loaders.py 119 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import copy
15
import os
16
import re
17
import warnings
18
from collections import defaultdict
19
20
from contextlib import nullcontext
from io import BytesIO
1lint's avatar
1lint committed
21
from pathlib import Path
22
from typing import Callable, Dict, List, Optional, Union
23

24
import requests
25
import safetensors
26
import torch
27
from huggingface_hub import hf_hub_download, model_info
Will Berman's avatar
Will Berman committed
28
from torch import nn
29

30
31
32
33
34
from .utils import (
    DIFFUSERS_CACHE,
    HF_HUB_OFFLINE,
    _get_model_file,
    deprecate,
35
36
    is_accelerate_available,
    is_omegaconf_available,
37
38
39
    is_transformers_available,
    logging,
)
40
from .utils.import_utils import BACKENDS_MAPPING
41
42


43
if is_transformers_available():
44
    from transformers import CLIPTextModel, CLIPTextModelWithProjection, PreTrainedModel, PreTrainedTokenizer
45

46
47
48
if is_accelerate_available():
    from accelerate import init_empty_weights
    from accelerate.utils import set_module_tensor_to_device
49
50
51

logger = logging.get_logger(__name__)

52
53
TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"
54
55

LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
56
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
57

58
59
60
TEXT_INVERSION_NAME = "learned_embeds.bin"
TEXT_INVERSION_NAME_SAFE = "learned_embeds.safetensors"

61
62
63
CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin"
CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors"

64

Will Berman's avatar
Will Berman committed
65
66
67
class PatchedLoraProjection(nn.Module):
    def __init__(self, regular_linear_layer, lora_scale=1, network_alpha=None, rank=4, dtype=None):
        super().__init__()
68
        from .models.lora import LoRALinearLayer
69

Will Berman's avatar
Will Berman committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
        self.regular_linear_layer = regular_linear_layer

        device = self.regular_linear_layer.weight.device

        if dtype is None:
            dtype = self.regular_linear_layer.weight.dtype

        self.lora_linear_layer = LoRALinearLayer(
            self.regular_linear_layer.in_features,
            self.regular_linear_layer.out_features,
            network_alpha=network_alpha,
            device=device,
            dtype=dtype,
            rank=rank,
        )

        self.lora_scale = lora_scale

Patrick von Platen's avatar
Patrick von Platen committed
88
89
90
91
92
93
94
95
96
97
    # overwrite PyTorch's `state_dict` to be sure that only the 'regular_linear_layer' weights are saved
    # when saving the whole text encoder model and when LoRA is unloaded or fused
    def state_dict(self, *args, destination=None, prefix="", keep_vars=False):
        if self.lora_linear_layer is None:
            return self.regular_linear_layer.state_dict(
                *args, destination=destination, prefix=prefix, keep_vars=keep_vars
            )

        return super().state_dict(*args, destination=destination, prefix=prefix, keep_vars=keep_vars)

Patrick von Platen's avatar
Patrick von Platen committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    def _fuse_lora(self):
        if self.lora_linear_layer is None:
            return

        dtype, device = self.regular_linear_layer.weight.data.dtype, self.regular_linear_layer.weight.data.device

        w_orig = self.regular_linear_layer.weight.data.float()
        w_up = self.lora_linear_layer.up.weight.data.float()
        w_down = self.lora_linear_layer.down.weight.data.float()

        if self.lora_linear_layer.network_alpha is not None:
            w_up = w_up * self.lora_linear_layer.network_alpha / self.lora_linear_layer.rank

        fused_weight = w_orig + torch.bmm(w_up[None, :], w_down[None, :])[0]
        self.regular_linear_layer.weight.data = fused_weight.to(device=device, dtype=dtype)

        # we can drop the lora layer now
        self.lora_linear_layer = None

        # offload the up and down matrices to CPU to not blow the memory
        self.w_up = w_up.cpu()
        self.w_down = w_down.cpu()

    def _unfuse_lora(self):
        if not (hasattr(self, "w_up") and hasattr(self, "w_down")):
            return

        fused_weight = self.regular_linear_layer.weight.data
        dtype, device = fused_weight.dtype, fused_weight.device

Patrick von Platen's avatar
Patrick von Platen committed
128
129
130
131
        w_up = self.w_up.to(device=device).float()
        w_down = self.w_down.to(device).float()

        unfused_weight = fused_weight.float() - torch.bmm(w_up[None, :], w_down[None, :])[0]
Patrick von Platen's avatar
Patrick von Platen committed
132
133
134
135
136
        self.regular_linear_layer.weight.data = unfused_weight.to(device=device, dtype=dtype)

        self.w_up = None
        self.w_down = None

Will Berman's avatar
Will Berman committed
137
    def forward(self, input):
Patrick von Platen's avatar
Patrick von Platen committed
138
139
        if self.lora_linear_layer is None:
            return self.regular_linear_layer(input)
Will Berman's avatar
Will Berman committed
140
141
142
143
144
145
        return self.regular_linear_layer(input) + self.lora_scale * self.lora_linear_layer(input)


def text_encoder_attn_modules(text_encoder):
    attn_modules = []

146
    if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
Will Berman's avatar
Will Berman committed
147
148
149
150
151
152
153
154
155
156
        for i, layer in enumerate(text_encoder.text_model.encoder.layers):
            name = f"text_model.encoder.layers.{i}.self_attn"
            mod = layer.self_attn
            attn_modules.append((name, mod))
    else:
        raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}")

    return attn_modules


157
158
159
160
161
162
163
164
165
166
167
168
169
170
def text_encoder_mlp_modules(text_encoder):
    mlp_modules = []

    if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
        for i, layer in enumerate(text_encoder.text_model.encoder.layers):
            mlp_mod = layer.mlp
            name = f"text_model.encoder.layers.{i}.mlp"
            mlp_modules.append((name, mlp_mod))
    else:
        raise ValueError(f"do not know how to get mlp modules for: {text_encoder.__class__.__name__}")

    return mlp_modules


Will Berman's avatar
Will Berman committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
def text_encoder_lora_state_dict(text_encoder):
    state_dict = {}

    for name, module in text_encoder_attn_modules(text_encoder):
        for k, v in module.q_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v

        for k, v in module.k_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v

        for k, v in module.v_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v

        for k, v in module.out_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v

    return state_dict


190
191
192
193
class AttnProcsLayers(torch.nn.Module):
    def __init__(self, state_dict: Dict[str, torch.Tensor]):
        super().__init__()
        self.layers = torch.nn.ModuleList(state_dict.values())
194
        self.mapping = dict(enumerate(state_dict.keys()))
195
196
        self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}

197
198
        # .processor for unet, .self_attn for text encoder
        self.split_keys = [".processor", ".self_attn"]
199

200
201
202
203
204
205
206
207
208
209
210
        # we add a hook to state_dict() and load_state_dict() so that the
        # naming fits with `unet.attn_processors`
        def map_to(module, state_dict, *args, **kwargs):
            new_state_dict = {}
            for key, value in state_dict.items():
                num = int(key.split(".")[1])  # 0 is always "layers"
                new_key = key.replace(f"layers.{num}", module.mapping[num])
                new_state_dict[new_key] = value

            return new_state_dict

211
212
213
214
215
216
217
218
219
        def remap_key(key, state_dict):
            for k in self.split_keys:
                if k in key:
                    return key.split(k)[0] + k

            raise ValueError(
                f"There seems to be a problem with the state_dict: {set(state_dict.keys())}. {key} has to have one of {self.split_keys}."
            )

220
221
222
        def map_from(module, state_dict, *args, **kwargs):
            all_keys = list(state_dict.keys())
            for key in all_keys:
223
                replace_key = remap_key(key, state_dict)
224
225
226
227
228
229
230
231
232
                new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
                state_dict[new_key] = state_dict[key]
                del state_dict[key]

        self._register_state_dict_hook(map_to)
        self._register_load_state_dict_pre_hook(map_from, with_module=True)


class UNet2DConditionLoadersMixin:
233
234
235
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME

236
237
    def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
        r"""
Steven Liu's avatar
Steven Liu committed
238
        Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be
239
        defined in
Patrick von Platen's avatar
Patrick von Platen committed
240
        [`attention_processor.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py)
241
242
243
244
245
246
        and be a `torch.nn.Module` class.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

Steven Liu's avatar
Steven Liu committed
247
248
249
250
                    - A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a directory (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
251
252
253
254
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
255
256
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
257
258
259
260
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
261
262
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
263
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
264
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
265
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
266
267
268
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
269
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
270
271
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
272
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
273
274
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
275
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
276
                The subfolder location of a model file within a larger model repository on the Hub or locally.
277
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
278
279
280
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
281
282

        """
283
284
285
        from .models.attention_processor import (
            CustomDiffusionAttnProcessor,
        )
286
        from .models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer
287
288
289
290
291
292
293
294
295

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
296
        weight_name = kwargs.pop("weight_name", None)
297
        use_safetensors = kwargs.pop("use_safetensors", None)
298
299
        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
300
        network_alphas = kwargs.pop("network_alphas", None)
301
        is_network_alphas_none = network_alphas is None
302
303

        allow_pickle = False
304

305
        if use_safetensors is None:
306
            use_safetensors = True
307
            allow_pickle = True
308
309
310
311
312
313

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

314
        model_file = None
315
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
316
            # Let's first try to load .safetensors weights
317
            if (use_safetensors and weight_name is None) or (
318
319
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
320
321
322
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
323
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
324
325
326
327
328
329
330
331
332
333
334
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
335
336
337
                except IOError as e:
                    if not allow_pickle:
                        raise e
338
339
                    # try loading non-safetensors weights
                    pass
340
341
342
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
343
                    weights_name=weight_name or LORA_WEIGHT_NAME,
344
345
346
347
348
349
350
351
352
353
354
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
355
356
357
358
        else:
            state_dict = pretrained_model_name_or_path_or_dict

