                    custom_diffusion_grouped_dict[key] = {}
                else:
                    if "to_out" in key:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                    else:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
                    custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value

            for key, value_dict in custom_diffusion_grouped_dict.items():
                if len(value_dict) == 0:
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
                    )
                else:
                    cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
                    hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
                    train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=True,
                        train_q_out=train_q_out,
                        hidden_size=hidden_size,
                        cross_attention_dim=cross_attention_dim,
                    )
                    attn_processors[key].load_state_dict(value_dict)
318
        else:
319
320
321
            raise ValueError(
                f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training."
            )
322
323
324
325
326
327
328
329
330
331
332

        # set correct dtype & device
        attn_processors = {k: v.to(device=self.device, dtype=self.dtype) for k, v in attn_processors.items()}

        # set layers
        self.set_attn_processor(attn_processors)

    def save_attn_procs(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
333
        weight_name: str = None,
334
        save_function: Callable = None,
335
        safe_serialization: bool = False,
336
        **kwargs,
337
338
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
339
        Save an attention processor to a directory so that it can be reloaded using the
340
        [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method.
341
342
343

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
344
                Directory to save an attention processor to. Will be created if it doesn't exist.
345
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
346
347
348
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
349
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
350
351
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
352
                `DIFFUSERS_SAVE_MODE`.
Steven Liu's avatar
Steven Liu committed
353

354
        """
355
356
        weight_name = weight_name or deprecate(
            "weights_name",
357
            "0.20.0",
358
359
360
            "`weights_name` is deprecated, please use `weight_name` instead.",
            take_from=kwargs,
        )
361
362
363
364
365
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
366
367
368
369
370
371
372
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save
373
374
375

        os.makedirs(save_directory, exist_ok=True)

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
        is_custom_diffusion = any(
            isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor))
            for (_, x) in self.attn_processors.items()
        )
        if is_custom_diffusion:
            model_to_save = AttnProcsLayers(
                {
                    y: x
                    for (y, x) in self.attn_processors.items()
                    if isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor))
                }
            )
            state_dict = model_to_save.state_dict()
            for name, attn in self.attn_processors.items():
                if len(attn.state_dict()) == 0:
                    state_dict[name] = {}
        else:
            model_to_save = AttnProcsLayers(self.attn_processors)
            state_dict = model_to_save.state_dict()
395

396
        if weight_name is None:
397
            if safe_serialization:
398
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE
399
            else:
400
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME
401

402
        # Save the model
403
404
        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
405
406
407
408


class TextualInversionLoaderMixin:
    r"""
Steven Liu's avatar
Steven Liu committed
409
    Load textual inversion tokens and embeddings to the tokenizer and text encoder.
410
411
    """

412
    def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"):
413
        r"""
Steven Liu's avatar
Steven Liu committed
414
415
416
        Processes prompts that include a special token corresponding to a multi-vector textual inversion embedding to
        be replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or if the textual inversion token is a single vector, the input prompt is returned.
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

        Parameters:
            prompt (`str` or list of `str`):
                The prompt or prompts to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str` or list of `str`: The converted prompt
        """
        if not isinstance(prompt, List):
            prompts = [prompt]
        else:
            prompts = prompt

        prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts]

        if not isinstance(prompt, List):
            return prompts[0]

        return prompts

439
    def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"):
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
        r"""
        Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds
        to a multi-vector textual inversion embedding, this function will process the prompt so that the special token
        is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or a textual inversion token that is a single vector, the input prompt is simply returned.

        Parameters:
            prompt (`str`):
                The prompt to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str`: The converted prompt
        """
        tokens = tokenizer.tokenize(prompt)
456
457
        unique_tokens = set(tokens)
        for token in unique_tokens:
458
459
460
461
            if token in tokenizer.added_tokens_encoder:
                replacement = token
                i = 1
                while f"{token}_{i}" in tokenizer.added_tokens_encoder:
462
                    replacement += f" {token}_{i}"
463
464
465
466
467
468
469
                    i += 1

                prompt = prompt.replace(token, replacement)

        return prompt

    def load_textual_inversion(
470
        self,
471
        pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]],
472
473
        token: Optional[Union[str, List[str]]] = None,
        **kwargs,
474
475
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
476
477
        Load textual inversion embeddings into the text encoder of [`StableDiffusionPipeline`] (both 🤗 Diffusers and
        Automatic1111 formats are supported).
478
479

