loaders.py 112 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
15
import re
16
import warnings
17
from collections import defaultdict
18
19
from contextlib import nullcontext
from io import BytesIO
1lint's avatar
1lint committed
20
from pathlib import Path
21
from typing import Callable, Dict, List, Optional, Union
22

23
import requests
24
import torch
25
import torch.nn.functional as F
1lint's avatar
1lint committed
26
from huggingface_hub import hf_hub_download
Will Berman's avatar
Will Berman committed
27
from torch import nn
28

29
30
31
32
33
from .utils import (
    DIFFUSERS_CACHE,
    HF_HUB_OFFLINE,
    _get_model_file,
    deprecate,
34
35
    is_accelerate_available,
    is_omegaconf_available,
36
37
38
39
    is_safetensors_available,
    is_transformers_available,
    logging,
)
40
from .utils.import_utils import BACKENDS_MAPPING
41
42
43
44


if is_safetensors_available():
    import safetensors
45

46
if is_transformers_available():
47
    from transformers import CLIPTextModel, CLIPTextModelWithProjection, PreTrainedModel, PreTrainedTokenizer
48

49
50
51
if is_accelerate_available():
    from accelerate import init_empty_weights
    from accelerate.utils import set_module_tensor_to_device
52
53
54

logger = logging.get_logger(__name__)

55
56
TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"
57
58

LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
59
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
60

61
62
63
TEXT_INVERSION_NAME = "learned_embeds.bin"
TEXT_INVERSION_NAME_SAFE = "learned_embeds.safetensors"

64
65
66
CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin"
CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors"

67

Will Berman's avatar
Will Berman committed
68
69
70
class PatchedLoraProjection(nn.Module):
    def __init__(self, regular_linear_layer, lora_scale=1, network_alpha=None, rank=4, dtype=None):
        super().__init__()
71
        from .models.lora import LoRALinearLayer
72

Will Berman's avatar
Will Berman committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
        self.regular_linear_layer = regular_linear_layer

        device = self.regular_linear_layer.weight.device

        if dtype is None:
            dtype = self.regular_linear_layer.weight.dtype

        self.lora_linear_layer = LoRALinearLayer(
            self.regular_linear_layer.in_features,
            self.regular_linear_layer.out_features,
            network_alpha=network_alpha,
            device=device,
            dtype=dtype,
            rank=rank,
        )

        self.lora_scale = lora_scale

    def forward(self, input):
        return self.regular_linear_layer(input) + self.lora_scale * self.lora_linear_layer(input)


def text_encoder_attn_modules(text_encoder):
    attn_modules = []

98
    if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
Will Berman's avatar
Will Berman committed
99
100
101
102
103
104
105
106
107
108
        for i, layer in enumerate(text_encoder.text_model.encoder.layers):
            name = f"text_model.encoder.layers.{i}.self_attn"
            mod = layer.self_attn
            attn_modules.append((name, mod))
    else:
        raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}")

    return attn_modules


109
110
111
112
113
114
115
116
117
118
119
120
121
122
def text_encoder_mlp_modules(text_encoder):
    mlp_modules = []

    if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
        for i, layer in enumerate(text_encoder.text_model.encoder.layers):
            mlp_mod = layer.mlp
            name = f"text_model.encoder.layers.{i}.mlp"
            mlp_modules.append((name, mlp_mod))
    else:
        raise ValueError(f"do not know how to get mlp modules for: {text_encoder.__class__.__name__}")

    return mlp_modules


Will Berman's avatar
Will Berman committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
def text_encoder_lora_state_dict(text_encoder):
    state_dict = {}

    for name, module in text_encoder_attn_modules(text_encoder):
        for k, v in module.q_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v

        for k, v in module.k_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v

        for k, v in module.v_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v

        for k, v in module.out_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v

    return state_dict


142
143
144
145
class AttnProcsLayers(torch.nn.Module):
    def __init__(self, state_dict: Dict[str, torch.Tensor]):
        super().__init__()
        self.layers = torch.nn.ModuleList(state_dict.values())
146
        self.mapping = dict(enumerate(state_dict.keys()))
147
148
        self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}

149
150
        # .processor for unet, .self_attn for text encoder
        self.split_keys = [".processor", ".self_attn"]
151

152
153
154
155
156
157
158
159
160
161
162
        # we add a hook to state_dict() and load_state_dict() so that the
        # naming fits with `unet.attn_processors`
        def map_to(module, state_dict, *args, **kwargs):
            new_state_dict = {}
            for key, value in state_dict.items():
                num = int(key.split(".")[1])  # 0 is always "layers"
                new_key = key.replace(f"layers.{num}", module.mapping[num])
                new_state_dict[new_key] = value

            return new_state_dict

163
164
165
166
167
168
169
170
171
        def remap_key(key, state_dict):
            for k in self.split_keys:
                if k in key:
                    return key.split(k)[0] + k

            raise ValueError(
                f"There seems to be a problem with the state_dict: {set(state_dict.keys())}. {key} has to have one of {self.split_keys}."
            )

172
173
174
        def map_from(module, state_dict, *args, **kwargs):
            all_keys = list(state_dict.keys())
            for key in all_keys:
175
                replace_key = remap_key(key, state_dict)
176
177
178
179
180
181
182
183
184
                new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
                state_dict[new_key] = state_dict[key]
                del state_dict[key]

        self._register_state_dict_hook(map_to)
        self._register_load_state_dict_pre_hook(map_from, with_module=True)


class UNet2DConditionLoadersMixin:
185
186
187
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME

188
189
    def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
        r"""
Steven Liu's avatar
Steven Liu committed
190
        Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be
191
        defined in
Patrick von Platen's avatar
Patrick von Platen committed
192
        [`attention_processor.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py)
193
194
195
196
197
198
        and be a `torch.nn.Module` class.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

Steven Liu's avatar
Steven Liu committed
199
200
201
202
                    - A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a directory (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
203
204
205
206
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
207
208
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
209
210
211
212
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
213
214
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
215
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
216
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
217
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
218
219
220
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
221
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
222
223
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
224
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
225
226
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
227
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
228
                The subfolder location of a model file within a larger model repository on the Hub or locally.
229
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
230
231
232
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
233
234

        """
235
236
237
238
239
240
241
242
243
244
245
        from .models.attention_processor import (
            AttnAddedKVProcessor,
            AttnAddedKVProcessor2_0,
            CustomDiffusionAttnProcessor,
            LoRAAttnAddedKVProcessor,
            LoRAAttnProcessor,
            LoRAAttnProcessor2_0,
            LoRAXFormersAttnProcessor,
            SlicedAttnAddedKVProcessor,
            XFormersAttnProcessor,
        )
246
        from .models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer
247
248
249
250
251
252
253
254
255

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
256
        weight_name = kwargs.pop("weight_name", None)
257
        use_safetensors = kwargs.pop("use_safetensors", None)
258
259
        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
260
        network_alphas = kwargs.pop("network_alphas", None)
261
262
263

        if use_safetensors and not is_safetensors_available():
            raise ValueError(
264
                "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors"
265
266
267
268
269
270
            )

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = is_safetensors_available()
            allow_pickle = True
271
272
273
274
275
276

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

277
        model_file = None
278
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
279
            # Let's first try to load .safetensors weights
280
            if (use_safetensors and weight_name is None) or (
281
282
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
283
284
285
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
286
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
287
288
289
290
291
292
293
294
295
296
297
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
298
299
300
                except IOError as e:
                    if not allow_pickle:
                        raise e
301
302
                    # try loading non-safetensors weights
                    pass
303
304
305
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
306
                    weights_name=weight_name or LORA_WEIGHT_NAME,
307
308
309
310
311
312
313
314
315
316
317
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
318
319
320
321
322
        else:
            state_dict = pretrained_model_name_or_path_or_dict

        # fill attn processors
        attn_processors = {}
323
        non_attn_lora_layers = []
324

325
        is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys())
326
        is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())
327
328

        if is_lora:
329
330
331
332
333
334
335
336
337
338
339
340
            is_new_lora_format = all(
                key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys()
            )
            if is_new_lora_format:
                # Strip the `"unet"` prefix.
                is_text_encoder_present = any(key.startswith(self.text_encoder_name) for key in state_dict.keys())
                if is_text_encoder_present:
                    warn_message = "The state_dict contains LoRA params corresponding to the text encoder which are not being used here. To use both UNet and text encoder related LoRA params, use [`pipe.load_lora_weights()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights)."
                    warnings.warn(warn_message)
                unet_keys = [k for k in state_dict.keys() if k.startswith(self.unet_name)]
                state_dict = {k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}