        # fill attn processors
359
        lora_layers_list = []
360

361
        is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys())
362
        is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())
363
364

        if is_lora:
365
366
            # correct keys
            state_dict, network_alphas = self.convert_state_dict_legacy_attn_format(state_dict, network_alphas)
367

368
            lora_grouped_dict = defaultdict(dict)
369
370
371
372
373
            mapped_network_alphas = {}

            all_keys = list(state_dict.keys())
            for key in all_keys:
                value = state_dict.pop(key)
374
375
376
                attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                lora_grouped_dict[attn_processor_key][sub_key] = value

377
378
                # Create another `mapped_network_alphas` dictionary so that we can properly map them.
                if network_alphas is not None:
379
380
                    network_alphas_ = copy.deepcopy(network_alphas)
                    for k in network_alphas_:
381
                        if k.replace(".alpha", "") in key:
382
383
384
385
386
387
388
                            mapped_network_alphas.update({attn_processor_key: network_alphas.pop(k)})

            if not is_network_alphas_none:
                if len(network_alphas) > 0:
                    raise ValueError(
                        f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
                    )
389
390
391

            if len(state_dict) > 0:
                raise ValueError(
392
                    f"The `state_dict` has to be empty at this point but has the following keys \n\n {', '.join(state_dict.keys())}"
393
394
                )

395
            for key, value_dict in lora_grouped_dict.items():
Will Berman's avatar
Will Berman committed
396
397
398
399
                attn_processor = self
                for sub_key in key.split("."):
                    attn_processor = getattr(attn_processor, sub_key)

400
401
                # Process non-attention layers, which don't have to_{k,v,q,out_proj}_lora layers
                # or add_{k,v,q,out_proj}_proj_lora layers.
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
                rank = value_dict["lora.down.weight"].shape[0]

                if isinstance(attn_processor, LoRACompatibleConv):
                    in_features = attn_processor.in_channels
                    out_features = attn_processor.out_channels
                    kernel_size = attn_processor.kernel_size

                    lora = LoRAConv2dLayer(
                        in_features=in_features,
                        out_features=out_features,
                        rank=rank,
                        kernel_size=kernel_size,
                        stride=attn_processor.stride,
                        padding=attn_processor.padding,
                        network_alpha=mapped_network_alphas.get(key),
                    )
                elif isinstance(attn_processor, LoRACompatibleLinear):
                    lora = LoRALinearLayer(
                        attn_processor.in_features,
                        attn_processor.out_features,
                        rank,
                        mapped_network_alphas.get(key),
                    )
Will Berman's avatar
Will Berman committed
425
                else:
426
                    raise ValueError(f"Module {key} is not a LoRACompatibleConv or LoRACompatibleLinear module.")
Will Berman's avatar
Will Berman committed
427

428
429
430
                value_dict = {k.replace("lora.", ""): v for k, v in value_dict.items()}
                lora.load_state_dict(value_dict)
                lora_layers_list.append((attn_processor, lora))
431

432
        elif is_custom_diffusion:
433
            attn_processors = {}
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
            custom_diffusion_grouped_dict = defaultdict(dict)
            for key, value in state_dict.items():
                if len(value) == 0:
                    custom_diffusion_grouped_dict[key] = {}
                else:
                    if "to_out" in key:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                    else:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
                    custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value

            for key, value_dict in custom_diffusion_grouped_dict.items():
                if len(value_dict) == 0:
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
                    )
                else:
                    cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
                    hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
                    train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=True,
                        train_q_out=train_q_out,
                        hidden_size=hidden_size,
                        cross_attention_dim=cross_attention_dim,
                    )
                    attn_processors[key].load_state_dict(value_dict)
461
462

            self.set_attn_processor(attn_processors)
463
        else:
464
465
466
            raise ValueError(
                f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training."
            )
467
468

        # set correct dtype & device
469
        lora_layers_list = [(t, l.to(device=self.device, dtype=self.dtype)) for t, l in lora_layers_list]
470

471
472
        # set lora layers
        for target_module, lora_layer in lora_layers_list:
473
            target_module.set_lora_layer(lora_layer)
474

475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
    def convert_state_dict_legacy_attn_format(self, state_dict, network_alphas):
        is_new_lora_format = all(
            key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys()
        )
        if is_new_lora_format:
            # Strip the `"unet"` prefix.
            is_text_encoder_present = any(key.startswith(self.text_encoder_name) for key in state_dict.keys())
            if is_text_encoder_present:
                warn_message = "The state_dict contains LoRA params corresponding to the text encoder which are not being used here. To use both UNet and text encoder related LoRA params, use [`pipe.load_lora_weights()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights)."
                logger.warn(warn_message)
            unet_keys = [k for k in state_dict.keys() if k.startswith(self.unet_name)]
            state_dict = {k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}

        # change processor format to 'pure' LoRACompatibleLinear format
        if any("processor" in k.split(".") for k in state_dict.keys()):

            def format_to_lora_compatible(key):
                if "processor" not in key.split("."):
                    return key
                return key.replace(".processor", "").replace("to_out_lora", "to_out.0.lora").replace("_lora", ".lora")

            state_dict = {format_to_lora_compatible(k): v for k, v in state_dict.items()}

            if network_alphas is not None:
                network_alphas = {format_to_lora_compatible(k): v for k, v in network_alphas.items()}
        return state_dict, network_alphas

502
503
504
505
    def save_attn_procs(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
506
        weight_name: str = None,
507
        save_function: Callable = None,
508
509
        safe_serialization: bool = True,
        **kwargs,
510
511
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
512
        Save an attention processor to a directory so that it can be reloaded using the
513
        [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method.
514
515
516

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
517
                Directory to save an attention processor to. Will be created if it doesn't exist.
518
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
519
520
521
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
522
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
523
524
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
525
                `DIFFUSERS_SAVE_MODE`.
526
527
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
528
        """
529
530
531
532
533
        from .models.attention_processor import (
            CustomDiffusionAttnProcessor,
            CustomDiffusionXFormersAttnProcessor,
        )

534
535
536
537
538
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
539
540
541
542
543
544
545
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save
546
547
548

        os.makedirs(save_directory, exist_ok=True)

549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
        is_custom_diffusion = any(
            isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor))
            for (_, x) in self.attn_processors.items()
        )
        if is_custom_diffusion:
            model_to_save = AttnProcsLayers(
                {
                    y: x
                    for (y, x) in self.attn_processors.items()
                    if isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor))
                }
            )
            state_dict = model_to_save.state_dict()
            for name, attn in self.attn_processors.items():
                if len(attn.state_dict()) == 0:
                    state_dict[name] = {}
        else:
            model_to_save = AttnProcsLayers(self.attn_processors)
            state_dict = model_to_save.state_dict()
568

569
        if weight_name is None:
570
            if safe_serialization:
571
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE
572
            else:
573
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME
574

575
        # Save the model
576
577
        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
578

Patrick von Platen's avatar
Patrick von Platen committed
579
580
581
582
583
584
585
586
587
588
589
590
591
592
    def fuse_lora(self):
        self.apply(self._fuse_lora_apply)

    def _fuse_lora_apply(self, module):
        if hasattr(module, "_fuse_lora"):
            module._fuse_lora()

    def unfuse_lora(self):
        self.apply(self._unfuse_lora_apply)

    def _unfuse_lora_apply(self, module):
        if hasattr(module, "_unfuse_lora"):
            module._unfuse_lora()

593
594
595

class TextualInversionLoaderMixin:
    r"""
Steven Liu's avatar
Steven Liu committed
596
    Load textual inversion tokens and embeddings to the tokenizer and text encoder.
597
598
    """

599
    def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"):
600
        r"""
Steven Liu's avatar
Steven Liu committed
601
602
603
        Processes prompts that include a special token corresponding to a multi-vector textual inversion embedding to
        be replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or if the textual inversion token is a single vector, the input prompt is returned.
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625

        Parameters:
            prompt (`str` or list of `str`):
                The prompt or prompts to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str` or list of `str`: The converted prompt
        """
        if not isinstance(prompt, List):
            prompts = [prompt]
        else:
            prompts = prompt

        prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts]

        if not isinstance(prompt, List):
            return prompts[0]

        return prompts

626
    def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"):
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
        r"""
        Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds
        to a multi-vector textual inversion embedding, this function will process the prompt so that the special token
        is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or a textual inversion token that is a single vector, the input prompt is simply returned.