        Parameters:
480
            pretrained_model_name_or_path (`str` or `os.PathLike` or `List[str or os.PathLike]` or `Dict` or `List[Dict]`):
Steven Liu's avatar
Steven Liu committed
481
                Can be either one of the following or a list of them:
482

Steven Liu's avatar
Steven Liu committed
483
484
485
486
487
                    - A string, the *model id* (for example `sd-concepts-library/low-poly-hd-logos-icons`) of a
                      pretrained model hosted on the Hub.
                    - A path to a *directory* (for example `./my_text_inversion_directory/`) containing the textual
                      inversion weights.
                    - A path to a *file* (for example `./my_text_inversions.pt`) containing textual inversion weights.
488
489
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
490
491
492
493

            token (`str` or `List[str]`, *optional*):
                Override the token to use for the textual inversion weights. If `pretrained_model_name_or_path` is a
                list, then `token` must also be a list of equal length.
494
            weight_name (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
495
                Name of a custom weight file. This should be used when:
496

Steven Liu's avatar
Steven Liu committed
497
498
499
                    - The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight
                      name such as `text_inv.bin`.
                    - The saved textual inversion file is in the Automatic1111 format.
500
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
501
502
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
503
504
505
506
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
507
508
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
509
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
510
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
511
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
512
513
514
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
515
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
516
517
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
518
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
519
520
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
521
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
522
                The subfolder location of a model file within a larger model repository on the Hub or locally.
523
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
524
525
526
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
527
528
529

        Example:

Steven Liu's avatar
Steven Liu committed
530
        To load a textual inversion embedding vector in 🤗 Diffusers format:
1lint's avatar
1lint committed
531

532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

        pipe.load_textual_inversion("sd-concepts-library/cat-toy")

        prompt = "A <cat-toy> backpack"

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("cat-backpack.png")
        ```

Steven Liu's avatar
Steven Liu committed
547
548
549
        To load a textual inversion embedding vector in Automatic1111 format, make sure to download the vector first
        (for example from [civitAI](https://civitai.com/models/3036?modelVersionId=9857)) and then load the vector
        locally:
550
551
552
553
554
555
556
557

        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

558
        pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
559
560
561
562
563
564

        prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("character.png")
        ```
1lint's avatar
1lint committed
565

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
        """
        if not hasattr(self, "tokenizer") or not isinstance(self.tokenizer, PreTrainedTokenizer):
            raise ValueError(
                f"{self.__class__.__name__} requires `self.tokenizer` of type `PreTrainedTokenizer` for calling"
                f" `{self.load_textual_inversion.__name__}`"
            )

        if not hasattr(self, "text_encoder") or not isinstance(self.text_encoder, PreTrainedModel):
            raise ValueError(
                f"{self.__class__.__name__} requires `self.text_encoder` of type `PreTrainedModel` for calling"
                f" `{self.load_textual_inversion.__name__}`"
            )

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)

        if use_safetensors and not is_safetensors_available():
            raise ValueError(
                "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetenstors"
            )

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = is_safetensors_available()
            allow_pickle = True

        user_agent = {
            "file_type": "text_inversion",
            "framework": "pytorch",
        }

605
        if not isinstance(pretrained_model_name_or_path, list):
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
            pretrained_model_name_or_paths = [pretrained_model_name_or_path]
        else:
            pretrained_model_name_or_paths = pretrained_model_name_or_path

        if isinstance(token, str):
            tokens = [token]
        elif token is None:
            tokens = [None] * len(pretrained_model_name_or_paths)
        else:
            tokens = token

        if len(pretrained_model_name_or_paths) != len(tokens):
            raise ValueError(
                f"You have passed a list of models of length {len(pretrained_model_name_or_paths)}, and list of tokens of length {len(tokens)}"
                f"Make sure both lists have the same length."
            )