341
            lora_grouped_dict = defaultdict(dict)
342
343
344
345
346
            mapped_network_alphas = {}

            all_keys = list(state_dict.keys())
            for key in all_keys:
                value = state_dict.pop(key)
347
348
349
                attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                lora_grouped_dict[attn_processor_key][sub_key] = value

350
351
352
353
354
355
356
357
358
359
360
                # Create another `mapped_network_alphas` dictionary so that we can properly map them.
                if network_alphas is not None:
                    for k in network_alphas:
                        if k.replace(".alpha", "") in key:
                            mapped_network_alphas.update({attn_processor_key: network_alphas[k]})

            if len(state_dict) > 0:
                raise ValueError(
                    f"The state_dict has to be empty at this point but has the following keys \n\n {', '.join(state_dict.keys())}"
                )

361
            for key, value_dict in lora_grouped_dict.items():
Will Berman's avatar
Will Berman committed
362
363
364
365
                attn_processor = self
                for sub_key in key.split("."):
                    attn_processor = getattr(attn_processor, sub_key)

366
367
368
369
370
371
                # Process non-attention layers, which don't have to_{k,v,q,out_proj}_lora layers
                # or add_{k,v,q,out_proj}_proj_lora layers.
                if "lora.down.weight" in value_dict:
                    rank = value_dict["lora.down.weight"].shape[0]

                    if isinstance(attn_processor, LoRACompatibleConv):
372
373
374
375
376
377
378
379
380
381
382
383
384
                        in_features = attn_processor.in_channels
                        out_features = attn_processor.out_channels
                        kernel_size = attn_processor.kernel_size

                        lora = LoRAConv2dLayer(
                            in_features=in_features,
                            out_features=out_features,
                            rank=rank,
                            kernel_size=kernel_size,
                            stride=attn_processor.stride,
                            padding=attn_processor.padding,
                            network_alpha=mapped_network_alphas.get(key),
                        )
385
386
                    elif isinstance(attn_processor, LoRACompatibleLinear):
                        lora = LoRALinearLayer(
387
388
389
390
                            attn_processor.in_features,
                            attn_processor.out_features,
                            rank,
                            mapped_network_alphas.get(key),
391
392
393
394
395
396
397
                        )
                    else:
                        raise ValueError(f"Module {key} is not a LoRACompatibleConv or LoRACompatibleLinear module.")

                    value_dict = {k.replace("lora.", ""): v for k, v in value_dict.items()}
                    lora.load_state_dict(value_dict)
                    non_attn_lora_layers.append((attn_processor, lora))
Will Berman's avatar
Will Berman committed
398
                else:
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
                    # To handle SDXL.
                    rank_mapping = {}
                    hidden_size_mapping = {}
                    for projection_id in ["to_k", "to_q", "to_v", "to_out"]:
                        rank = value_dict[f"{projection_id}_lora.down.weight"].shape[0]
                        hidden_size = value_dict[f"{projection_id}_lora.up.weight"].shape[0]

                        rank_mapping.update({f"{projection_id}_lora.down.weight": rank})
                        hidden_size_mapping.update({f"{projection_id}_lora.up.weight": hidden_size})

                    if isinstance(
                        attn_processor, (AttnAddedKVProcessor, SlicedAttnAddedKVProcessor, AttnAddedKVProcessor2_0)
                    ):
                        cross_attention_dim = value_dict["add_k_proj_lora.down.weight"].shape[1]
                        attn_processor_class = LoRAAttnAddedKVProcessor
                    else:
                        cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[1]
                        if isinstance(attn_processor, (XFormersAttnProcessor, LoRAXFormersAttnProcessor)):
                            attn_processor_class = LoRAXFormersAttnProcessor
                        else:
                            attn_processor_class = (
                                LoRAAttnProcessor2_0
                                if hasattr(F, "scaled_dot_product_attention")
                                else LoRAAttnProcessor
                            )

                    if attn_processor_class is not LoRAAttnAddedKVProcessor:
                        attn_processors[key] = attn_processor_class(
                            rank=rank_mapping.get("to_k_lora.down.weight"),
                            hidden_size=hidden_size_mapping.get("to_k_lora.up.weight"),
                            cross_attention_dim=cross_attention_dim,
                            network_alpha=mapped_network_alphas.get(key),
                            q_rank=rank_mapping.get("to_q_lora.down.weight"),
                            q_hidden_size=hidden_size_mapping.get("to_q_lora.up.weight"),
                            v_rank=rank_mapping.get("to_v_lora.down.weight"),
                            v_hidden_size=hidden_size_mapping.get("to_v_lora.up.weight"),
                            out_rank=rank_mapping.get("to_out_lora.down.weight"),
                            out_hidden_size=hidden_size_mapping.get("to_out_lora.up.weight"),
                            # rank=rank_mapping.get("to_k_lora.down.weight", None),
                            # hidden_size=hidden_size_mapping.get("to_k_lora.up.weight", None),
                            # q_rank=rank_mapping.get("to_q_lora.down.weight", None),
                            # q_hidden_size=hidden_size_mapping.get("to_q_lora.up.weight", None),
                            # v_rank=rank_mapping.get("to_v_lora.down.weight", None),
                            # v_hidden_size=hidden_size_mapping.get("to_v_lora.up.weight", None),
                            # out_rank=rank_mapping.get("to_out_lora.down.weight", None),
                            # out_hidden_size=hidden_size_mapping.get("to_out_lora.up.weight", None),
                        )
446
                    else:
447
448
449
450
451
                        attn_processors[key] = attn_processor_class(
                            rank=rank_mapping.get("to_k_lora.down.weight", None),
                            hidden_size=hidden_size_mapping.get("to_k_lora.up.weight", None),
                            cross_attention_dim=cross_attention_dim,
                            network_alpha=mapped_network_alphas.get(key),
452
                        )
Will Berman's avatar
Will Berman committed
453

454
455
                    attn_processors[key].load_state_dict(value_dict)

456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
        elif is_custom_diffusion:
            custom_diffusion_grouped_dict = defaultdict(dict)
            for key, value in state_dict.items():
                if len(value) == 0:
                    custom_diffusion_grouped_dict[key] = {}
                else:
                    if "to_out" in key:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                    else:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
                    custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value

            for key, value_dict in custom_diffusion_grouped_dict.items():
                if len(value_dict) == 0:
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
                    )
                else:
                    cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
                    hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
                    train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=True,
                        train_q_out=train_q_out,
                        hidden_size=hidden_size,
                        cross_attention_dim=cross_attention_dim,
                    )
                    attn_processors[key].load_state_dict(value_dict)
484
        else:
485
486
487
            raise ValueError(
                f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training."
            )
488
489
490

        # set correct dtype & device
        attn_processors = {k: v.to(device=self.device, dtype=self.dtype) for k, v in attn_processors.items()}
491
        non_attn_lora_layers = [(t, l.to(device=self.device, dtype=self.dtype)) for t, l in non_attn_lora_layers]
492
493
494
495

        # set layers
        self.set_attn_processor(attn_processors)

496
497
        # set ff layers
        for target_module, lora_layer in non_attn_lora_layers:
498
499
500
501
            target_module.set_lora_layer(lora_layer)
            # It should raise an error if we don't have a set lora here
            # if hasattr(target_module, "set_lora_layer"):
            #     target_module.set_lora_layer(lora_layer)
502

503
504
505
506
    def save_attn_procs(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
507
        weight_name: str = None,
508
        save_function: Callable = None,
509
        safe_serialization: bool = False,
510
511
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
512
        Save an attention processor to a directory so that it can be reloaded using the
513
        [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method.
514
515
516

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
517
                Directory to save an attention processor to. Will be created if it doesn't exist.
518
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
519
520
521
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
522
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
523
524
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
525
                `DIFFUSERS_SAVE_MODE`.
Steven Liu's avatar
Steven Liu committed
526

527
        """
528
529
530
531
532
        from .models.attention_processor import (
            CustomDiffusionAttnProcessor,
            CustomDiffusionXFormersAttnProcessor,
        )

533
534
535
536
537
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
538
539
540
541
542
543
544
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save
545
546
547

        os.makedirs(save_directory, exist_ok=True)

548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
        is_custom_diffusion = any(
            isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor))
            for (_, x) in self.attn_processors.items()
        )
        if is_custom_diffusion:
            model_to_save = AttnProcsLayers(
                {
                    y: x
                    for (y, x) in self.attn_processors.items()
                    if isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor))
                }
            )
            state_dict = model_to_save.state_dict()
            for name, attn in self.attn_processors.items():
                if len(attn.state_dict()) == 0:
                    state_dict[name] = {}
        else:
            model_to_save = AttnProcsLayers(self.attn_processors)
            state_dict = model_to_save.state_dict()
567

568
        if weight_name is None:
569
            if safe_serialization:
570
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE
571
            else:
572
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME
573

574
        # Save the model
575
576
        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
577
578
579
580


class TextualInversionLoaderMixin:
    r"""
Steven Liu's avatar
Steven Liu committed
581
    Load textual inversion tokens and embeddings to the tokenizer and text encoder.
582
583
    """

584
    def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"):
585
        r"""
Steven Liu's avatar
Steven Liu committed
586
587
588
        Processes prompts that include a special token corresponding to a multi-vector textual inversion embedding to
        be replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or if the textual inversion token is a single vector, the input prompt is returned.
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

        Parameters:
            prompt (`str` or list of `str`):
                The prompt or prompts to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str` or list of `str`: The converted prompt
        """
        if not isinstance(prompt, List):
            prompts = [prompt]
        else:
            prompts = prompt

        prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts]

        if not isinstance(prompt, List):
            return prompts[0]

        return prompts

611
    def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"):
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
        r"""
        Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds
        to a multi-vector textual inversion embedding, this function will process the prompt so that the special token
        is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or a textual inversion token that is a single vector, the input prompt is simply returned.