        Parameters:
            prompt (`str`):
                The prompt to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str`: The converted prompt
        """
        tokens = tokenizer.tokenize(prompt)
643
644
        unique_tokens = set(tokens)
        for token in unique_tokens:
645
646
647
648
            if token in tokenizer.added_tokens_encoder:
                replacement = token
                i = 1
                while f"{token}_{i}" in tokenizer.added_tokens_encoder:
649
                    replacement += f" {token}_{i}"
650
651
652
653
654
655
656
                    i += 1

                prompt = prompt.replace(token, replacement)

        return prompt

    def load_textual_inversion(
657
        self,
658
        pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]],
659
660
        token: Optional[Union[str, List[str]]] = None,
        **kwargs,
661
662
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
663
664
        Load textual inversion embeddings into the text encoder of [`StableDiffusionPipeline`] (both 🤗 Diffusers and
        Automatic1111 formats are supported).
665
666

        Parameters:
667
            pretrained_model_name_or_path (`str` or `os.PathLike` or `List[str or os.PathLike]` or `Dict` or `List[Dict]`):
Steven Liu's avatar
Steven Liu committed
668
                Can be either one of the following or a list of them:
669

Steven Liu's avatar
Steven Liu committed
670
671
672
673
674
                    - A string, the *model id* (for example `sd-concepts-library/low-poly-hd-logos-icons`) of a
                      pretrained model hosted on the Hub.
                    - A path to a *directory* (for example `./my_text_inversion_directory/`) containing the textual
                      inversion weights.
                    - A path to a *file* (for example `./my_text_inversions.pt`) containing textual inversion weights.
675
676
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
677
678
679
680

            token (`str` or `List[str]`, *optional*):
                Override the token to use for the textual inversion weights. If `pretrained_model_name_or_path` is a
                list, then `token` must also be a list of equal length.
681
            weight_name (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
682
                Name of a custom weight file. This should be used when:
683

Steven Liu's avatar
Steven Liu committed
684
685
686
                    - The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight
                      name such as `text_inv.bin`.
                    - The saved textual inversion file is in the Automatic1111 format.
687
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
688
689
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
690
691
692
693
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
694
695
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
696
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
697
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
698
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
699
700
701
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
702
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
703
704
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
705
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
706
707
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
708
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
709
                The subfolder location of a model file within a larger model repository on the Hub or locally.
710
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
711
712
713
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
714
715
716

        Example:

Steven Liu's avatar
Steven Liu committed
717
        To load a textual inversion embedding vector in 🤗 Diffusers format:
1lint's avatar
1lint committed
718

719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

        pipe.load_textual_inversion("sd-concepts-library/cat-toy")

        prompt = "A <cat-toy> backpack"

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("cat-backpack.png")
        ```

Steven Liu's avatar
Steven Liu committed
734
735
736
        To load a textual inversion embedding vector in Automatic1111 format, make sure to download the vector first
        (for example from [civitAI](https://civitai.com/models/3036?modelVersionId=9857)) and then load the vector
        locally:
737
738
739
740
741
742
743
744

        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

745
        pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
746
747
748
749
750
751

        prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("character.png")
        ```
1lint's avatar
1lint committed
752

753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
        """
        if not hasattr(self, "tokenizer") or not isinstance(self.tokenizer, PreTrainedTokenizer):
            raise ValueError(
                f"{self.__class__.__name__} requires `self.tokenizer` of type `PreTrainedTokenizer` for calling"
                f" `{self.load_textual_inversion.__name__}`"
            )

        if not hasattr(self, "text_encoder") or not isinstance(self.text_encoder, PreTrainedModel):
            raise ValueError(
                f"{self.__class__.__name__} requires `self.text_encoder` of type `PreTrainedModel` for calling"
                f" `{self.load_textual_inversion.__name__}`"
            )

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)

        allow_pickle = False
        if use_safetensors is None:
779
            use_safetensors = True
780
781
782
783
784
785
786
            allow_pickle = True

        user_agent = {
            "file_type": "text_inversion",
            "framework": "pytorch",
        }

787
        if not isinstance(pretrained_model_name_or_path, list):
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
            pretrained_model_name_or_paths = [pretrained_model_name_or_path]
        else:
            pretrained_model_name_or_paths = pretrained_model_name_or_path

        if isinstance(token, str):
            tokens = [token]
        elif token is None:
            tokens = [None] * len(pretrained_model_name_or_paths)
        else:
            tokens = token

        if len(pretrained_model_name_or_paths) != len(tokens):
            raise ValueError(
                f"You have passed a list of models of length {len(pretrained_model_name_or_paths)}, and list of tokens of length {len(tokens)}"
                f"Make sure both lists have the same length."
            )

        valid_tokens = [t for t in tokens if t is not None]
        if len(set(valid_tokens)) < len(valid_tokens):
            raise ValueError(f"You have passed a list of tokens that contains duplicates: {tokens}")

        token_ids_and_embeddings = []

        for pretrained_model_name_or_path, token in zip(pretrained_model_name_or_paths, tokens):
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
            if not isinstance(pretrained_model_name_or_path, dict):
                # 1. Load textual inversion file
                model_file = None
                # Let's first try to load .safetensors weights
                if (use_safetensors and weight_name is None) or (
                    weight_name is not None and weight_name.endswith(".safetensors")
                ):
                    try:
                        model_file = _get_model_file(
                            pretrained_model_name_or_path,
                            weights_name=weight_name or TEXT_INVERSION_NAME_SAFE,
                            cache_dir=cache_dir,
                            force_download=force_download,
                            resume_download=resume_download,
                            proxies=proxies,
                            local_files_only=local_files_only,
                            use_auth_token=use_auth_token,
                            revision=revision,
                            subfolder=subfolder,
                            user_agent=user_agent,
                        )
                        state_dict = safetensors.torch.load_file(model_file, device="cpu")
                    except Exception as e:
                        if not allow_pickle:
                            raise e

                        model_file = None

                if model_file is None:
841
842
                    model_file = _get_model_file(
                        pretrained_model_name_or_path,
843
                        weights_name=weight_name or TEXT_INVERSION_NAME,
844
845
846
847
848
849
850
851
852
853
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
854
855
856
                    state_dict = torch.load(model_file, map_location="cpu")
            else:
                state_dict = pretrained_model_name_or_path
857
858

            # 2. Load token and embedding correcly from file
859
            loaded_token = None
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
            if isinstance(state_dict, torch.Tensor):
                if token is None:
                    raise ValueError(
                        "You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`."
                    )
                embedding = state_dict
            elif len(state_dict) == 1:
                # diffusers
                loaded_token, embedding = next(iter(state_dict.items()))
            elif "string_to_param" in state_dict:
                # A1111
                loaded_token = state_dict["name"]
                embedding = state_dict["string_to_param"]["*"]

            if token is not None and loaded_token != token:
                logger.info(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.")
            else:
                token = loaded_token

            embedding = embedding.to(dtype=self.text_encoder.dtype, device=self.text_encoder.device)
880

881
882
883
            # 3. Make sure we don't mess up the tokenizer or text encoder
            vocab = self.tokenizer.get_vocab()
            if token in vocab:
884
                raise ValueError(
885
                    f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder."
886
                )
887
888
889
890
891
892
            elif f"{token}_1" in vocab:
                multi_vector_tokens = [token]
                i = 1
                while f"{token}_{i}" in self.tokenizer.added_tokens_encoder:
                    multi_vector_tokens.append(f"{token}_{i}")
                    i += 1
893

894
895
896
                raise ValueError(
                    f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder."
                )
897

898
            is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1
899

900
901
902
903
904
905
            if is_multi_vector:
                tokens = [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])]
                embeddings = [e for e in embedding]  # noqa: C416
            else:
                tokens = [token]
                embeddings = [embedding[0]] if len(embedding.shape) > 1 else [embedding]
906

907
908
909
910
            # add tokens and get ids
            self.tokenizer.add_tokens(tokens)
            token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
            token_ids_and_embeddings += zip(token_ids, embeddings)
911

912
            logger.info(f"Loaded textual inversion embedding for {token}.")
913

914
        # resize token embeddings and set all new embeddings
915
        self.text_encoder.resize_token_embeddings(len(self.tokenizer))
916
        for token_id, embedding in token_ids_and_embeddings:
917
918
            self.text_encoder.get_input_embeddings().weight.data[token_id] = embedding

919
920
921

class LoraLoaderMixin:
    r"""
Steven Liu's avatar
Steven Liu committed
922
923
    Load LoRA layers into [`UNet2DConditionModel`] and
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
924
    """
925
926
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME
927
928

    def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
Will Berman's avatar
Will Berman committed
929
        """
930
931
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
        `self.text_encoder`.
Will Berman's avatar
Will Berman committed
932
933
934
935
936
937
938
939
940
941
942
943
944
945

        All kwargs are forwarded to `self.lora_state_dict`.

        See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.

        See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into
        `self.unet`.

        See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded
        into `self.text_encoder`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
946
            kwargs (`dict`, *optional*):
Will Berman's avatar
Will Berman committed
947
948
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
        """
949
950
        state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
        self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
Will Berman's avatar
Will Berman committed
951
        self.load_lora_into_text_encoder(
952
            state_dict,
953
            network_alphas=network_alphas,
954
955
            text_encoder=self.text_encoder,
            lora_scale=self.lora_scale,
Will Berman's avatar
Will Berman committed
956
957
958
959
960
961
962
963
        )

    @classmethod
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
964
        r"""
965
        Return state dict for lora weights and the network alphas.
Will Berman's avatar
Will Berman committed
966
967
968
969
970
971
972
973

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>
974
975
976
977
978

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

Steven Liu's avatar
Steven Liu committed
979
980
981
982
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
983
984
985
986
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
987
988
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
989
990
991
992
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
993
994
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
995
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
996
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
997
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
998
999
1000
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
1001
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1002
1003
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1004
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1005
1006
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
1007
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
1008
                The subfolder location of a model file within a larger model repository on the Hub or locally.
1009
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1010
1011
1012
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

        """
        # Load the main state dict first which has the LoRA layers for either of
        # UNet and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
1026
        unet_config = kwargs.pop("unet_config", None)
1027
1028
1029
1030
        use_safetensors = kwargs.pop("use_safetensors", None)

        allow_pickle = False
        if use_safetensors is None:
1031
            use_safetensors = True
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
            allow_pickle = True

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

        model_file = None
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
            # Let's first try to load .safetensors weights
            if (use_safetensors and weight_name is None) or (
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
                try:
1046
1047
1048
1049
1050
1051
1052
                    # Here we're relaxing the loading check to enable more Inference API
                    # friendliness where sometimes, it's not at all possible to automatically
                    # determine `weight_name`.
                    if weight_name is None:
                        weight_name = cls._best_guess_weight_name(
                            pretrained_model_name_or_path_or_dict, file_extension=".safetensors"
                        )
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
Will Berman's avatar
Will Berman committed
1067
                except (IOError, safetensors.SafetensorError) as e:
1068
1069
1070
                    if not allow_pickle:
                        raise e
                    # try loading non-safetensors weights
1071
                    model_file = None
1072
                    pass
1073