        valid_tokens = [t for t in tokens if t is not None]
        if len(set(valid_tokens)) < len(valid_tokens):
            raise ValueError(f"You have passed a list of tokens that contains duplicates: {tokens}")

        token_ids_and_embeddings = []

        for pretrained_model_name_or_path, token in zip(pretrained_model_name_or_paths, tokens):
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
            if not isinstance(pretrained_model_name_or_path, dict):
                # 1. Load textual inversion file
                model_file = None
                # Let's first try to load .safetensors weights
                if (use_safetensors and weight_name is None) or (
                    weight_name is not None and weight_name.endswith(".safetensors")
                ):
                    try:
                        model_file = _get_model_file(
                            pretrained_model_name_or_path,
                            weights_name=weight_name or TEXT_INVERSION_NAME_SAFE,
                            cache_dir=cache_dir,
                            force_download=force_download,
                            resume_download=resume_download,
                            proxies=proxies,
                            local_files_only=local_files_only,
                            use_auth_token=use_auth_token,
                            revision=revision,
                            subfolder=subfolder,
                            user_agent=user_agent,
                        )
                        state_dict = safetensors.torch.load_file(model_file, device="cpu")
                    except Exception as e:
                        if not allow_pickle:
                            raise e

                        model_file = None

                if model_file is None:
659
660
                    model_file = _get_model_file(
                        pretrained_model_name_or_path,
661
                        weights_name=weight_name or TEXT_INVERSION_NAME,
662
663
664
665
666
667
668
669
670
671
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
672
673
674
                    state_dict = torch.load(model_file, map_location="cpu")
            else:
                state_dict = pretrained_model_name_or_path
675
676

            # 2. Load token and embedding correcly from file
677
            loaded_token = None
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
            if isinstance(state_dict, torch.Tensor):
                if token is None:
                    raise ValueError(
                        "You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`."
                    )
                embedding = state_dict
            elif len(state_dict) == 1:
                # diffusers
                loaded_token, embedding = next(iter(state_dict.items()))
            elif "string_to_param" in state_dict:
                # A1111
                loaded_token = state_dict["name"]
                embedding = state_dict["string_to_param"]["*"]

            if token is not None and loaded_token != token:
                logger.info(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.")
            else:
                token = loaded_token

            embedding = embedding.to(dtype=self.text_encoder.dtype, device=self.text_encoder.device)
698

699
700
701
            # 3. Make sure we don't mess up the tokenizer or text encoder
            vocab = self.tokenizer.get_vocab()
            if token in vocab:
702
                raise ValueError(
703
                    f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder."
704
                )
705
706
707
708
709
710
            elif f"{token}_1" in vocab:
                multi_vector_tokens = [token]
                i = 1
                while f"{token}_{i}" in self.tokenizer.added_tokens_encoder:
                    multi_vector_tokens.append(f"{token}_{i}")
                    i += 1
711

712
713
714
                raise ValueError(
                    f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder."
                )
715

716
            is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1
717

718
719
720
721
722
723
            if is_multi_vector:
                tokens = [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])]
                embeddings = [e for e in embedding]  # noqa: C416
            else:
                tokens = [token]
                embeddings = [embedding[0]] if len(embedding.shape) > 1 else [embedding]
724

725
726
727
728
            # add tokens and get ids
            self.tokenizer.add_tokens(tokens)
            token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
            token_ids_and_embeddings += zip(token_ids, embeddings)
729

730
            logger.info(f"Loaded textual inversion embedding for {token}.")
731

732
        # resize token embeddings and set all new embeddings
733
        self.text_encoder.resize_token_embeddings(len(self.tokenizer))
734
        for token_id, embedding in token_ids_and_embeddings:
735
736
            self.text_encoder.get_input_embeddings().weight.data[token_id] = embedding

737
738
739

class LoraLoaderMixin:
    r"""
Steven Liu's avatar
Steven Liu committed
740
741
    Load LoRA layers into [`UNet2DConditionModel`] and
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
742
    """
743
744
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME
745
746
747

    def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
        r"""
Steven Liu's avatar
Steven Liu committed
748
749
        Load pretrained LoRA attention processor layers into [`UNet2DConditionModel`] and
        [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
750
751
752
753
754