        Parameters:
            prompt (`str`):
                The prompt to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str`: The converted prompt
        """
        tokens = tokenizer.tokenize(prompt)
628
629
        unique_tokens = set(tokens)
        for token in unique_tokens:
630
631
632
633
            if token in tokenizer.added_tokens_encoder:
                replacement = token
                i = 1
                while f"{token}_{i}" in tokenizer.added_tokens_encoder:
634
                    replacement += f" {token}_{i}"
635
636
637
638
639
640
641
                    i += 1

                prompt = prompt.replace(token, replacement)

        return prompt

    def load_textual_inversion(
642
        self,
643
        pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]],
644
645
        token: Optional[Union[str, List[str]]] = None,
        **kwargs,
646
647
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
648
649
        Load textual inversion embeddings into the text encoder of [`StableDiffusionPipeline`] (both 🤗 Diffusers and
        Automatic1111 formats are supported).
650
651

        Parameters:
652
            pretrained_model_name_or_path (`str` or `os.PathLike` or `List[str or os.PathLike]` or `Dict` or `List[Dict]`):
Steven Liu's avatar
Steven Liu committed
653
                Can be either one of the following or a list of them:
654

Steven Liu's avatar
Steven Liu committed
655
656
657
658
659
                    - A string, the *model id* (for example `sd-concepts-library/low-poly-hd-logos-icons`) of a
                      pretrained model hosted on the Hub.
                    - A path to a *directory* (for example `./my_text_inversion_directory/`) containing the textual
                      inversion weights.
                    - A path to a *file* (for example `./my_text_inversions.pt`) containing textual inversion weights.
660
661
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
662
663
664
665

            token (`str` or `List[str]`, *optional*):
                Override the token to use for the textual inversion weights. If `pretrained_model_name_or_path` is a
                list, then `token` must also be a list of equal length.
666
            weight_name (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
667
                Name of a custom weight file. This should be used when:
668

Steven Liu's avatar
Steven Liu committed
669
670
671
                    - The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight
                      name such as `text_inv.bin`.
                    - The saved textual inversion file is in the Automatic1111 format.
672
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
673
674
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
675
676
677
678
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
679
680
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
681
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
682
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
683
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
684
685
686
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
687
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
688
689
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
690
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
691
692
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
693
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
694
                The subfolder location of a model file within a larger model repository on the Hub or locally.
695
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
696
697
698
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
699
700
701

        Example:

Steven Liu's avatar
Steven Liu committed
702
        To load a textual inversion embedding vector in 🤗 Diffusers format:
1lint's avatar
1lint committed
703

704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

        pipe.load_textual_inversion("sd-concepts-library/cat-toy")

        prompt = "A <cat-toy> backpack"

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("cat-backpack.png")
        ```

Steven Liu's avatar
Steven Liu committed
719
720
721
        To load a textual inversion embedding vector in Automatic1111 format, make sure to download the vector first
        (for example from [civitAI](https://civitai.com/models/3036?modelVersionId=9857)) and then load the vector
        locally:
722
723
724
725
726
727
728
729

        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

730
        pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
731
732
733
734
735
736

        prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("character.png")
        ```
1lint's avatar
1lint committed
737

738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
        """
        if not hasattr(self, "tokenizer") or not isinstance(self.tokenizer, PreTrainedTokenizer):
            raise ValueError(
                f"{self.__class__.__name__} requires `self.tokenizer` of type `PreTrainedTokenizer` for calling"
                f" `{self.load_textual_inversion.__name__}`"
            )

        if not hasattr(self, "text_encoder") or not isinstance(self.text_encoder, PreTrainedModel):
            raise ValueError(
                f"{self.__class__.__name__} requires `self.text_encoder` of type `PreTrainedModel` for calling"
                f" `{self.load_textual_inversion.__name__}`"
            )

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)

        if use_safetensors and not is_safetensors_available():
            raise ValueError(
764
                "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors"
765
766
767
768
769
770
771
772
773
774
775
776
            )

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = is_safetensors_available()
            allow_pickle = True

        user_agent = {
            "file_type": "text_inversion",
            "framework": "pytorch",
        }

777
        if not isinstance(pretrained_model_name_or_path, list):
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
            pretrained_model_name_or_paths = [pretrained_model_name_or_path]
        else:
            pretrained_model_name_or_paths = pretrained_model_name_or_path

        if isinstance(token, str):
            tokens = [token]
        elif token is None:
            tokens = [None] * len(pretrained_model_name_or_paths)
        else:
            tokens = token

        if len(pretrained_model_name_or_paths) != len(tokens):
            raise ValueError(
                f"You have passed a list of models of length {len(pretrained_model_name_or_paths)}, and list of tokens of length {len(tokens)}"
                f"Make sure both lists have the same length."
            )

        valid_tokens = [t for t in tokens if t is not None]
        if len(set(valid_tokens)) < len(valid_tokens):
            raise ValueError(f"You have passed a list of tokens that contains duplicates: {tokens}")

        token_ids_and_embeddings = []

        for pretrained_model_name_or_path, token in zip(pretrained_model_name_or_paths, tokens):
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
            if not isinstance(pretrained_model_name_or_path, dict):
                # 1. Load textual inversion file
                model_file = None
                # Let's first try to load .safetensors weights
                if (use_safetensors and weight_name is None) or (
                    weight_name is not None and weight_name.endswith(".safetensors")
                ):
                    try:
                        model_file = _get_model_file(
                            pretrained_model_name_or_path,
                            weights_name=weight_name or TEXT_INVERSION_NAME_SAFE,
                            cache_dir=cache_dir,
                            force_download=force_download,
                            resume_download=resume_download,
                            proxies=proxies,
                            local_files_only=local_files_only,
                            use_auth_token=use_auth_token,
                            revision=revision,
                            subfolder=subfolder,
                            user_agent=user_agent,
                        )
                        state_dict = safetensors.torch.load_file(model_file, device="cpu")
                    except Exception as e:
                        if not allow_pickle:
                            raise e

                        model_file = None

                if model_file is None:
831
832
                    model_file = _get_model_file(
                        pretrained_model_name_or_path,
833
                        weights_name=weight_name or TEXT_INVERSION_NAME,
834
835
836
837
838
839
840
841
842
843
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
844
845
846
                    state_dict = torch.load(model_file, map_location="cpu")
            else:
                state_dict = pretrained_model_name_or_path
847
848

            # 2. Load token and embedding correcly from file
849
            loaded_token = None
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
            if isinstance(state_dict, torch.Tensor):
                if token is None:
                    raise ValueError(
                        "You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`."
                    )
                embedding = state_dict
            elif len(state_dict) == 1:
                # diffusers
                loaded_token, embedding = next(iter(state_dict.items()))
            elif "string_to_param" in state_dict:
                # A1111
                loaded_token = state_dict["name"]
                embedding = state_dict["string_to_param"]["*"]

            if token is not None and loaded_token != token:
                logger.info(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.")
            else:
                token = loaded_token

            embedding = embedding.to(dtype=self.text_encoder.dtype, device=self.text_encoder.device)
870

871
872
873
            # 3. Make sure we don't mess up the tokenizer or text encoder
            vocab = self.tokenizer.get_vocab()
            if token in vocab:
874
                raise ValueError(
875
                    f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder."
876
                )
877
878
879
880
881
882
            elif f"{token}_1" in vocab:
                multi_vector_tokens = [token]
                i = 1
                while f"{token}_{i}" in self.tokenizer.added_tokens_encoder:
                    multi_vector_tokens.append(f"{token}_{i}")
                    i += 1
883