1074
            if model_file is None:
1075
1076
1077
1078
                if weight_name is None:
                    weight_name = cls._best_guess_weight_name(
                        pretrained_model_name_or_path_or_dict, file_extension=".bin"
                    )
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
                    weights_name=weight_name or LORA_WEIGHT_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
        else:
            state_dict = pretrained_model_name_or_path_or_dict

1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
        network_alphas = None
        if all(
            (
                k.startswith("lora_te_")
                or k.startswith("lora_unet_")
                or k.startswith("lora_te1_")
                or k.startswith("lora_te2_")
            )
            for k in state_dict.keys()
        ):
            # Map SDXL blocks correctly.
            if unet_config is not None:
                # use unet config to remap block numbers
1109
                state_dict = cls._maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
1110
            state_dict, network_alphas = cls._convert_kohya_lora_to_diffusers(state_dict)
Will Berman's avatar
Will Berman committed
1111

1112
        return state_dict, network_alphas
Will Berman's avatar
Will Berman committed
1113

1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
    @classmethod
    def _best_guess_weight_name(cls, pretrained_model_name_or_path_or_dict, file_extension=".safetensors"):
        targeted_files = []

        if os.path.isfile(pretrained_model_name_or_path_or_dict):
            return
        elif os.path.isdir(pretrained_model_name_or_path_or_dict):
            targeted_files = [
                f for f in os.listdir(pretrained_model_name_or_path_or_dict) if f.endswith(file_extension)
            ]
        else:
            files_in_repo = model_info(pretrained_model_name_or_path_or_dict).siblings
            targeted_files = [f.rfilename for f in files_in_repo if f.rfilename.endswith(file_extension)]
        if len(targeted_files) == 0:
            return

1130
1131
1132
1133
1134
1135
1136
1137
        # "scheduler" does not correspond to a LoRA checkpoint.
        # "optimizer" does not correspond to a LoRA checkpoint
        # only top-level checkpoints are considered and not the other ones, hence "checkpoint".
        unallowed_substrings = {"scheduler", "optimizer", "checkpoint"}
        targeted_files = list(
            filter(lambda x: all(substring not in x for substring in unallowed_substrings), targeted_files)
        )

1138
1139
1140
1141
1142
1143
1144
        if len(targeted_files) > 1:
            raise ValueError(
                f"Provided path contains more than one weights file in the {file_extension} format. Either specify `weight_name` in `load_lora_weights` or make sure there's only one  `.safetensors` or `.bin` file in  {pretrained_model_name_or_path_or_dict}."
            )
        weight_name = targeted_files[0]
        return weight_name

Will Berman's avatar
Will Berman committed
1145
    @classmethod
1146
1147
    def _maybe_map_sgm_blocks_to_diffusers(cls, state_dict, unet_config, delimiter="_", block_slice_pos=5):
        # 1. get all state_dict_keys
chillpixel's avatar
chillpixel committed
1148
        all_keys = list(state_dict.keys())
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
        sgm_patterns = ["input_blocks", "middle_block", "output_blocks"]

        # 2. check if needs remapping, if not return original dict
        is_in_sgm_format = False
        for key in all_keys:
            if any(p in key for p in sgm_patterns):
                is_in_sgm_format = True
                break

        if not is_in_sgm_format:
            return state_dict

        # 3. Else remap from SGM patterns
1162
1163
1164
1165
1166
        new_state_dict = {}
        inner_block_map = ["resnets", "attentions", "upsamplers"]

        # Retrieves # of down, mid and up blocks
        input_block_ids, middle_block_ids, output_block_ids = set(), set(), set()
1167
1168
1169
1170
1171

        for layer in all_keys:
            if "text" in layer:
                new_state_dict[layer] = state_dict.pop(layer)
            else:
1172
                layer_id = int(layer.split(delimiter)[:block_slice_pos][-1])
1173
                if sgm_patterns[0] in layer:
1174
                    input_block_ids.add(layer_id)
1175
                elif sgm_patterns[1] in layer:
1176
                    middle_block_ids.add(layer_id)
1177
                elif sgm_patterns[2] in layer:
1178
1179
                    output_block_ids.add(layer_id)
                else:
1180
                    raise ValueError(f"Checkpoint not supported because layer {layer} not supported.")
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242

        input_blocks = {
            layer_id: [key for key in state_dict if f"input_blocks{delimiter}{layer_id}" in key]
            for layer_id in input_block_ids
        }
        middle_blocks = {
            layer_id: [key for key in state_dict if f"middle_block{delimiter}{layer_id}" in key]
            for layer_id in middle_block_ids
        }
        output_blocks = {
            layer_id: [key for key in state_dict if f"output_blocks{delimiter}{layer_id}" in key]
            for layer_id in output_block_ids
        }

        # Rename keys accordingly
        for i in input_block_ids:
            block_id = (i - 1) // (unet_config.layers_per_block + 1)
            layer_in_block_id = (i - 1) % (unet_config.layers_per_block + 1)

            for key in input_blocks[i]:
                inner_block_id = int(key.split(delimiter)[block_slice_pos])
                inner_block_key = inner_block_map[inner_block_id] if "op" not in key else "downsamplers"
                inner_layers_in_block = str(layer_in_block_id) if "op" not in key else "0"
                new_key = delimiter.join(
                    key.split(delimiter)[: block_slice_pos - 1]
                    + [str(block_id), inner_block_key, inner_layers_in_block]
                    + key.split(delimiter)[block_slice_pos + 1 :]
                )
                new_state_dict[new_key] = state_dict.pop(key)

        for i in middle_block_ids:
            key_part = None
            if i == 0:
                key_part = [inner_block_map[0], "0"]
            elif i == 1:
                key_part = [inner_block_map[1], "0"]
            elif i == 2:
                key_part = [inner_block_map[0], "1"]
            else:
                raise ValueError(f"Invalid middle block id {i}.")

            for key in middle_blocks[i]:
                new_key = delimiter.join(
                    key.split(delimiter)[: block_slice_pos - 1] + key_part + key.split(delimiter)[block_slice_pos:]
                )
                new_state_dict[new_key] = state_dict.pop(key)

        for i in output_block_ids:
            block_id = i // (unet_config.layers_per_block + 1)
            layer_in_block_id = i % (unet_config.layers_per_block + 1)

            for key in output_blocks[i]:
                inner_block_id = int(key.split(delimiter)[block_slice_pos])
                inner_block_key = inner_block_map[inner_block_id]
                inner_layers_in_block = str(layer_in_block_id) if inner_block_id < 2 else "0"
                new_key = delimiter.join(
                    key.split(delimiter)[: block_slice_pos - 1]
                    + [str(block_id), inner_block_key, inner_layers_in_block]
                    + key.split(delimiter)[block_slice_pos + 1 :]
                )
                new_state_dict[new_key] = state_dict.pop(key)

1243
        if len(state_dict) > 0:
1244
1245
1246
1247
1248
1249
            raise ValueError("At this point all state dict entries have to be converted.")

        return new_state_dict

    @classmethod
    def load_lora_into_unet(cls, state_dict, network_alphas, unet):
Will Berman's avatar
Will Berman committed
1250
        """
1251
        This will load the LoRA layers specified in `state_dict` into `unet`.
Will Berman's avatar
Will Berman committed
1252
1253
1254
1255
1256
1257

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
1258
            network_alphas (`Dict[str, float]`):
Will Berman's avatar
Will Berman committed
1259
1260
1261
1262
                See `LoRALinearLayer` for more details.
            unet (`UNet2DConditionModel`):
                The UNet model to load the LoRA layers into.
        """
1263
1264
1265
1266
        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
        # their prefixes.
        keys = list(state_dict.keys())
1267

Will Berman's avatar
Will Berman committed
1268
        if all(key.startswith(cls.unet_name) or key.startswith(cls.text_encoder_name) for key in keys):
1269
            # Load the layers corresponding to UNet.
Will Berman's avatar
Will Berman committed
1270
            logger.info(f"Loading {cls.unet_name}.")
1271

1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
            unet_keys = [k for k in keys if k.startswith(cls.unet_name)]
            state_dict = {k.replace(f"{cls.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}

            if network_alphas is not None:
                alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.unet_name)]
                network_alphas = {
                    k.replace(f"{cls.unet_name}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
                }

        else:
            # Otherwise, we're dealing with the old format. This means the `state_dict` should only
            # contain the module names of the `unet` as its keys WITHOUT any prefix.
zideliu's avatar
zideliu committed
1284
            warn_message = "You have saved the LoRA weights using the old format. To convert the old LoRA weights to the new format, you can first load them in a dictionary and then create a new dictionary like the following: `new_state_dict = {f'unet.{module_name}': params for module_name, params in old_state_dict.items()}`."
1285
            warnings.warn(warn_message)
1286

1287
1288
1289
        # load loras into unet
        unet.load_attn_procs(state_dict, network_alphas=network_alphas)

Will Berman's avatar
Will Berman committed
1290
    @classmethod
1291
    def load_lora_into_text_encoder(cls, state_dict, network_alphas, text_encoder, prefix=None, lora_scale=1.0):
Will Berman's avatar
Will Berman committed
1292
1293
1294
1295
1296
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
1297
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
Will Berman's avatar
Will Berman committed
1298
                additional `text_encoder` to distinguish between unet lora layers.
1299
            network_alphas (`Dict[str, float]`):
Will Berman's avatar
Will Berman committed
1300
1301
1302
                See `LoRALinearLayer` for more details.
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
1303
1304
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
Will Berman's avatar
Will Berman committed
1305
1306
1307
1308
1309
1310
1311
1312
1313
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
        """