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

Steven Liu's avatar
Steven Liu committed
755
756
757
758
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
759
760
761
762
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
763
764
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
765
766
767
768
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
769
770
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
771
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
772
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
773
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
774
775
776
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
777
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
778
779
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
780
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
781
782
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
783
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
784
                The subfolder location of a model file within a larger model repository on the Hub or locally.
785
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
786
787
788
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803

        """
        # Load the main state dict first which has the LoRA layers for either of
        # UNet and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)

804
805
806
        # set lora scale to a reasonable default
        self._lora_scale = 1.0

807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
        if use_safetensors and not is_safetensors_available():
            raise ValueError(
                "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetenstors"
            )

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = is_safetensors_available()
            allow_pickle = True

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

        model_file = None
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
            # Let's first try to load .safetensors weights
            if (use_safetensors and weight_name is None) or (
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
                except IOError as e:
                    if not allow_pickle:
                        raise e
                    # try loading non-safetensors weights
                    pass
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
                    weights_name=weight_name or LORA_WEIGHT_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
        else:
            state_dict = pretrained_model_name_or_path_or_dict

866
867
868
869
870
        # Convert kohya-ss Style LoRA attn procs to diffusers attn procs
        network_alpha = None
        if all((k.startswith("lora_te_") or k.startswith("lora_unet_")) for k in state_dict.keys()):
            state_dict, network_alpha = self._convert_kohya_lora_to_diffusers(state_dict)

871
872
873
874
        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
        # their prefixes.
        keys = list(state_dict.keys())
875
876
877
        if all(key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in keys):
            # Load the layers corresponding to UNet.
            unet_keys = [k for k in keys if k.startswith(self.unet_name)]
878
            logger.info(f"Loading {self.unet_name}.")
879
880
881
            unet_lora_state_dict = {
                k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys
            }
882
            self.unet.load_attn_procs(unet_lora_state_dict, network_alpha=network_alpha)
883

884
885
            # Load the layers corresponding to text encoder and make necessary adjustments.
            text_encoder_keys = [k for k in keys if k.startswith(self.text_encoder_name)]
886
            text_encoder_lora_state_dict = {
887
                k.replace(f"{self.text_encoder_name}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys
888
            }
889
            if len(text_encoder_lora_state_dict) > 0:
890
                logger.info(f"Loading {self.text_encoder_name}.")
891
892
893
                attn_procs_text_encoder = self._load_text_encoder_attn_procs(
                    text_encoder_lora_state_dict, network_alpha=network_alpha
                )
894
                self._modify_text_encoder(attn_procs_text_encoder)
895

896
897
898
                # save lora attn procs of text encoder so that it can be easily retrieved
                self._text_encoder_lora_attn_procs = attn_procs_text_encoder

899
900
901
902
903
904
        # Otherwise, we're dealing with the old format. This means the `state_dict` should only
        # contain the module names of the `unet` as its keys WITHOUT any prefix.
        elif not all(
            key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys()
        ):
            self.unet.load_attn_procs(state_dict)
905
906
            warn_message = "You have saved the LoRA weights using the old format. To convert the old LoRA weights to the new format, you can first load them in a dictionary and then create a new dictionary like the following: `new_state_dict = {f'unet'.{module_name}: params for module_name, params in old_state_dict.items()}`."
            warnings.warn(warn_message)
907

908
909
910
911
912
913
    @property
    def lora_scale(self) -> float:
        # property function that returns the lora scale which can be set at run time by the pipeline.
        # if _lora_scale has not been set, return 1
        return self._lora_scale if hasattr(self, "_lora_scale") else 1.0

914
915
916
917
918
919
    @property
    def text_encoder_lora_attn_procs(self):
        if hasattr(self, "_text_encoder_lora_attn_procs"):
            return self._text_encoder_lora_attn_procs
        return