884
885
886
                raise ValueError(
                    f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder."
                )
887

888
            is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1
889

890
891
892
893
894
895
            if is_multi_vector:
                tokens = [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])]
                embeddings = [e for e in embedding]  # noqa: C416
            else:
                tokens = [token]
                embeddings = [embedding[0]] if len(embedding.shape) > 1 else [embedding]
896

897
898
899
900
            # add tokens and get ids
            self.tokenizer.add_tokens(tokens)
            token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
            token_ids_and_embeddings += zip(token_ids, embeddings)
901

902
            logger.info(f"Loaded textual inversion embedding for {token}.")
903

904
        # resize token embeddings and set all new embeddings
905
        self.text_encoder.resize_token_embeddings(len(self.tokenizer))
906
        for token_id, embedding in token_ids_and_embeddings:
907
908
            self.text_encoder.get_input_embeddings().weight.data[token_id] = embedding

909
910
911

class LoraLoaderMixin:
    r"""
Steven Liu's avatar
Steven Liu committed
912
913
    Load LoRA layers into [`UNet2DConditionModel`] and
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
914
    """
915
916
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME
917
918

    def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
Will Berman's avatar
Will Berman committed
919
        """
920
921
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
        `self.text_encoder`.
Will Berman's avatar
Will Berman committed
922
923
924
925
926
927
928
929
930
931
932
933
934
935

        All kwargs are forwarded to `self.lora_state_dict`.

        See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.

        See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into
        `self.unet`.

        See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded
        into `self.text_encoder`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
936
            kwargs (`dict`, *optional*):
Will Berman's avatar
Will Berman committed
937
938
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
        """
939
940
        state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
        self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
Will Berman's avatar
Will Berman committed
941
        self.load_lora_into_text_encoder(
942
            state_dict,
943
            network_alphas=network_alphas,
944
945
            text_encoder=self.text_encoder,
            lora_scale=self.lora_scale,
Will Berman's avatar
Will Berman committed
946
947
948
949
950
951
952
953
        )

    @classmethod
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
954
        r"""
955
        Return state dict for lora weights and the network alphas.
Will Berman's avatar
Will Berman committed
956
957
958
959
960
961
962
963

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>
964
965
966
967
968

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

Steven Liu's avatar
Steven Liu committed
969
970
971
972
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
973
974
975
976
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
977
978
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
979
980
981
982
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
983
984
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
985
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
986
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
987
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
988
989
990
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
991
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
992
993
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
994
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
995
996
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
997
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
998
                The subfolder location of a model file within a larger model repository on the Hub or locally.
999
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1000
1001
1002
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015

        """
        # Load the main state dict first which has the LoRA layers for either of
        # UNet and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
1016
        unet_config = kwargs.pop("unet_config", None)
1017
1018
1019
1020
        use_safetensors = kwargs.pop("use_safetensors", None)

        if use_safetensors and not is_safetensors_available():
            raise ValueError(
1021
                "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors"
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
            )

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = is_safetensors_available()
            allow_pickle = True

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

        model_file = None
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
            # Let's first try to load .safetensors weights
            if (use_safetensors and weight_name is None) or (
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
Will Berman's avatar
Will Berman committed
1055
                except (IOError, safetensors.SafetensorError) as e:
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
                    if not allow_pickle:
                        raise e
                    # try loading non-safetensors weights
                    pass
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
                    weights_name=weight_name or LORA_WEIGHT_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
        else:
            state_dict = pretrained_model_name_or_path_or_dict

1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
        network_alphas = None
        if all(
            (
                k.startswith("lora_te_")
                or k.startswith("lora_unet_")
                or k.startswith("lora_te1_")
                or k.startswith("lora_te2_")
            )
            for k in state_dict.keys()
        ):
            # Map SDXL blocks correctly.
            if unet_config is not None:
                # use unet config to remap block numbers
                state_dict = cls._map_sgm_blocks_to_diffusers(state_dict, unet_config)
            state_dict, network_alphas = cls._convert_kohya_lora_to_diffusers(state_dict)
Will Berman's avatar
Will Berman committed
1093

1094
        return state_dict, network_alphas
Will Berman's avatar
Will Berman committed
1095
1096

    @classmethod
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
    def _map_sgm_blocks_to_diffusers(cls, state_dict, unet_config, delimiter="_", block_slice_pos=5):
        is_all_unet = all(k.startswith("lora_unet") for k in state_dict)
        new_state_dict = {}
        inner_block_map = ["resnets", "attentions", "upsamplers"]

        # Retrieves # of down, mid and up blocks
        input_block_ids, middle_block_ids, output_block_ids = set(), set(), set()
        for layer in state_dict:
            if "text" not in layer:
                layer_id = int(layer.split(delimiter)[:block_slice_pos][-1])
                if "input_blocks" in layer:
                    input_block_ids.add(layer_id)
                elif "middle_block" in layer:
                    middle_block_ids.add(layer_id)
                elif "output_blocks" in layer:
                    output_block_ids.add(layer_id)
                else:
                    raise ValueError("Checkpoint not supported")

        input_blocks = {
            layer_id: [key for key in state_dict if f"input_blocks{delimiter}{layer_id}" in key]
            for layer_id in input_block_ids
        }
        middle_blocks = {
            layer_id: [key for key in state_dict if f"middle_block{delimiter}{layer_id}" in key]
            for layer_id in middle_block_ids
        }
        output_blocks = {
            layer_id: [key for key in state_dict if f"output_blocks{delimiter}{layer_id}" in key]
            for layer_id in output_block_ids
        }

        # Rename keys accordingly
        for i in input_block_ids:
            block_id = (i - 1) // (unet_config.layers_per_block + 1)
            layer_in_block_id = (i - 1) % (unet_config.layers_per_block + 1)

            for key in input_blocks[i]:
                inner_block_id = int(key.split(delimiter)[block_slice_pos])
                inner_block_key = inner_block_map[inner_block_id] if "op" not in key else "downsamplers"
                inner_layers_in_block = str(layer_in_block_id) if "op" not in key else "0"
                new_key = delimiter.join(
                    key.split(delimiter)[: block_slice_pos - 1]
                    + [str(block_id), inner_block_key, inner_layers_in_block]
                    + key.split(delimiter)[block_slice_pos + 1 :]
                )
                new_state_dict[new_key] = state_dict.pop(key)

        for i in middle_block_ids:
            key_part = None
            if i == 0:
                key_part = [inner_block_map[0], "0"]
            elif i == 1:
                key_part = [inner_block_map[1], "0"]
            elif i == 2:
                key_part = [inner_block_map[0], "1"]
            else:
                raise ValueError(f"Invalid middle block id {i}.")

            for key in middle_blocks[i]:
                new_key = delimiter.join(
                    key.split(delimiter)[: block_slice_pos - 1] + key_part + key.split(delimiter)[block_slice_pos:]
                )
                new_state_dict[new_key] = state_dict.pop(key)

        for i in output_block_ids:
            block_id = i // (unet_config.layers_per_block + 1)
            layer_in_block_id = i % (unet_config.layers_per_block + 1)

            for key in output_blocks[i]:
                inner_block_id = int(key.split(delimiter)[block_slice_pos])
                inner_block_key = inner_block_map[inner_block_id]
                inner_layers_in_block = str(layer_in_block_id) if inner_block_id < 2 else "0"
                new_key = delimiter.join(
                    key.split(delimiter)[: block_slice_pos - 1]
                    + [str(block_id), inner_block_key, inner_layers_in_block]
                    + key.split(delimiter)[block_slice_pos + 1 :]
                )
                new_state_dict[new_key] = state_dict.pop(key)

        if is_all_unet and len(state_dict) > 0:
            raise ValueError("At this point all state dict entries have to be converted.")
        else:
            # Remaining is the text encoder state dict.
            for k, v in state_dict.items():
                new_state_dict.update({k: v})

        return new_state_dict

    @classmethod
    def load_lora_into_unet(cls, state_dict, network_alphas, unet):
Will Berman's avatar
Will Berman committed
1188
        """
1189
        This will load the LoRA layers specified in `state_dict` into `unet`.
Will Berman's avatar
Will Berman committed
1190
1191
1192
1193
1194
1195

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
1196
            network_alphas (`Dict[str, float]`):
Will Berman's avatar
Will Berman committed
1197
1198
1199
1200
                See `LoRALinearLayer` for more details.
            unet (`UNet2DConditionModel`):
                The UNet model to load the LoRA layers into.
        """
1201
1202
1203
1204
        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
        # their prefixes.
        keys = list(state_dict.keys())
1205