        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
        # their prefixes.
        keys = list(state_dict.keys())
1314
1315
        prefix = cls.text_encoder_name if prefix is None else prefix

1316
        # Safe prefix to check with.
1317
        if any(cls.text_encoder_name in key for key in keys):
Will Berman's avatar
Will Berman committed
1318
            # Load the layers corresponding to text encoder and make necessary adjustments.
1319
            text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split(".")[0] == prefix]
Will Berman's avatar
Will Berman committed
1320
            text_encoder_lora_state_dict = {
1321
                k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys
Will Berman's avatar
Will Berman committed
1322
            }
1323

Will Berman's avatar
Will Berman committed
1324
            if len(text_encoder_lora_state_dict) > 0:
1325
                logger.info(f"Loading {prefix}.")
1326
                rank = {}
Will Berman's avatar
Will Berman committed
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364

                if any("to_out_lora" in k for k in text_encoder_lora_state_dict.keys()):
                    # Convert from the old naming convention to the new naming convention.
                    #
                    # Previously, the old LoRA layers were stored on the state dict at the
                    # same level as the attention block i.e.
                    # `text_model.encoder.layers.11.self_attn.to_out_lora.up.weight`.
                    #
                    # This is no actual module at that point, they were monkey patched on to the
                    # existing module. We want to be able to load them via their actual state dict.
                    # They're in `PatchedLoraProjection.lora_linear_layer` now.
                    for name, _ in text_encoder_attn_modules(text_encoder):
                        text_encoder_lora_state_dict[
                            f"{name}.q_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_q_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.k_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_k_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.v_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_v_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.out_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_out_lora.up.weight")

                        text_encoder_lora_state_dict[
                            f"{name}.q_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_q_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.k_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_k_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.v_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_v_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.out_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_out_lora.down.weight")

1365
1366
1367
1368
                for name, _ in text_encoder_attn_modules(text_encoder):
                    rank_key = f"{name}.out_proj.lora_linear_layer.up.weight"
                    rank.update({rank_key: text_encoder_lora_state_dict[rank_key].shape[1]})

1369
                patch_mlp = any(".mlp." in key for key in text_encoder_lora_state_dict.keys())
1370
1371
1372
1373
1374
1375
                if patch_mlp:
                    for name, _ in text_encoder_mlp_modules(text_encoder):
                        rank_key_fc1 = f"{name}.fc1.lora_linear_layer.up.weight"
                        rank_key_fc2 = f"{name}.fc2.lora_linear_layer.up.weight"
                        rank.update({rank_key_fc1: text_encoder_lora_state_dict[rank_key_fc1].shape[1]})
                        rank.update({rank_key_fc2: text_encoder_lora_state_dict[rank_key_fc2].shape[1]})
Will Berman's avatar
Will Berman committed
1376

1377
1378
1379
1380
1381
1382
1383
1384
                if network_alphas is not None:
                    alpha_keys = [
                        k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix
                    ]
                    network_alphas = {
                        k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
                    }

1385
1386
1387
1388
1389
1390
1391
                cls._modify_text_encoder(
                    text_encoder,
                    lora_scale,
                    network_alphas,
                    rank=rank,
                    patch_mlp=patch_mlp,
                )
Will Berman's avatar
Will Berman committed
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

                # set correct dtype & device
                text_encoder_lora_state_dict = {
                    k: v.to(device=text_encoder.device, dtype=text_encoder.dtype)
                    for k, v in text_encoder_lora_state_dict.items()
                }
                load_state_dict_results = text_encoder.load_state_dict(text_encoder_lora_state_dict, strict=False)
                if len(load_state_dict_results.unexpected_keys) != 0:
                    raise ValueError(
                        f"failed to load text encoder state dict, unexpected keys: {load_state_dict_results.unexpected_keys}"
                    )

1404
1405
1406
1407
1408
1409
    @property
    def lora_scale(self) -> float:
        # property function that returns the lora scale which can be set at run time by the pipeline.
        # if _lora_scale has not been set, return 1
        return self._lora_scale if hasattr(self, "_lora_scale") else 1.0

1410
    def _remove_text_encoder_monkey_patch(self):
Will Berman's avatar
Will Berman committed
1411
1412
1413
1414
1415
1416
        self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)

    @classmethod
    def _remove_text_encoder_monkey_patch_classmethod(cls, text_encoder):
        for _, attn_module in text_encoder_attn_modules(text_encoder):
            if isinstance(attn_module.q_proj, PatchedLoraProjection):
Patrick von Platen's avatar
Patrick von Platen committed
1417
1418
1419
1420
                attn_module.q_proj.lora_linear_layer = None
                attn_module.k_proj.lora_linear_layer = None
                attn_module.v_proj.lora_linear_layer = None
                attn_module.out_proj.lora_linear_layer = None
Will Berman's avatar
Will Berman committed
1421

1422
1423
        for _, mlp_module in text_encoder_mlp_modules(text_encoder):
            if isinstance(mlp_module.fc1, PatchedLoraProjection):
Patrick von Platen's avatar
Patrick von Platen committed
1424
1425
                mlp_module.fc1.lora_linear_layer = None
                mlp_module.fc2.lora_linear_layer = None
1426

Will Berman's avatar
Will Berman committed
1427
    @classmethod
1428
1429
1430
1431
    def _modify_text_encoder(
        cls,
        text_encoder,
        lora_scale=1,
1432
        network_alphas=None,
1433
        rank: Union[Dict[str, int], int] = 4,
1434
1435
1436
        dtype=None,
        patch_mlp=False,
    ):
1437
1438
1439
        r"""
        Monkey-patches the forward passes of attention modules of the text encoder.
        """
1440
1441

        # First, remove any monkey-patch that might have been applied before
Will Berman's avatar
Will Berman committed
1442
        cls._remove_text_encoder_monkey_patch_classmethod(text_encoder)
1443

Will Berman's avatar
Will Berman committed
1444
        lora_parameters = []
1445
        network_alphas = {} if network_alphas is None else network_alphas
1446
        is_network_alphas_populated = len(network_alphas) > 0
1447
1448

        for name, attn_module in text_encoder_attn_modules(text_encoder):
1449
1450
1451
1452
            query_alpha = network_alphas.pop(name + ".to_q_lora.down.weight.alpha", None)
            key_alpha = network_alphas.pop(name + ".to_k_lora.down.weight.alpha", None)
            value_alpha = network_alphas.pop(name + ".to_v_lora.down.weight.alpha", None)
            out_alpha = network_alphas.pop(name + ".to_out_lora.down.weight.alpha", None)
1453

1454
1455
1456
1457
1458
            if isinstance(rank, dict):
                current_rank = rank.pop(f"{name}.out_proj.lora_linear_layer.up.weight")
            else:
                current_rank = rank

Patrick von Platen's avatar
Patrick von Platen committed
1459
1460
1461
1462
1463
            q_linear_layer = (
                attn_module.q_proj.regular_linear_layer
                if isinstance(attn_module.q_proj, PatchedLoraProjection)
                else attn_module.q_proj
            )
Will Berman's avatar
Will Berman committed
1464
            attn_module.q_proj = PatchedLoraProjection(
Patrick von Platen's avatar
Patrick von Platen committed
1465
                q_linear_layer, lora_scale, network_alpha=query_alpha, rank=current_rank, dtype=dtype
1466
            )
Will Berman's avatar
Will Berman committed
1467
            lora_parameters.extend(attn_module.q_proj.lora_linear_layer.parameters())
1468

Patrick von Platen's avatar
Patrick von Platen committed
1469
1470
1471
1472
1473
            k_linear_layer = (
                attn_module.k_proj.regular_linear_layer
                if isinstance(attn_module.k_proj, PatchedLoraProjection)
                else attn_module.k_proj
            )
Will Berman's avatar
Will Berman committed
1474
            attn_module.k_proj = PatchedLoraProjection(
Patrick von Platen's avatar
Patrick von Platen committed
1475
                k_linear_layer, lora_scale, network_alpha=key_alpha, rank=current_rank, dtype=dtype
Will Berman's avatar
Will Berman committed
1476
1477
            )
            lora_parameters.extend(attn_module.k_proj.lora_linear_layer.parameters())
1478

Patrick von Platen's avatar
Patrick von Platen committed
1479
1480
1481
1482
1483
            v_linear_layer = (
                attn_module.v_proj.regular_linear_layer
                if isinstance(attn_module.v_proj, PatchedLoraProjection)
                else attn_module.v_proj
            )
Will Berman's avatar
Will Berman committed
1484
            attn_module.v_proj = PatchedLoraProjection(
Patrick von Platen's avatar
Patrick von Platen committed
1485
                v_linear_layer, lora_scale, network_alpha=value_alpha, rank=current_rank, dtype=dtype
Will Berman's avatar
Will Berman committed
1486
1487
            )
            lora_parameters.extend(attn_module.v_proj.lora_linear_layer.parameters())
1488

Patrick von Platen's avatar
Patrick von Platen committed
1489
1490
1491
1492
1493
            out_linear_layer = (
                attn_module.out_proj.regular_linear_layer
                if isinstance(attn_module.out_proj, PatchedLoraProjection)
                else attn_module.out_proj
            )
Will Berman's avatar
Will Berman committed
1494
            attn_module.out_proj = PatchedLoraProjection(
Patrick von Platen's avatar
Patrick von Platen committed
1495
                out_linear_layer, lora_scale, network_alpha=out_alpha, rank=current_rank, dtype=dtype
Will Berman's avatar
Will Berman committed
1496
1497
            )
            lora_parameters.extend(attn_module.out_proj.lora_linear_layer.parameters())
1498