920
921
922
923
924
925
926
927
928
929
930
931
932
    def _remove_text_encoder_monkey_patch(self):
        # Loop over the CLIPAttention module of text_encoder
        for name, attn_module in self.text_encoder.named_modules():
            if name.endswith(TEXT_ENCODER_ATTN_MODULE):
                # Loop over the LoRA layers
                for _, text_encoder_attr in self._lora_attn_processor_attr_to_text_encoder_attr.items():
                    # Retrieve the q/k/v/out projection of CLIPAttention
                    module = attn_module.get_submodule(text_encoder_attr)
                    if hasattr(module, "old_forward"):
                        # restore original `forward` to remove monkey-patch
                        module.forward = module.old_forward
                        delattr(module, "old_forward")

933
934
935
936
937
938
939
940
    def _modify_text_encoder(self, attn_processors: Dict[str, LoRAAttnProcessor]):
        r"""
        Monkey-patches the forward passes of attention modules of the text encoder.

        Parameters:
            attn_processors: Dict[str, `LoRAAttnProcessor`]:
                A dictionary mapping the module names and their corresponding [`~LoRAAttnProcessor`].
        """
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960

        # First, remove any monkey-patch that might have been applied before
        self._remove_text_encoder_monkey_patch()

        # Loop over the CLIPAttention module of text_encoder
        for name, attn_module in self.text_encoder.named_modules():
            if name.endswith(TEXT_ENCODER_ATTN_MODULE):
                # Loop over the LoRA layers
                for attn_proc_attr, text_encoder_attr in self._lora_attn_processor_attr_to_text_encoder_attr.items():
                    # Retrieve the q/k/v/out projection of CLIPAttention and its corresponding LoRA layer.
                    module = attn_module.get_submodule(text_encoder_attr)
                    lora_layer = attn_processors[name].get_submodule(attn_proc_attr)

                    # save old_forward to module that can be used to remove monkey-patch
                    old_forward = module.old_forward = module.forward

                    # create a new scope that locks in the old_forward, lora_layer value for each new_forward function
                    # for more detail, see https://github.com/huggingface/diffusers/pull/3490#issuecomment-1555059060
                    def make_new_forward(old_forward, lora_layer):
                        def new_forward(x):
961
962
                            result = old_forward(x) + self.lora_scale * lora_layer(x)
                            return result
963
964
965
966
967
968
969
970
971
972
973
974
975
976

                        return new_forward

                    # Monkey-patch.
                    module.forward = make_new_forward(old_forward, lora_layer)

    @property
    def _lora_attn_processor_attr_to_text_encoder_attr(self):
        return {
            "to_q_lora": "q_proj",
            "to_k_lora": "k_proj",
            "to_v_lora": "v_proj",
            "to_out_lora": "out_proj",
        }
977

978
979
980
    def _load_text_encoder_attn_procs(
        self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs
    ):
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
        r"""
        Load pretrained attention processor layers for
        [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).

        <Tip warning={true}>

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids should have an organization name, like `google/ddpm-celebahq-256`.
                    - A path to a *directory* containing model weights saved using [`~ModelMixin.save_config`], e.g.,
                      `./my_model_directory/`.
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
1014
            local_files_only (`bool`, *optional*, defaults to `False`):
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `diffusers-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo (either remote in
                huggingface.co or downloaded locally), you can specify the folder name here.
            mirror (`str`, *optional*):
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.

        Returns:
            `Dict[name, LoRAAttnProcessor]`: Mapping between the module names and their corresponding
            [`LoRAAttnProcessor`].

        <Tip>

        It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated
        models](https://huggingface.co/docs/hub/models-gated#gated-models).

        </Tip>
        """

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
1053
        network_alpha = kwargs.pop("network_alpha", None)
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129

        if use_safetensors and not is_safetensors_available():
            raise ValueError(
                "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetenstors"
            )

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = is_safetensors_available()
            allow_pickle = True

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

        model_file = None
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
            # Let's first try to load .safetensors weights
            if (use_safetensors and weight_name is None) or (
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
                except IOError as e:
                    if not allow_pickle:
                        raise e
                    # try loading non-safetensors weights
                    pass
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
                    weights_name=weight_name or LORA_WEIGHT_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
        else:
            state_dict = pretrained_model_name_or_path_or_dict