Will Berman's avatar
Will Berman committed
1206
        if all(key.startswith(cls.unet_name) or key.startswith(cls.text_encoder_name) for key in keys):
1207
            # Load the layers corresponding to UNet.
Will Berman's avatar
Will Berman committed
1208
            logger.info(f"Loading {cls.unet_name}.")
1209

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
            unet_keys = [k for k in keys if k.startswith(cls.unet_name)]
            state_dict = {k.replace(f"{cls.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}

            if network_alphas is not None:
                alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.unet_name)]
                network_alphas = {
                    k.replace(f"{cls.unet_name}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
                }

        else:
            # Otherwise, we're dealing with the old format. This means the `state_dict` should only
            # contain the module names of the `unet` as its keys WITHOUT any prefix.
1222
1223
            warn_message = "You have saved the LoRA weights using the old format. To convert the old LoRA weights to the new format, you can first load them in a dictionary and then create a new dictionary like the following: `new_state_dict = {f'unet'.{module_name}: params for module_name, params in old_state_dict.items()}`."
            warnings.warn(warn_message)
1224

1225
1226
1227
        # load loras into unet
        unet.load_attn_procs(state_dict, network_alphas=network_alphas)

Will Berman's avatar
Will Berman committed
1228
    @classmethod
1229
    def load_lora_into_text_encoder(cls, state_dict, network_alphas, text_encoder, prefix=None, lora_scale=1.0):
Will Berman's avatar
Will Berman committed
1230
1231
1232
1233
1234
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
1235
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
Will Berman's avatar
Will Berman committed
1236
                additional `text_encoder` to distinguish between unet lora layers.
1237
            network_alphas (`Dict[str, float]`):
Will Berman's avatar
Will Berman committed
1238
1239
1240
                See `LoRALinearLayer` for more details.
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
1241
1242
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
Will Berman's avatar
Will Berman committed
1243
1244
1245
1246
1247
1248
1249
1250
1251
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
        """

        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
        # their prefixes.
        keys = list(state_dict.keys())
1252
1253
1254
        prefix = cls.text_encoder_name if prefix is None else prefix

        if any(cls.text_encoder_name in key for key in keys):
Will Berman's avatar
Will Berman committed
1255
            # Load the layers corresponding to text encoder and make necessary adjustments.
1256
            text_encoder_keys = [k for k in keys if k.startswith(prefix)]
Will Berman's avatar
Will Berman committed
1257
            text_encoder_lora_state_dict = {
1258
                k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys
Will Berman's avatar
Will Berman committed
1259
            }
1260

Will Berman's avatar
Will Berman committed
1261
            if len(text_encoder_lora_state_dict) > 0:
1262
                logger.info(f"Loading {prefix}.")
Will Berman's avatar
Will Berman committed
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303

                if any("to_out_lora" in k for k in text_encoder_lora_state_dict.keys()):
                    # Convert from the old naming convention to the new naming convention.
                    #
                    # Previously, the old LoRA layers were stored on the state dict at the
                    # same level as the attention block i.e.
                    # `text_model.encoder.layers.11.self_attn.to_out_lora.up.weight`.
                    #
                    # This is no actual module at that point, they were monkey patched on to the
                    # existing module. We want to be able to load them via their actual state dict.
                    # They're in `PatchedLoraProjection.lora_linear_layer` now.
                    for name, _ in text_encoder_attn_modules(text_encoder):
                        text_encoder_lora_state_dict[
                            f"{name}.q_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_q_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.k_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_k_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.v_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_v_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.out_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_out_lora.up.weight")

                        text_encoder_lora_state_dict[
                            f"{name}.q_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_q_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.k_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_k_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.v_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_v_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.out_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_out_lora.down.weight")

                rank = text_encoder_lora_state_dict[
                    "text_model.encoder.layers.0.self_attn.out_proj.lora_linear_layer.up.weight"
                ].shape[1]
1304
                patch_mlp = any(".mlp." in key for key in text_encoder_lora_state_dict.keys())
Will Berman's avatar
Will Berman committed
1305

1306
1307
1308
1309
1310
1311
1312
                cls._modify_text_encoder(
                    text_encoder,
                    lora_scale,
                    network_alphas,
                    rank=rank,
                    patch_mlp=patch_mlp,
                )
Will Berman's avatar
Will Berman committed
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324

                # set correct dtype & device
                text_encoder_lora_state_dict = {
                    k: v.to(device=text_encoder.device, dtype=text_encoder.dtype)
                    for k, v in text_encoder_lora_state_dict.items()
                }
                load_state_dict_results = text_encoder.load_state_dict(text_encoder_lora_state_dict, strict=False)
                if len(load_state_dict_results.unexpected_keys) != 0:
                    raise ValueError(
                        f"failed to load text encoder state dict, unexpected keys: {load_state_dict_results.unexpected_keys}"
                    )

1325
1326
1327
1328
1329
1330
    @property
    def lora_scale(self) -> float:
        # property function that returns the lora scale which can be set at run time by the pipeline.
        # if _lora_scale has not been set, return 1
        return self._lora_scale if hasattr(self, "_lora_scale") else 1.0

1331
    def _remove_text_encoder_monkey_patch(self):
Will Berman's avatar
Will Berman committed
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
        self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)

    @classmethod
    def _remove_text_encoder_monkey_patch_classmethod(cls, text_encoder):
        for _, attn_module in text_encoder_attn_modules(text_encoder):
            if isinstance(attn_module.q_proj, PatchedLoraProjection):
                attn_module.q_proj = attn_module.q_proj.regular_linear_layer
                attn_module.k_proj = attn_module.k_proj.regular_linear_layer
                attn_module.v_proj = attn_module.v_proj.regular_linear_layer
                attn_module.out_proj = attn_module.out_proj.regular_linear_layer

1343
1344
1345
1346
1347
        for _, mlp_module in text_encoder_mlp_modules(text_encoder):
            if isinstance(mlp_module.fc1, PatchedLoraProjection):
                mlp_module.fc1 = mlp_module.fc1.regular_linear_layer
                mlp_module.fc2 = mlp_module.fc2.regular_linear_layer

Will Berman's avatar
Will Berman committed
1348
    @classmethod
1349
1350
1351
1352
    def _modify_text_encoder(
        cls,
        text_encoder,
        lora_scale=1,
1353
        network_alphas=None,
1354
1355
1356
1357
        rank=4,
        dtype=None,
        patch_mlp=False,
    ):
1358
1359
1360
        r"""
        Monkey-patches the forward passes of attention modules of the text encoder.
        """
1361
1362

        # First, remove any monkey-patch that might have been applied before
Will Berman's avatar
Will Berman committed
1363
        cls._remove_text_encoder_monkey_patch_classmethod(text_encoder)
1364

Will Berman's avatar
Will Berman committed
1365
        lora_parameters = []
1366
1367
1368
1369
1370
1371
1372
        network_alphas = {} if network_alphas is None else network_alphas

        for name, attn_module in text_encoder_attn_modules(text_encoder):
            query_alpha = network_alphas.get(name + ".k.proj.alpha")
            key_alpha = network_alphas.get(name + ".q.proj.alpha")
            value_alpha = network_alphas.get(name + ".v.proj.alpha")
            proj_alpha = network_alphas.get(name + ".out.proj.alpha")
1373

Will Berman's avatar
Will Berman committed
1374
            attn_module.q_proj = PatchedLoraProjection(
1375
                attn_module.q_proj, lora_scale, network_alpha=query_alpha, rank=rank, dtype=dtype
1376
            )
Will Berman's avatar
Will Berman committed
1377
            lora_parameters.extend(attn_module.q_proj.lora_linear_layer.parameters())
1378

Will Berman's avatar
Will Berman committed
1379
            attn_module.k_proj = PatchedLoraProjection(
1380
                attn_module.k_proj, lora_scale, network_alpha=key_alpha, rank=rank, dtype=dtype
Will Berman's avatar
Will Berman committed
1381
1382
            )
            lora_parameters.extend(attn_module.k_proj.lora_linear_layer.parameters())
1383

Will Berman's avatar
Will Berman committed
1384
            attn_module.v_proj = PatchedLoraProjection(
1385
                attn_module.v_proj, lora_scale, network_alpha=value_alpha, rank=rank, dtype=dtype
Will Berman's avatar
Will Berman committed
1386
1387
            )
            lora_parameters.extend(attn_module.v_proj.lora_linear_layer.parameters())
1388