1499
        if patch_mlp:
1500
            for name, mlp_module in text_encoder_mlp_modules(text_encoder):
1501
1502
1503
                fc1_alpha = network_alphas.pop(name + ".fc1.lora_linear_layer.down.weight.alpha", None)
                fc2_alpha = network_alphas.pop(name + ".fc2.lora_linear_layer.down.weight.alpha", None)

1504
1505
                current_rank_fc1 = rank.pop(f"{name}.fc1.lora_linear_layer.up.weight")
                current_rank_fc2 = rank.pop(f"{name}.fc2.lora_linear_layer.up.weight")
1506

Patrick von Platen's avatar
Patrick von Platen committed
1507
1508
1509
1510
1511
                fc1_linear_layer = (
                    mlp_module.fc1.regular_linear_layer
                    if isinstance(mlp_module.fc1, PatchedLoraProjection)
                    else mlp_module.fc1
                )
1512
                mlp_module.fc1 = PatchedLoraProjection(
Patrick von Platen's avatar
Patrick von Platen committed
1513
                    fc1_linear_layer, lora_scale, network_alpha=fc1_alpha, rank=current_rank_fc1, dtype=dtype
1514
1515
1516
                )
                lora_parameters.extend(mlp_module.fc1.lora_linear_layer.parameters())

Patrick von Platen's avatar
Patrick von Platen committed
1517
1518
1519
1520
1521
                fc2_linear_layer = (
                    mlp_module.fc2.regular_linear_layer
                    if isinstance(mlp_module.fc2, PatchedLoraProjection)
                    else mlp_module.fc2
                )
1522
                mlp_module.fc2 = PatchedLoraProjection(
Patrick von Platen's avatar
Patrick von Platen committed
1523
                    fc2_linear_layer, lora_scale, network_alpha=fc2_alpha, rank=current_rank_fc2, dtype=dtype
1524
1525
1526
                )
                lora_parameters.extend(mlp_module.fc2.lora_linear_layer.parameters())

1527
1528
1529
1530
1531
        if is_network_alphas_populated and len(network_alphas) > 0:
            raise ValueError(
                f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
            )

Will Berman's avatar
Will Berman committed
1532
        return lora_parameters
1533
1534
1535
1536
1537

    @classmethod
    def save_lora_weights(
        self,
        save_directory: Union[str, os.PathLike],
1538
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1539
1540
1541
1542
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
1543
        safe_serialization: bool = True,
1544
1545
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
1546
        Save the LoRA parameters corresponding to the UNet and text encoder.
1547
1548
1549

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
1550
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
1551
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
1552
1553
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
Steven Liu's avatar
Steven Liu committed
1554
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
1555
                encoder LoRA state dict because it comes from 🤗 Transformers.
1556
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
1557
1558
1559
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
1560
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
1561
1562
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
1563
                `DIFFUSERS_SAVE_MODE`.
1564
1565
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
1566
1567
1568
        """
        # Create a flat dictionary.
        state_dict = {}
1569
1570

        # Populate the dictionary.
1571
        if unet_lora_layers is not None:
1572
1573
1574
1575
1576
            weights = (
                unet_lora_layers.state_dict() if isinstance(unet_lora_layers, torch.nn.Module) else unet_lora_layers
            )

            unet_lora_state_dict = {f"{self.unet_name}.{module_name}": param for module_name, param in weights.items()}
1577
            state_dict.update(unet_lora_state_dict)
1578

1579
        if text_encoder_lora_layers is not None:
1580
1581
1582
1583
1584
1585
            weights = (
                text_encoder_lora_layers.state_dict()
                if isinstance(text_encoder_lora_layers, torch.nn.Module)
                else text_encoder_lora_layers
            )

1586
            text_encoder_lora_state_dict = {
1587
                f"{self.text_encoder_name}.{module_name}": param for module_name, param in weights.items()
1588
1589
1590
1591
            }
            state_dict.update(text_encoder_lora_state_dict)

        # Save the model
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
        self.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def write_lora_layers(
        state_dict: Dict[str, torch.Tensor],
        save_directory: str,
        is_main_process: bool,
        weight_name: str,
        save_function: Callable,
        safe_serialization: bool,
    ):
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save

        os.makedirs(save_directory, exist_ok=True)

1624
1625
1626
1627
1628
1629
1630
1631
        if weight_name is None:
            if safe_serialization:
                weight_name = LORA_WEIGHT_NAME_SAFE
            else:
                weight_name = LORA_WEIGHT_NAME

        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
1lint's avatar
1lint committed
1632

Will Berman's avatar
Will Berman committed
1633
1634
    @classmethod
    def _convert_kohya_lora_to_diffusers(cls, state_dict):
1635
1636
        unet_state_dict = {}
        te_state_dict = {}
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
        te2_state_dict = {}
        network_alphas = {}

        # every down weight has a corresponding up weight and potentially an alpha weight
        lora_keys = [k for k in state_dict.keys() if k.endswith("lora_down.weight")]
        for key in lora_keys:
            lora_name = key.split(".")[0]
            lora_name_up = lora_name + ".lora_up.weight"
            lora_name_alpha = lora_name + ".alpha"

            if lora_name.startswith("lora_unet_"):
                diffusers_name = key.replace("lora_unet_", "").replace("_", ".")

                if "input.blocks" in diffusers_name:
                    diffusers_name = diffusers_name.replace("input.blocks", "down_blocks")
                else:
1653
                    diffusers_name = diffusers_name.replace("down.blocks", "down_blocks")
1654
1655
1656
1657

                if "middle.block" in diffusers_name:
                    diffusers_name = diffusers_name.replace("middle.block", "mid_block")
                else:
1658
                    diffusers_name = diffusers_name.replace("mid.block", "mid_block")
1659
1660
1661
                if "output.blocks" in diffusers_name:
                    diffusers_name = diffusers_name.replace("output.blocks", "up_blocks")
                else:
1662
                    diffusers_name = diffusers_name.replace("up.blocks", "up_blocks")
1663

1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
                diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks")
                diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora")
                diffusers_name = diffusers_name.replace("proj.in", "proj_in")
                diffusers_name = diffusers_name.replace("proj.out", "proj_out")
                diffusers_name = diffusers_name.replace("emb.layers", "time_emb_proj")

                # SDXL specificity.
                if "emb" in diffusers_name:
                    pattern = r"\.\d+(?=\D*$)"
                    diffusers_name = re.sub(pattern, "", diffusers_name, count=1)
                if ".in." in diffusers_name:
                    diffusers_name = diffusers_name.replace("in.layers.2", "conv1")
                if ".out." in diffusers_name:
                    diffusers_name = diffusers_name.replace("out.layers.3", "conv2")
                if "downsamplers" in diffusers_name or "upsamplers" in diffusers_name:
                    diffusers_name = diffusers_name.replace("op", "conv")
                if "skip" in diffusers_name:
                    diffusers_name = diffusers_name.replace("skip.connection", "conv_shortcut")

                if "transformer_blocks" in diffusers_name:
                    if "attn1" in diffusers_name or "attn2" in diffusers_name:
                        diffusers_name = diffusers_name.replace("attn1", "attn1.processor")
                        diffusers_name = diffusers_name.replace("attn2", "attn2.processor")
                        unet_state_dict[diffusers_name] = state_dict.pop(key)
                        unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                    elif "ff" in diffusers_name:
                        unet_state_dict[diffusers_name] = state_dict.pop(key)
                        unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif any(key in diffusers_name for key in ("proj_in", "proj_out")):
                    unet_state_dict[diffusers_name] = state_dict.pop(key)
                    unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                else:
                    unet_state_dict[diffusers_name] = state_dict.pop(key)
                    unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            elif lora_name.startswith("lora_te_"):
                diffusers_name = key.replace("lora_te_", "").replace("_", ".")
                diffusers_name = diffusers_name.replace("text.model", "text_model")
                diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                if "self_attn" in diffusers_name:
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif "mlp" in diffusers_name:
                    # Be aware that this is the new diffusers convention and the rest of the code might
                    # not utilize it yet.
                    diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # (sayakpaul): Duplicate code. Needs to be cleaned.
            elif lora_name.startswith("lora_te1_"):
                diffusers_name = key.replace("lora_te1_", "").replace("_", ".")
                diffusers_name = diffusers_name.replace("text.model", "text_model")
                diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                if "self_attn" in diffusers_name:
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif "mlp" in diffusers_name:
                    # Be aware that this is the new diffusers convention and the rest of the code might
                    # not utilize it yet.
                    diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # (sayakpaul): Duplicate code. Needs to be cleaned.
            elif lora_name.startswith("lora_te2_"):
                diffusers_name = key.replace("lora_te2_", "").replace("_", ".")
                diffusers_name = diffusers_name.replace("text.model", "text_model")
                diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                if "self_attn" in diffusers_name:
                    te2_state_dict[diffusers_name] = state_dict.pop(key)
                    te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif "mlp" in diffusers_name:
                    # Be aware that this is the new diffusers convention and the rest of the code might
                    # not utilize it yet.
                    diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
                    te2_state_dict[diffusers_name] = state_dict.pop(key)
                    te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # Rename the alphas so that they can be mapped appropriately.
            if lora_name_alpha in state_dict:
                alpha = state_dict.pop(lora_name_alpha).item()
                if lora_name_alpha.startswith("lora_unet_"):
                    prefix = "unet."
                elif lora_name_alpha.startswith(("lora_te_", "lora_te1_")):
                    prefix = "text_encoder."
                else:
                    prefix = "text_encoder_2."
                new_name = prefix + diffusers_name.split(".lora.")[0] + ".alpha"
                network_alphas.update({new_name: alpha})

        if len(state_dict) > 0:
            raise ValueError(
                f"The following keys have not been correctly be renamed: \n\n {', '.join(state_dict.keys())}"
1773
            )
1774

1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
        logger.info("Kohya-style checkpoint detected.")
        unet_state_dict = {f"{cls.unet_name}.{module_name}": params for module_name, params in unet_state_dict.items()}
        te_state_dict = {
            f"{cls.text_encoder_name}.{module_name}": params for module_name, params in te_state_dict.items()
        }
        te2_state_dict = (
            {f"text_encoder_2.{module_name}": params for module_name, params in te2_state_dict.items()}
            if len(te2_state_dict) > 0
            else None
        )
        if te2_state_dict is not None:
            te_state_dict.update(te2_state_dict)

1788
        new_state_dict = {**unet_state_dict, **te_state_dict}
1789
        return new_state_dict, network_alphas
1790

1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
    def unload_lora_weights(self):
        """
        Unloads the LoRA parameters.