        # fill attn processors
        attn_processors = {}

        is_lora = all("lora" in k for k in state_dict.keys())

        if is_lora:
            lora_grouped_dict = defaultdict(dict)
            for key, value in state_dict.items():
                attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                lora_grouped_dict[attn_processor_key][sub_key] = value

            for key, value_dict in lora_grouped_dict.items():
                rank = value_dict["to_k_lora.down.weight"].shape[0]
                cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[1]
                hidden_size = value_dict["to_k_lora.up.weight"].shape[0]

1130
1131
1132
1133
                attn_processor_class = (
                    LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
                )
                attn_processors[key] = attn_processor_class(
1134
1135
1136
1137
                    hidden_size=hidden_size,
                    cross_attention_dim=cross_attention_dim,
                    rank=rank,
                    network_alpha=network_alpha,
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
                )
                attn_processors[key].load_state_dict(value_dict)

        else:
            raise ValueError(f"{model_file} does not seem to be in the correct format expected by LoRA training.")

        # set correct dtype & device
        attn_processors = {
            k: v.to(device=self.device, dtype=self.text_encoder.dtype) for k, v in attn_processors.items()
        }
        return attn_processors

    @classmethod
    def save_lora_weights(
        self,
        save_directory: Union[str, os.PathLike],
1154
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1155
1156
1157
1158
1159
1160
1161
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = False,
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
1162
        Save the LoRA parameters corresponding to the UNet and text encoder.
1163
1164
1165

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
1166
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
1167
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
Steven Liu's avatar
Steven Liu committed
1168
                State dict of the LoRA layers corresponding to the UNet.
1169
            text_encoder_lora_layers (`Dict[str, torch.nn.Module] or `Dict[str, torch.Tensor]`):
Steven Liu's avatar
Steven Liu committed
1170
1171
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes 🤗 Transformers.
1172
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
1173
1174
1175
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
1176
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
1177
1178
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
                `DIFFUSERS_SAVE_MODE`.
        """
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save

        os.makedirs(save_directory, exist_ok=True)

        # Create a flat dictionary.
        state_dict = {}
        if unet_lora_layers is not None:
1199
1200
1201
1202
1203
            weights = (
                unet_lora_layers.state_dict() if isinstance(unet_lora_layers, torch.nn.Module) else unet_lora_layers
            )

            unet_lora_state_dict = {f"{self.unet_name}.{module_name}": param for module_name, param in weights.items()}
1204
            state_dict.update(unet_lora_state_dict)
1205

1206
        if text_encoder_lora_layers is not None:
1207
1208
1209
1210
1211
1212
            weights = (
                text_encoder_lora_layers.state_dict()
                if isinstance(text_encoder_lora_layers, torch.nn.Module)
                else text_encoder_lora_layers
            )

1213
            text_encoder_lora_state_dict = {
1214
                f"{self.text_encoder_name}.{module_name}": param for module_name, param in weights.items()
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
            }
            state_dict.update(text_encoder_lora_state_dict)

        # Save the model
        if weight_name is None:
            if safe_serialization:
                weight_name = LORA_WEIGHT_NAME_SAFE
            else:
                weight_name = LORA_WEIGHT_NAME

        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
1lint's avatar
1lint committed
1227

1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
    def _convert_kohya_lora_to_diffusers(self, state_dict):
        unet_state_dict = {}
        te_state_dict = {}
        network_alpha = None

        for key, value in state_dict.items():
            if "lora_down" in key:
                lora_name = key.split(".")[0]
                lora_name_up = lora_name + ".lora_up.weight"
                lora_name_alpha = lora_name + ".alpha"
                if lora_name_alpha in state_dict:
                    alpha = state_dict[lora_name_alpha].item()
                    if network_alpha is None:
                        network_alpha = alpha
                    elif network_alpha != alpha:
                        raise ValueError("Network alpha is not consistent")