Will Berman's avatar
Will Berman committed
1389
            attn_module.out_proj = PatchedLoraProjection(
1390
                attn_module.out_proj, lora_scale, network_alpha=proj_alpha, rank=rank, dtype=dtype
Will Berman's avatar
Will Berman committed
1391
1392
            )
            lora_parameters.extend(attn_module.out_proj.lora_linear_layer.parameters())
1393

1394
        if patch_mlp:
1395
1396
1397
1398
            for name, mlp_module in text_encoder_mlp_modules(text_encoder):
                fc1_alpha = network_alphas.get(name + ".fc1.alpha")
                fc2_alpha = network_alphas.get(name + ".fc2.alpha")

1399
                mlp_module.fc1 = PatchedLoraProjection(
1400
                    mlp_module.fc1, lora_scale, network_alpha=fc1_alpha, rank=rank, dtype=dtype
1401
1402
1403
1404
                )
                lora_parameters.extend(mlp_module.fc1.lora_linear_layer.parameters())

                mlp_module.fc2 = PatchedLoraProjection(
1405
                    mlp_module.fc2, lora_scale, network_alpha=fc2_alpha, rank=rank, dtype=dtype
1406
1407
1408
                )
                lora_parameters.extend(mlp_module.fc2.lora_linear_layer.parameters())

Will Berman's avatar
Will Berman committed
1409
        return lora_parameters
1410
1411
1412
1413
1414

    @classmethod
    def save_lora_weights(
        self,
        save_directory: Union[str, os.PathLike],
1415
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1416
1417
1418
1419
1420
1421
1422
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = False,
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
1423
        Save the LoRA parameters corresponding to the UNet and text encoder.
1424
1425
1426

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
1427
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
1428
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
1429
1430
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
Steven Liu's avatar
Steven Liu committed
1431
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
1432
                encoder LoRA state dict because it comes from 🤗 Transformers.
1433
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
1434
1435
1436
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
1437
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
1438
1439
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
1440
1441
1442
1443
                `DIFFUSERS_SAVE_MODE`.
        """
        # Create a flat dictionary.
        state_dict = {}
1444
1445

        # Populate the dictionary.
1446
        if unet_lora_layers is not None:
1447
1448
1449
1450
1451
            weights = (
                unet_lora_layers.state_dict() if isinstance(unet_lora_layers, torch.nn.Module) else unet_lora_layers
            )

            unet_lora_state_dict = {f"{self.unet_name}.{module_name}": param for module_name, param in weights.items()}
1452
            state_dict.update(unet_lora_state_dict)
1453

1454
        if text_encoder_lora_layers is not None:
1455
1456
1457
1458
1459
1460
            weights = (
                text_encoder_lora_layers.state_dict()
                if isinstance(text_encoder_lora_layers, torch.nn.Module)
                else text_encoder_lora_layers
            )

1461
            text_encoder_lora_state_dict = {
1462
                f"{self.text_encoder_name}.{module_name}": param for module_name, param in weights.items()
1463
1464
1465
1466
            }
            state_dict.update(text_encoder_lora_state_dict)

        # Save the model
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
        self.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def write_lora_layers(
        state_dict: Dict[str, torch.Tensor],
        save_directory: str,
        is_main_process: bool,
        weight_name: str,
        save_function: Callable,
        safe_serialization: bool,
    ):
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save

        os.makedirs(save_directory, exist_ok=True)

1499
1500
1501
1502
1503
1504
1505
1506
        if weight_name is None:
            if safe_serialization:
                weight_name = LORA_WEIGHT_NAME_SAFE
            else:
                weight_name = LORA_WEIGHT_NAME

        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
1lint's avatar
1lint committed
1507

Will Berman's avatar
Will Berman committed
1508
1509
    @classmethod
    def _convert_kohya_lora_to_diffusers(cls, state_dict):
1510
1511
        unet_state_dict = {}
        te_state_dict = {}
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
        te2_state_dict = {}
        network_alphas = {}

        # every down weight has a corresponding up weight and potentially an alpha weight
        lora_keys = [k for k in state_dict.keys() if k.endswith("lora_down.weight")]
        for key in lora_keys:
            lora_name = key.split(".")[0]
            lora_name_up = lora_name + ".lora_up.weight"
            lora_name_alpha = lora_name + ".alpha"

            # if lora_name_alpha in state_dict:
            #     alpha = state_dict.pop(lora_name_alpha).item()
            #     network_alphas.update({lora_name_alpha: alpha})

            if lora_name.startswith("lora_unet_"):
                diffusers_name = key.replace("lora_unet_", "").replace("_", ".")

                if "input.blocks" in diffusers_name:
                    diffusers_name = diffusers_name.replace("input.blocks", "down_blocks")
                else:
1532
                    diffusers_name = diffusers_name.replace("down.blocks", "down_blocks")
1533
1534
1535
1536

                if "middle.block" in diffusers_name:
                    diffusers_name = diffusers_name.replace("middle.block", "mid_block")
                else:
1537
                    diffusers_name = diffusers_name.replace("mid.block", "mid_block")
1538
1539
1540
                if "output.blocks" in diffusers_name:
                    diffusers_name = diffusers_name.replace("output.blocks", "up_blocks")
                else:
1541
                    diffusers_name = diffusers_name.replace("up.blocks", "up_blocks")
1542

1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
                diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks")
                diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora")
                diffusers_name = diffusers_name.replace("proj.in", "proj_in")
                diffusers_name = diffusers_name.replace("proj.out", "proj_out")
                diffusers_name = diffusers_name.replace("emb.layers", "time_emb_proj")

                # SDXL specificity.
                if "emb" in diffusers_name:
                    pattern = r"\.\d+(?=\D*$)"
                    diffusers_name = re.sub(pattern, "", diffusers_name, count=1)
                if ".in." in diffusers_name:
                    diffusers_name = diffusers_name.replace("in.layers.2", "conv1")
                if ".out." in diffusers_name:
                    diffusers_name = diffusers_name.replace("out.layers.3", "conv2")
                if "downsamplers" in diffusers_name or "upsamplers" in diffusers_name:
                    diffusers_name = diffusers_name.replace("op", "conv")
                if "skip" in diffusers_name:
                    diffusers_name = diffusers_name.replace("skip.connection", "conv_shortcut")

                if "transformer_blocks" in diffusers_name:
                    if "attn1" in diffusers_name or "attn2" in diffusers_name:
                        diffusers_name = diffusers_name.replace("attn1", "attn1.processor")
                        diffusers_name = diffusers_name.replace("attn2", "attn2.processor")
                        unet_state_dict[diffusers_name] = state_dict.pop(key)
                        unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                    elif "ff" in diffusers_name:
                        unet_state_dict[diffusers_name] = state_dict.pop(key)
                        unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif any(key in diffusers_name for key in ("proj_in", "proj_out")):
                    unet_state_dict[diffusers_name] = state_dict.pop(key)
                    unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                else:
                    unet_state_dict[diffusers_name] = state_dict.pop(key)
                    unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            elif lora_name.startswith("lora_te_"):
                diffusers_name = key.replace("lora_te_", "").replace("_", ".")
                diffusers_name = diffusers_name.replace("text.model", "text_model")
                diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                if "self_attn" in diffusers_name:
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif "mlp" in diffusers_name:
                    # Be aware that this is the new diffusers convention and the rest of the code might
                    # not utilize it yet.
                    diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # (sayakpaul): Duplicate code. Needs to be cleaned.
            elif lora_name.startswith("lora_te1_"):
                diffusers_name = key.replace("lora_te1_", "").replace("_", ".")
                diffusers_name = diffusers_name.replace("text.model", "text_model")
                diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                if "self_attn" in diffusers_name:
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif "mlp" in diffusers_name:
                    # Be aware that this is the new diffusers convention and the rest of the code might
                    # not utilize it yet.
                    diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # (sayakpaul): Duplicate code. Needs to be cleaned.
            elif lora_name.startswith("lora_te2_"):
                diffusers_name = key.replace("lora_te2_", "").replace("_", ".")
                diffusers_name = diffusers_name.replace("text.model", "text_model")
                diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                if "self_attn" in diffusers_name:
                    te2_state_dict[diffusers_name] = state_dict.pop(key)
                    te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif "mlp" in diffusers_name:
                    # Be aware that this is the new diffusers convention and the rest of the code might
                    # not utilize it yet.
                    diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
                    te2_state_dict[diffusers_name] = state_dict.pop(key)
                    te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # Rename the alphas so that they can be mapped appropriately.
            if lora_name_alpha in state_dict:
                alpha = state_dict.pop(lora_name_alpha).item()
                if lora_name_alpha.startswith("lora_unet_"):
                    prefix = "unet."
                elif lora_name_alpha.startswith(("lora_te_", "lora_te1_")):
                    prefix = "text_encoder."
                else:
                    prefix = "text_encoder_2."
                new_name = prefix + diffusers_name.split(".lora.")[0] + ".alpha"
                network_alphas.update({new_name: alpha})

        if len(state_dict) > 0:
            raise ValueError(
                f"The following keys have not been correctly be renamed: \n\n {', '.join(state_dict.keys())}"
1652
            )
1653

1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
        logger.info("Kohya-style checkpoint detected.")
        unet_state_dict = {f"{cls.unet_name}.{module_name}": params for module_name, params in unet_state_dict.items()}
        te_state_dict = {
            f"{cls.text_encoder_name}.{module_name}": params for module_name, params in te_state_dict.items()
        }
        te2_state_dict = (
            {f"text_encoder_2.{module_name}": params for module_name, params in te2_state_dict.items()}
            if len(te2_state_dict) > 0
            else None
        )
        if te2_state_dict is not None:
            te_state_dict.update(te2_state_dict)

1667
        new_state_dict = {**unet_state_dict, **te_state_dict}
1668
        return new_state_dict, network_alphas
1669

1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
    def unload_lora_weights(self):
        """
        Unloads the LoRA parameters.