        Examples:

        ```python
        >>> # Assuming `pipeline` is already loaded with the LoRA parameters.
        >>> pipeline.unload_lora_weights()
        >>> ...
        ```
        """
1803
1804
1805
        for _, module in self.unet.named_modules():
            if hasattr(module, "set_lora_layer"):
                module.set_lora_layer(None)
1806

1807
1808
1809
        # Safe to call the following regardless of LoRA.
        self._remove_text_encoder_monkey_patch()

Patrick von Platen's avatar
Patrick von Platen committed
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
    def fuse_lora(self, fuse_unet: bool = True, fuse_text_encoder: bool = True):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            fuse_unet (`bool`, defaults to `True`): Whether to fuse the UNet LoRA parameters.
            fuse_text_encoder (`bool`, defaults to `True`):
                Whether to fuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
                LoRA parameters then it won't have any effect.
        """
        if fuse_unet:
            self.unet.fuse_lora()

        def fuse_text_encoder_lora(text_encoder):
            for _, attn_module in text_encoder_attn_modules(text_encoder):
                if isinstance(attn_module.q_proj, PatchedLoraProjection):
                    attn_module.q_proj._fuse_lora()
                    attn_module.k_proj._fuse_lora()
                    attn_module.v_proj._fuse_lora()
                    attn_module.out_proj._fuse_lora()

            for _, mlp_module in text_encoder_mlp_modules(text_encoder):
                if isinstance(mlp_module.fc1, PatchedLoraProjection):
                    mlp_module.fc1._fuse_lora()
                    mlp_module.fc2._fuse_lora()

        if fuse_text_encoder:
            if hasattr(self, "text_encoder"):
                fuse_text_encoder_lora(self.text_encoder)
            if hasattr(self, "text_encoder_2"):
                fuse_text_encoder_lora(self.text_encoder_2)

    def unfuse_lora(self, unfuse_unet: bool = True, unfuse_text_encoder: bool = True):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
            unfuse_text_encoder (`bool`, defaults to `True`):
                Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
                LoRA parameters then it won't have any effect.
        """
        if unfuse_unet:
            self.unet.unfuse_lora()

        def unfuse_text_encoder_lora(text_encoder):
            for _, attn_module in text_encoder_attn_modules(text_encoder):
                if isinstance(attn_module.q_proj, PatchedLoraProjection):
                    attn_module.q_proj._unfuse_lora()
                    attn_module.k_proj._unfuse_lora()
                    attn_module.v_proj._unfuse_lora()
                    attn_module.out_proj._unfuse_lora()

            for _, mlp_module in text_encoder_mlp_modules(text_encoder):
                if isinstance(mlp_module.fc1, PatchedLoraProjection):
                    mlp_module.fc1._unfuse_lora()
                    mlp_module.fc2._unfuse_lora()

        if unfuse_text_encoder:
            if hasattr(self, "text_encoder"):
                unfuse_text_encoder_lora(self.text_encoder)
            if hasattr(self, "text_encoder_2"):
                unfuse_text_encoder_lora(self.text_encoder_2)

1lint's avatar
1lint committed
1887

Patrick von Platen's avatar
Patrick von Platen committed
1888
class FromSingleFileMixin:
Steven Liu's avatar
Steven Liu committed
1889
1890
1891
    """
    Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`].
    """
1lint's avatar
1lint committed
1892
1893

    @classmethod
Patrick von Platen's avatar
Patrick von Platen committed
1894
1895
1896
1897
1898
1899
1900
    def from_ckpt(cls, *args, **kwargs):
        deprecation_message = "The function `from_ckpt` is deprecated in favor of `from_single_file` and will be removed in diffusers v.0.21. Please make sure to use `StableDiffusionPipeline.from_single_file(...)` instead."
        deprecate("from_ckpt", "0.21.0", deprecation_message, standard_warn=False)
        return cls.from_single_file(*args, **kwargs)

    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
1lint's avatar
1lint committed
1901
        r"""
1902
1903
        Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors`
        format. The pipeline is set in evaluation mode (`model.eval()`) by default.
1lint's avatar
1lint committed
1904
1905
1906
1907

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
Steven Liu's avatar
Steven Liu committed
1908
1909
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
1lint's avatar
1lint committed
1910
1911
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
1912
1913
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
1lint's avatar
1lint committed
1914
1915
1916
1917
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1918
1919
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
1lint's avatar
1lint committed
1920
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1921
1922
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
1lint's avatar
1lint committed
1923
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1924
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1lint's avatar
1lint committed
1925
1926
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
1927
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
Steven Liu's avatar
Steven Liu committed
1928
                won't be downloaded from the Hub.
1lint's avatar
1lint committed
1929
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1930
1931
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1lint's avatar
1lint committed
1932
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1933
1934
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
1935
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
1936
1937
1938
1939
1940
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            extract_ema (`bool`, *optional*, defaults to `False`):
                Whether to extract the EMA weights or not. Pass `True` to extract the EMA weights which usually yield
1941
                higher quality images for inference. Non-EMA weights are usually better for continuing finetuning.
1lint's avatar
1lint committed
1942
            upcast_attention (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
1943
                Whether the attention computation should always be upcasted.
1lint's avatar
1lint committed
1944
            image_size (`int`, *optional*, defaults to 512):
Steven Liu's avatar
Steven Liu committed
1945
1946
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
1lint's avatar
1lint committed
1947
            prediction_type (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1948
1949
1950
                The prediction type the model was trained on. Use `'epsilon'` for all Stable Diffusion v1 models and
                the Stable Diffusion v2 base model. Use `'v_prediction'` for Stable Diffusion v2.
            num_in_channels (`int`, *optional*, defaults to `None`):
1951
                The number of input channels. If `None`, it is automatically inferred.
Steven Liu's avatar
Steven Liu committed
1952
            scheduler_type (`str`, *optional*, defaults to `"pndm"`):
1lint's avatar
1lint committed
1953
1954
1955
                Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm",
                "ddim"]`.
            load_safety_checker (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
1956
                Whether to load the safety checker or not.
1957
1958
1959
1960
            text_encoder ([`~transformers.CLIPTextModel`], *optional*, defaults to `None`):
                An instance of `CLIPTextModel` to use, specifically the
                [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. If this
                parameter is `None`, the function loads a new instance of `CLIPTextModel` by itself if needed.
1961
1962
1963
            vae (`AutoencoderKL`, *optional*, defaults to `None`):
                Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. If
                this parameter is `None`, the function will load a new instance of [CLIP] by itself, if needed.
1964
1965
1966
            tokenizer ([`~transformers.CLIPTokenizer`], *optional*, defaults to `None`):
                An instance of `CLIPTokenizer` to use. If this parameter is `None`, the function loads a new instance
                of `CLIPTokenizer` by itself if needed.
1967
1968
1969
            original_config_file (`str`):
                Path to `.yaml` config file corresponding to the original architecture. If `None`, will be
                automatically inferred by looking for a key that only exists in SD2.0 models.
1lint's avatar
1lint committed
1970
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
1971
1972
1973
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.
1lint's avatar
1lint committed
1974
1975
1976
1977
1978
1979
1980

        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
Patrick von Platen's avatar
Patrick von Platen committed
1981
        >>> pipeline = StableDiffusionPipeline.from_single_file(
1lint's avatar
1lint committed
1982
1983
1984
1985
1986
        ...     "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
        ... )

        >>> # Download pipeline from local file
        >>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
Patrick von Platen's avatar
Patrick von Platen committed
1987
        >>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly")
1lint's avatar
1lint committed
1988
1989

        >>> # Enable float16 and move to GPU
Patrick von Platen's avatar
Patrick von Platen committed
1990
        >>> pipeline = StableDiffusionPipeline.from_single_file(
1lint's avatar
1lint committed
1991
1992
1993
1994
1995
1996
1997
1998
1999
        ...     "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
        ...     torch_dtype=torch.float16,
        ... )
        >>> pipeline.to("cuda")
        ```
        """
        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt

2000
        original_config_file = kwargs.pop("original_config_file", None)
1lint's avatar
1lint committed
2001
2002
2003
2004
2005
2006
2007
2008
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        extract_ema = kwargs.pop("extract_ema", False)
2009
        image_size = kwargs.pop("image_size", None)
1lint's avatar
1lint committed
2010
2011
2012
2013
2014
        scheduler_type = kwargs.pop("scheduler_type", "pndm")
        num_in_channels = kwargs.pop("num_in_channels", None)
        upcast_attention = kwargs.pop("upcast_attention", None)
        load_safety_checker = kwargs.pop("load_safety_checker", True)
        prediction_type = kwargs.pop("prediction_type", None)
2015
        text_encoder = kwargs.pop("text_encoder", None)
2016
        vae = kwargs.pop("vae", None)
2017
        controlnet = kwargs.pop("controlnet", None)
2018
        tokenizer = kwargs.pop("tokenizer", None)
1lint's avatar
1lint committed
2019
2020
2021

        torch_dtype = kwargs.pop("torch_dtype", None)