                if lora_name.startswith("lora_unet_"):
                    diffusers_name = key.replace("lora_unet_", "").replace("_", ".")
                    diffusers_name = diffusers_name.replace("down.blocks", "down_blocks")
                    diffusers_name = diffusers_name.replace("mid.block", "mid_block")
                    diffusers_name = diffusers_name.replace("up.blocks", "up_blocks")
                    diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks")
                    diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
                    diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
                    diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
                    diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora")
                    if "transformer_blocks" in diffusers_name:
                        if "attn1" in diffusers_name or "attn2" in diffusers_name:
                            diffusers_name = diffusers_name.replace("attn1", "attn1.processor")
                            diffusers_name = diffusers_name.replace("attn2", "attn2.processor")
                            unet_state_dict[diffusers_name] = value
                            unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict[lora_name_up]
                elif lora_name.startswith("lora_te_"):
                    diffusers_name = key.replace("lora_te_", "").replace("_", ".")
                    diffusers_name = diffusers_name.replace("text.model", "text_model")
                    diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                    diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                    diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                    diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                    diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                    if "self_attn" in diffusers_name:
                        te_state_dict[diffusers_name] = value
                        te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict[lora_name_up]

        unet_state_dict = {f"{UNET_NAME}.{module_name}": params for module_name, params in unet_state_dict.items()}
        te_state_dict = {f"{TEXT_ENCODER_NAME}.{module_name}": params for module_name, params in te_state_dict.items()}
        new_state_dict = {**unet_state_dict, **te_state_dict}
        return new_state_dict, network_alpha

1lint's avatar
1lint committed
1278
1279

class FromCkptMixin:
Steven Liu's avatar
Steven Liu committed
1280
1281
1282
    """
    Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`].
    """
1lint's avatar
1lint committed
1283
1284
1285
1286

    @classmethod
    def from_ckpt(cls, pretrained_model_link_or_path, **kwargs):
        r"""
Steven Liu's avatar
Steven Liu committed
1287
1288
        Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` format. The pipeline
        is set in evaluation mode (`model.eval()`) by default.
1lint's avatar
1lint committed
1289
1290
1291
1292

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
Steven Liu's avatar
Steven Liu committed
1293
1294
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
1lint's avatar
1lint committed
1295
1296
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
1297
1298
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
1lint's avatar
1lint committed
1299
1300
1301
1302
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1303
1304
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
1lint's avatar
1lint committed
1305
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1306
1307
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
1lint's avatar
1lint committed
1308
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1309
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1lint's avatar
1lint committed
1310
1311
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1312
1313
                Whether to only load local model weights and configuration files or not. If set to True, the model
                won't be downloaded from the Hub.
1lint's avatar
1lint committed
1314
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1315
1316
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1lint's avatar
1lint committed
1317
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1318
1319
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
1320
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
1321
1322
1323
1324
1325
1326
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            extract_ema (`bool`, *optional*, defaults to `False`):
                Whether to extract the EMA weights or not. Pass `True` to extract the EMA weights which usually yield
                higher quality images for inference. Non-EMA weights are usually better to continue finetuning.
1lint's avatar
1lint committed
1327
            upcast_attention (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
1328
                Whether the attention computation should always be upcasted.
1lint's avatar
1lint committed
1329
            image_size (`int`, *optional*, defaults to 512):
Steven Liu's avatar
Steven Liu committed
1330
1331
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
1lint's avatar
1lint committed
1332
            prediction_type (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1333
1334
1335
                The prediction type the model was trained on. Use `'epsilon'` for all Stable Diffusion v1 models and
                the Stable Diffusion v2 base model. Use `'v_prediction'` for Stable Diffusion v2.
            num_in_channels (`int`, *optional*, defaults to `None`):
1lint's avatar
1lint committed
1336
                The number of input channels. If `None`, it will be automatically inferred.
Steven Liu's avatar
Steven Liu committed
1337
            scheduler_type (`str`, *optional*, defaults to `"pndm"`):
1lint's avatar
1lint committed
1338
1339
1340
                Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm",
                "ddim"]`.
            load_safety_checker (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
1341
                Whether to load the safety checker or not.
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
            text_encoder (`CLIPTextModel`, *optional*, defaults to `None`):
                An instance of
                [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel) to use,
                specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)
                variant. If this parameter is `None`, the function will load a new instance of [CLIP] by itself, if
                needed.
            tokenizer (`CLIPTokenizer`, *optional*, defaults to `None`):
                An instance of
                [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer)
                to use. If this parameter is `None`, the function will load a new instance of [CLIPTokenizer] by
                itself, if needed.
1lint's avatar
1lint committed
1353
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
1354
1355
1356
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.
1lint's avatar
1lint committed
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396