        Examples:

        ```python
        >>> # Assuming `pipeline` is already loaded with the LoRA parameters.
        >>> pipeline.unload_lora_weights()
        >>> ...
        ```
        """
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
        from .models.attention_processor import (
            LORA_ATTENTION_PROCESSORS,
            AttnProcessor,
            AttnProcessor2_0,
            LoRAAttnAddedKVProcessor,
            LoRAAttnProcessor,
            LoRAAttnProcessor2_0,
            LoRAXFormersAttnProcessor,
            XFormersAttnProcessor,
        )

1693
1694
1695
1696
1697
1698
        unet_attention_classes = {type(processor) for _, processor in self.unet.attn_processors.items()}

        if unet_attention_classes.issubset(LORA_ATTENTION_PROCESSORS):
            # Handle attention processors that are a mix of regular attention and AddedKV
            # attention.
            if len(unet_attention_classes) > 1 or LoRAAttnAddedKVProcessor in unet_attention_classes:
1699
                self.unet.set_default_attn_processor()
1700
1701
1702
1703
1704
1705
1706
1707
            else:
                regular_attention_classes = {
                    LoRAAttnProcessor: AttnProcessor,
                    LoRAAttnProcessor2_0: AttnProcessor2_0,
                    LoRAXFormersAttnProcessor: XFormersAttnProcessor,
                }
                [attention_proc_class] = unet_attention_classes
                self.unet.set_attn_processor(regular_attention_classes[attention_proc_class]())
1708

1709
1710
1711
1712
            for _, module in self.unet.named_modules():
                if hasattr(module, "set_lora_layer"):
                    module.set_lora_layer(None)

1713
1714
1715
        # Safe to call the following regardless of LoRA.
        self._remove_text_encoder_monkey_patch()

1lint's avatar
1lint committed
1716

Patrick von Platen's avatar
Patrick von Platen committed
1717
class FromSingleFileMixin:
Steven Liu's avatar
Steven Liu committed
1718
1719
1720
    """
    Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`].
    """
1lint's avatar
1lint committed
1721
1722

    @classmethod
Patrick von Platen's avatar
Patrick von Platen committed
1723
1724
1725
1726
1727
1728
1729
    def from_ckpt(cls, *args, **kwargs):
        deprecation_message = "The function `from_ckpt` is deprecated in favor of `from_single_file` and will be removed in diffusers v.0.21. Please make sure to use `StableDiffusionPipeline.from_single_file(...)` instead."
        deprecate("from_ckpt", "0.21.0", deprecation_message, standard_warn=False)
        return cls.from_single_file(*args, **kwargs)

    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
1lint's avatar
1lint committed
1730
        r"""
1731
1732
        Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors`
        format. The pipeline is set in evaluation mode (`model.eval()`) by default.
1lint's avatar
1lint committed
1733
1734
1735
1736

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
Steven Liu's avatar
Steven Liu committed
1737
1738
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
1lint's avatar
1lint committed
1739
1740
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
1741
1742
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
1lint's avatar
1lint committed
1743
1744
1745
1746
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1747
1748
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
1lint's avatar
1lint committed
1749
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1750
1751
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
1lint's avatar
1lint committed
1752
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1753
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1lint's avatar
1lint committed
1754
1755
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
1756
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
Steven Liu's avatar
Steven Liu committed
1757
                won't be downloaded from the Hub.
1lint's avatar
1lint committed
1758
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1759
1760
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1lint's avatar
1lint committed
1761
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1762
1763
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
1764
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
1765
1766
1767
1768
1769
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            extract_ema (`bool`, *optional*, defaults to `False`):
                Whether to extract the EMA weights or not. Pass `True` to extract the EMA weights which usually yield
1770
                higher quality images for inference. Non-EMA weights are usually better for continuing finetuning.
1lint's avatar
1lint committed
1771
            upcast_attention (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
1772
                Whether the attention computation should always be upcasted.
1lint's avatar
1lint committed
1773
            image_size (`int`, *optional*, defaults to 512):
Steven Liu's avatar
Steven Liu committed
1774
1775
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
1lint's avatar
1lint committed
1776
            prediction_type (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1777
1778
1779
                The prediction type the model was trained on. Use `'epsilon'` for all Stable Diffusion v1 models and
                the Stable Diffusion v2 base model. Use `'v_prediction'` for Stable Diffusion v2.
            num_in_channels (`int`, *optional*, defaults to `None`):
1780
                The number of input channels. If `None`, it is automatically inferred.
Steven Liu's avatar
Steven Liu committed
1781
            scheduler_type (`str`, *optional*, defaults to `"pndm"`):
1lint's avatar
1lint committed
1782
1783
1784
                Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm",
                "ddim"]`.
            load_safety_checker (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
1785
                Whether to load the safety checker or not.
1786
1787
1788
1789
            text_encoder ([`~transformers.CLIPTextModel`], *optional*, defaults to `None`):
                An instance of `CLIPTextModel` to use, specifically the
                [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. If this
                parameter is `None`, the function loads a new instance of `CLIPTextModel` by itself if needed.
1790
1791
1792
            vae (`AutoencoderKL`, *optional*, defaults to `None`):
                Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. If
                this parameter is `None`, the function will load a new instance of [CLIP] by itself, if needed.
1793
1794
1795
            tokenizer ([`~transformers.CLIPTokenizer`], *optional*, defaults to `None`):
                An instance of `CLIPTokenizer` to use. If this parameter is `None`, the function loads a new instance
                of `CLIPTokenizer` by itself if needed.
1lint's avatar
1lint committed
1796
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
1797
1798
1799
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.
1lint's avatar
1lint committed
1800
1801
1802
1803
1804
1805
1806

        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
Patrick von Platen's avatar
Patrick von Platen committed
1807
        >>> pipeline = StableDiffusionPipeline.from_single_file(
1lint's avatar
1lint committed
1808
1809
1810
1811
1812
        ...     "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
        ... )

        >>> # Download pipeline from local file
        >>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
Patrick von Platen's avatar
Patrick von Platen committed
1813
        >>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly")
1lint's avatar
1lint committed
1814
1815

        >>> # Enable float16 and move to GPU
Patrick von Platen's avatar
Patrick von Platen committed
1816
        >>> pipeline = StableDiffusionPipeline.from_single_file(
1lint's avatar
1lint committed
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
        ...     "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
        ...     torch_dtype=torch.float16,
        ... )
        >>> pipeline.to("cuda")
        ```
        """
        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        extract_ema = kwargs.pop("extract_ema", False)
1834
        image_size = kwargs.pop("image_size", None)
1lint's avatar
1lint committed
1835
1836
1837
1838
1839
        scheduler_type = kwargs.pop("scheduler_type", "pndm")
        num_in_channels = kwargs.pop("num_in_channels", None)
        upcast_attention = kwargs.pop("upcast_attention", None)
        load_safety_checker = kwargs.pop("load_safety_checker", True)
        prediction_type = kwargs.pop("prediction_type", None)
1840
        text_encoder = kwargs.pop("text_encoder", None)
1841
        vae = kwargs.pop("vae", None)
1842
        controlnet = kwargs.pop("controlnet", None)
1843
        tokenizer = kwargs.pop("tokenizer", None)
1lint's avatar
1lint committed
1844
1845
1846
1847
1848
1849
1850
1851
1852

        torch_dtype = kwargs.pop("torch_dtype", None)

        use_safetensors = kwargs.pop("use_safetensors", None if is_safetensors_available() else False)

        pipeline_name = cls.__name__
        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