2022
        use_safetensors = kwargs.pop("use_safetensors", None)
1lint's avatar
1lint committed
2023
2024
2025
2026
2027

        pipeline_name = cls.__name__
        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

2028
        if from_safetensors and use_safetensors is False:
1lint's avatar
1lint committed
2029
2030
2031
2032
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # TODO: For now we only support stable diffusion
        stable_unclip = None
2033
        model_type = None
1lint's avatar
1lint committed
2034

2035
2036
2037
2038
2039
2040
2041
2042
        if pipeline_name in [
            "StableDiffusionControlNetPipeline",
            "StableDiffusionControlNetImg2ImgPipeline",
            "StableDiffusionControlNetInpaintPipeline",
        ]:
            from .models.controlnet import ControlNetModel
            from .pipelines.controlnet.multicontrolnet import MultiControlNetModel

2043
            # Model type will be inferred from the checkpoint.
2044
2045
            if not isinstance(controlnet, (ControlNetModel, MultiControlNetModel)):
                raise ValueError("ControlNet needs to be passed if loading from ControlNet pipeline.")
1lint's avatar
1lint committed
2046
        elif "StableDiffusion" in pipeline_name:
2047
2048
            # Model type will be inferred from the checkpoint.
            pass
1lint's avatar
1lint committed
2049
        elif pipeline_name == "StableUnCLIPPipeline":
2050
            model_type = "FrozenOpenCLIPEmbedder"
1lint's avatar
1lint committed
2051
2052
            stable_unclip = "txt2img"
        elif pipeline_name == "StableUnCLIPImg2ImgPipeline":
2053
            model_type = "FrozenOpenCLIPEmbedder"
1lint's avatar
1lint committed
2054
2055
            stable_unclip = "img2img"
        elif pipeline_name == "PaintByExamplePipeline":
2056
            model_type = "PaintByExample"
1lint's avatar
1lint committed
2057
        elif pipeline_name == "LDMTextToImagePipeline":
2058
            model_type = "LDMTextToImage"
1lint's avatar
1lint committed
2059
2060
2061
2062
        else:
            raise ValueError(f"Unhandled pipeline class: {pipeline_name}")

        # remove huggingface url
2063
2064
2065
        has_valid_url_prefix = False
        valid_url_prefixes = ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]
        for prefix in valid_url_prefixes:
1lint's avatar
1lint committed
2066
2067
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]
2068
                has_valid_url_prefix = True
1lint's avatar
1lint committed
2069
2070
2071
2072

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
2073
2074
2075
2076
2077
            if not has_valid_url_prefix:
                raise ValueError(
                    f"The provided path is either not a file or a valid huggingface URL was not provided. Valid URLs begin with {', '.join(valid_url_prefixes)}"
                )

1lint's avatar
1lint committed
2078
            # get repo_id and (potentially nested) file path of ckpt in repo
2079
2080
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])
1lint's avatar
1lint committed
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        pipe = download_from_original_stable_diffusion_ckpt(
            pretrained_model_link_or_path,
            pipeline_class=cls,
            model_type=model_type,
            stable_unclip=stable_unclip,
            controlnet=controlnet,
            from_safetensors=from_safetensors,
            extract_ema=extract_ema,
            image_size=image_size,
            scheduler_type=scheduler_type,
            num_in_channels=num_in_channels,
            upcast_attention=upcast_attention,
            load_safety_checker=load_safety_checker,
            prediction_type=prediction_type,
2114
            text_encoder=text_encoder,
2115
            vae=vae,
2116
            tokenizer=tokenizer,
2117
            original_config_file=original_config_file,
1lint's avatar
1lint committed
2118
2119
2120
2121
2122
2123
        )

        if torch_dtype is not None:
            pipe.to(torch_dtype=torch_dtype)

        return pipe
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227


class FromOriginalVAEMixin:
    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
        r"""
        Instantiate a [`AutoencoderKL`] from pretrained controlnet weights saved in the original `.ckpt` or
        `.safetensors` format. The pipeline is format. The pipeline is set in evaluation mode (`model.eval()`) by
        default.

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to True, the model
                won't be downloaded from the Hub.
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            image_size (`int`, *optional*, defaults to 512):
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            upcast_attention (`bool`, *optional*, defaults to `None`):
                Whether the attention computation should always be upcasted.
            scaling_factor (`float`, *optional*, defaults to 0.18215):
                The component-wise standard deviation of the trained latent space computed using the first batch of the
                training set. This is used to scale the latent space to have unit variance when training the diffusion
                model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
                diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z
                = 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution
                Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.

        <Tip warning={true}>

            Make sure to pass both `image_size` and `scaling_factor` to `from_single_file()` if you want to load
            a VAE that does accompany a stable diffusion model of v2 or higher or SDXL.

        </Tip>

        Examples:

        ```py
        from diffusers import AutoencoderKL

        url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"  # can also be local file
        model = AutoencoderKL.from_single_file(url)
        ```
        """
        if not is_omegaconf_available():
            raise ValueError(BACKENDS_MAPPING["omegaconf"][1])

        from omegaconf import OmegaConf

        from .models import AutoencoderKL

        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import (
            convert_ldm_vae_checkpoint,
            create_vae_diffusers_config,
        )

        config_file = kwargs.pop("config_file", None)
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        image_size = kwargs.pop("image_size", None)
        scaling_factor = kwargs.pop("scaling_factor", None)
        kwargs.pop("upcast_attention", None)

        torch_dtype = kwargs.pop("torch_dtype", None)

2228
        use_safetensors = kwargs.pop("use_safetensors", None)
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400

        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

        if from_safetensors and use_safetensors is False:
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # remove huggingface url
        for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
            # get repo_id and (potentially nested) file path of ckpt in repo
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        if from_safetensors:
            from safetensors import safe_open

            checkpoint = {}
            with safe_open(pretrained_model_link_or_path, framework="pt", device="cpu") as f:
                for key in f.keys():
                    checkpoint[key] = f.get_tensor(key)
        else:
            checkpoint = torch.load(pretrained_model_link_or_path, map_location="cpu")

        if "state_dict" in checkpoint:
            checkpoint = checkpoint["state_dict"]

        if config_file is None:
            config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
            config_file = BytesIO(requests.get(config_url).content)

        original_config = OmegaConf.load(config_file)

        # default to sd-v1-5
        image_size = image_size or 512

        vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
        converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)

        if scaling_factor is None:
            if (
                "model" in original_config
                and "params" in original_config.model
                and "scale_factor" in original_config.model.params
            ):
                vae_scaling_factor = original_config.model.params.scale_factor
            else:
                vae_scaling_factor = 0.18215  # default SD scaling factor

        vae_config["scaling_factor"] = vae_scaling_factor

        ctx = init_empty_weights if is_accelerate_available() else nullcontext
        with ctx():
            vae = AutoencoderKL(**vae_config)

        if is_accelerate_available():
            for param_name, param in converted_vae_checkpoint.items():
                set_module_tensor_to_device(vae, param_name, "cpu", value=param)
        else:
            vae.load_state_dict(converted_vae_checkpoint)

        if torch_dtype is not None:
            vae.to(torch_dtype=torch_dtype)

        return vae


class FromOriginalControlnetMixin:
    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
        r"""
        Instantiate a [`ControlNetModel`] from pretrained controlnet weights saved in the original `.ckpt` or
        `.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to True, the model
                won't be downloaded from the Hub.
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            image_size (`int`, *optional*, defaults to 512):
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
            upcast_attention (`bool`, *optional*, defaults to `None`):
                Whether the attention computation should always be upcasted.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.

        Examples:

        ```py
        from diffusers import StableDiffusionControlnetPipeline, ControlNetModel

        url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth"  # can also be a local path
        model = ControlNetModel.from_single_file(url)

        url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors"  # can also be a local path
        pipe = StableDiffusionControlnetPipeline.from_single_file(url, controlnet=controlnet)
        ```
        """
        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt

        config_file = kwargs.pop("config_file", None)
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        num_in_channels = kwargs.pop("num_in_channels", None)
        use_linear_projection = kwargs.pop("use_linear_projection", None)
        revision = kwargs.pop("revision", None)
        extract_ema = kwargs.pop("extract_ema", False)
        image_size = kwargs.pop("image_size", None)
        upcast_attention = kwargs.pop("upcast_attention", None)

        torch_dtype = kwargs.pop("torch_dtype", None)

2401
        use_safetensors = kwargs.pop("use_safetensors", None)
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459

        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

        if from_safetensors and use_safetensors is False:
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # remove huggingface url
        for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
            # get repo_id and (potentially nested) file path of ckpt in repo
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        if config_file is None:
            config_url = "https://raw.githubusercontent.com/lllyasviel/ControlNet/main/models/cldm_v15.yaml"
            config_file = BytesIO(requests.get(config_url).content)

        image_size = image_size or 512

        controlnet = download_controlnet_from_original_ckpt(
            pretrained_model_link_or_path,
            original_config_file=config_file,
            image_size=image_size,
            extract_ema=extract_ema,
            num_in_channels=num_in_channels,
            upcast_attention=upcast_attention,
            from_safetensors=from_safetensors,
            use_linear_projection=use_linear_projection,
        )

        if torch_dtype is not None:
            controlnet.to(torch_dtype=torch_dtype)

        return controlnet