        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = StableDiffusionPipeline.from_ckpt(
        ...     "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
        ... )

        >>> # Download pipeline from local file
        >>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
        >>> pipeline = StableDiffusionPipeline.from_ckpt("./v1-5-pruned-emaonly")

        >>> # Enable float16 and move to GPU
        >>> pipeline = StableDiffusionPipeline.from_ckpt(
        ...     "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
        ...     torch_dtype=torch.float16,
        ... )
        >>> pipeline.to("cuda")
        ```
        """
        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        extract_ema = kwargs.pop("extract_ema", False)
        image_size = kwargs.pop("image_size", 512)
        scheduler_type = kwargs.pop("scheduler_type", "pndm")
        num_in_channels = kwargs.pop("num_in_channels", None)
        upcast_attention = kwargs.pop("upcast_attention", None)
        load_safety_checker = kwargs.pop("load_safety_checker", True)
        prediction_type = kwargs.pop("prediction_type", None)
1397
1398
        text_encoder = kwargs.pop("text_encoder", None)
        tokenizer = kwargs.pop("tokenizer", None)
1lint's avatar
1lint committed
1399
1400
1401
1402
1403
1404
1405
1406
1407

        torch_dtype = kwargs.pop("torch_dtype", None)

        use_safetensors = kwargs.pop("use_safetensors", None if is_safetensors_available() else False)

        pipeline_name = cls.__name__
        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

1408
        if from_safetensors and use_safetensors is False:
1lint's avatar
1lint committed
1409
1410
1411
1412
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # TODO: For now we only support stable diffusion
        stable_unclip = None
1413
        model_type = None
1lint's avatar
1lint committed
1414
1415
1416
        controlnet = False

        if pipeline_name == "StableDiffusionControlNetPipeline":
1417
            # Model type will be inferred from the checkpoint.
1lint's avatar
1lint committed
1418
1419
            controlnet = True
        elif "StableDiffusion" in pipeline_name:
1420
1421
            # Model type will be inferred from the checkpoint.
            pass
1lint's avatar
1lint committed
1422
        elif pipeline_name == "StableUnCLIPPipeline":
1423
            model_type = "FrozenOpenCLIPEmbedder"
1lint's avatar
1lint committed
1424
1425
            stable_unclip = "txt2img"
        elif pipeline_name == "StableUnCLIPImg2ImgPipeline":
1426
            model_type = "FrozenOpenCLIPEmbedder"
1lint's avatar
1lint committed
1427
1428
            stable_unclip = "img2img"
        elif pipeline_name == "PaintByExamplePipeline":
1429
            model_type = "PaintByExample"
1lint's avatar
1lint committed
1430
        elif pipeline_name == "LDMTextToImagePipeline":
1431
            model_type = "LDMTextToImage"
1lint's avatar
1lint committed
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
        else:
            raise ValueError(f"Unhandled pipeline class: {pipeline_name}")

        # remove huggingface url
        for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
            # get repo_id and (potentially nested) file path of ckpt in repo
1444
1445
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])
1lint's avatar
1lint committed
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        pipe = download_from_original_stable_diffusion_ckpt(
            pretrained_model_link_or_path,
            pipeline_class=cls,
            model_type=model_type,
            stable_unclip=stable_unclip,
            controlnet=controlnet,
            from_safetensors=from_safetensors,
            extract_ema=extract_ema,
            image_size=image_size,
            scheduler_type=scheduler_type,
            num_in_channels=num_in_channels,
            upcast_attention=upcast_attention,
            load_safety_checker=load_safety_checker,
            prediction_type=prediction_type,
1479
1480
            text_encoder=text_encoder,
            tokenizer=tokenizer,
1lint's avatar
1lint committed
1481
1482
1483
1484
1485
1486
        )

        if torch_dtype is not None:
            pipe.to(torch_dtype=torch_dtype)

        return pipe