1853
        if from_safetensors and use_safetensors is False:
1lint's avatar
1lint committed
1854
1855
1856
1857
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # TODO: For now we only support stable diffusion
        stable_unclip = None
1858
        model_type = None
1lint's avatar
1lint committed
1859

1860
1861
1862
1863
1864
1865
1866
1867
        if pipeline_name in [
            "StableDiffusionControlNetPipeline",
            "StableDiffusionControlNetImg2ImgPipeline",
            "StableDiffusionControlNetInpaintPipeline",
        ]:
            from .models.controlnet import ControlNetModel
            from .pipelines.controlnet.multicontrolnet import MultiControlNetModel

1868
            # Model type will be inferred from the checkpoint.
1869
1870
            if not isinstance(controlnet, (ControlNetModel, MultiControlNetModel)):
                raise ValueError("ControlNet needs to be passed if loading from ControlNet pipeline.")
1lint's avatar
1lint committed
1871
        elif "StableDiffusion" in pipeline_name:
1872
1873
            # Model type will be inferred from the checkpoint.
            pass
1lint's avatar
1lint committed
1874
        elif pipeline_name == "StableUnCLIPPipeline":
1875
            model_type = "FrozenOpenCLIPEmbedder"
1lint's avatar
1lint committed
1876
1877
            stable_unclip = "txt2img"
        elif pipeline_name == "StableUnCLIPImg2ImgPipeline":
1878
            model_type = "FrozenOpenCLIPEmbedder"
1lint's avatar
1lint committed
1879
1880
            stable_unclip = "img2img"
        elif pipeline_name == "PaintByExamplePipeline":
1881
            model_type = "PaintByExample"
1lint's avatar
1lint committed
1882
        elif pipeline_name == "LDMTextToImagePipeline":
1883
            model_type = "LDMTextToImage"
1lint's avatar
1lint committed
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
        else:
            raise ValueError(f"Unhandled pipeline class: {pipeline_name}")

        # remove huggingface url
        for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
            # get repo_id and (potentially nested) file path of ckpt in repo
1896
1897
            repo_id = os.path.join(*ckpt_path.parts[:2])
            file_path = os.path.join(*ckpt_path.parts[2:])
1lint's avatar
1lint committed
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        pipe = download_from_original_stable_diffusion_ckpt(
            pretrained_model_link_or_path,
            pipeline_class=cls,
            model_type=model_type,
            stable_unclip=stable_unclip,
            controlnet=controlnet,
            from_safetensors=from_safetensors,
            extract_ema=extract_ema,
            image_size=image_size,
            scheduler_type=scheduler_type,
            num_in_channels=num_in_channels,
            upcast_attention=upcast_attention,
            load_safety_checker=load_safety_checker,
            prediction_type=prediction_type,
1931
            text_encoder=text_encoder,
1932
            vae=vae,
1933
            tokenizer=tokenizer,
1lint's avatar
1lint committed
1934
1935
1936
1937
1938
1939
        )

        if torch_dtype is not None:
            pipe.to(torch_dtype=torch_dtype)

        return pipe
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275


class FromOriginalVAEMixin:
    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
        r"""
        Instantiate a [`AutoencoderKL`] from pretrained controlnet weights saved in the original `.ckpt` or
        `.safetensors` format. The pipeline is format. The pipeline is set in evaluation mode (`model.eval()`) by
        default.

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to True, the model
                won't be downloaded from the Hub.
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            image_size (`int`, *optional*, defaults to 512):
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            upcast_attention (`bool`, *optional*, defaults to `None`):
                Whether the attention computation should always be upcasted.
            scaling_factor (`float`, *optional*, defaults to 0.18215):
                The component-wise standard deviation of the trained latent space computed using the first batch of the
                training set. This is used to scale the latent space to have unit variance when training the diffusion
                model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
                diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z
                = 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution
                Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.

        <Tip warning={true}>

            Make sure to pass both `image_size` and `scaling_factor` to `from_single_file()` if you want to load
            a VAE that does accompany a stable diffusion model of v2 or higher or SDXL.

        </Tip>

        Examples:

        ```py
        from diffusers import AutoencoderKL

        url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"  # can also be local file
        model = AutoencoderKL.from_single_file(url)
        ```
        """
        if not is_omegaconf_available():
            raise ValueError(BACKENDS_MAPPING["omegaconf"][1])

        from omegaconf import OmegaConf

        from .models import AutoencoderKL

        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import (
            convert_ldm_vae_checkpoint,
            create_vae_diffusers_config,
        )

        config_file = kwargs.pop("config_file", None)
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        image_size = kwargs.pop("image_size", None)
        scaling_factor = kwargs.pop("scaling_factor", None)
        kwargs.pop("upcast_attention", None)

        torch_dtype = kwargs.pop("torch_dtype", None)

        use_safetensors = kwargs.pop("use_safetensors", None if is_safetensors_available() else False)

        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

        if from_safetensors and use_safetensors is False:
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # remove huggingface url
        for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
            # get repo_id and (potentially nested) file path of ckpt in repo
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        if from_safetensors:
            from safetensors import safe_open

            checkpoint = {}
            with safe_open(pretrained_model_link_or_path, framework="pt", device="cpu") as f:
                for key in f.keys():
                    checkpoint[key] = f.get_tensor(key)
        else:
            checkpoint = torch.load(pretrained_model_link_or_path, map_location="cpu")

        if "state_dict" in checkpoint:
            checkpoint = checkpoint["state_dict"]

        if config_file is None:
            config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
            config_file = BytesIO(requests.get(config_url).content)

        original_config = OmegaConf.load(config_file)

        # default to sd-v1-5
        image_size = image_size or 512

        vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
        converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)

        if scaling_factor is None:
            if (
                "model" in original_config
                and "params" in original_config.model
                and "scale_factor" in original_config.model.params
            ):
                vae_scaling_factor = original_config.model.params.scale_factor
            else:
                vae_scaling_factor = 0.18215  # default SD scaling factor

        vae_config["scaling_factor"] = vae_scaling_factor

        ctx = init_empty_weights if is_accelerate_available() else nullcontext
        with ctx():
            vae = AutoencoderKL(**vae_config)

        if is_accelerate_available():
            for param_name, param in converted_vae_checkpoint.items():
                set_module_tensor_to_device(vae, param_name, "cpu", value=param)
        else:
            vae.load_state_dict(converted_vae_checkpoint)

        if torch_dtype is not None:
            vae.to(torch_dtype=torch_dtype)

        return vae


class FromOriginalControlnetMixin:
    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
        r"""
        Instantiate a [`ControlNetModel`] from pretrained controlnet weights saved in the original `.ckpt` or
        `.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to True, the model
                won't be downloaded from the Hub.
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            image_size (`int`, *optional*, defaults to 512):
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
            upcast_attention (`bool`, *optional*, defaults to `None`):
                Whether the attention computation should always be upcasted.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.

        Examples:

        ```py
        from diffusers import StableDiffusionControlnetPipeline, ControlNetModel

        url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth"  # can also be a local path
        model = ControlNetModel.from_single_file(url)

        url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors"  # can also be a local path
        pipe = StableDiffusionControlnetPipeline.from_single_file(url, controlnet=controlnet)
        ```
        """
        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt

        config_file = kwargs.pop("config_file", None)
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        num_in_channels = kwargs.pop("num_in_channels", None)
        use_linear_projection = kwargs.pop("use_linear_projection", None)
        revision = kwargs.pop("revision", None)
        extract_ema = kwargs.pop("extract_ema", False)
        image_size = kwargs.pop("image_size", None)
        upcast_attention = kwargs.pop("upcast_attention", None)

        torch_dtype = kwargs.pop("torch_dtype", None)

        use_safetensors = kwargs.pop("use_safetensors", None if is_safetensors_available() else False)

        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

        if from_safetensors and use_safetensors is False:
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # remove huggingface url
        for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
            # get repo_id and (potentially nested) file path of ckpt in repo
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        if config_file is None:
            config_url = "https://raw.githubusercontent.com/lllyasviel/ControlNet/main/models/cldm_v15.yaml"
            config_file = BytesIO(requests.get(config_url).content)

        image_size = image_size or 512

        controlnet = download_controlnet_from_original_ckpt(
            pretrained_model_link_or_path,
            original_config_file=config_file,
            image_size=image_size,
            extract_ema=extract_ema,
            num_in_channels=num_in_channels,
            upcast_attention=upcast_attention,
            from_safetensors=from_safetensors,
            use_linear_projection=use_linear_projection,
        )

        if torch_dtype is not None:
            controlnet.to(torch_dtype=torch_dtype)

        return controlnet