loaders.py 73.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
15
import warnings
16
from collections import defaultdict
1lint's avatar
1lint committed
17
from pathlib import Path
18
from typing import Callable, Dict, List, Optional, Union
19
20

import torch
21
import torch.nn.functional as F
1lint's avatar
1lint committed
22
from huggingface_hub import hf_hub_download
Will Berman's avatar
Will Berman committed
23
from torch import nn
24

25
from .models.attention_processor import (
Will Berman's avatar
Will Berman committed
26
27
    AttnAddedKVProcessor,
    AttnAddedKVProcessor2_0,
28
29
    AttnProcessor,
    AttnProcessor2_0,
30
31
    CustomDiffusionAttnProcessor,
    CustomDiffusionXFormersAttnProcessor,
Will Berman's avatar
Will Berman committed
32
    LoRAAttnAddedKVProcessor,
33
    LoRAAttnProcessor,
34
    LoRAAttnProcessor2_0,
Will Berman's avatar
Will Berman committed
35
    LoRALinearLayer,
36
    LoRAXFormersAttnProcessor,
Will Berman's avatar
Will Berman committed
37
    SlicedAttnAddedKVProcessor,
38
    XFormersAttnProcessor,
39
)
40
41
42
43
44
45
46
47
48
from .utils import (
    DIFFUSERS_CACHE,
    HF_HUB_OFFLINE,
    _get_model_file,
    deprecate,
    is_safetensors_available,
    is_transformers_available,
    logging,
)
49
50
51
52


if is_safetensors_available():
    import safetensors
53

54
if is_transformers_available():
Will Berman's avatar
Will Berman committed
55
    from transformers import CLIPTextModel, PreTrainedModel, PreTrainedTokenizer
56

57
58
59

logger = logging.get_logger(__name__)

60
61
TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"
62
63

LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
64
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
65

66
67
68
TEXT_INVERSION_NAME = "learned_embeds.bin"
TEXT_INVERSION_NAME_SAFE = "learned_embeds.safetensors"

69
70
71
CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin"
CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors"

72

Will Berman's avatar
Will Berman committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
class PatchedLoraProjection(nn.Module):
    def __init__(self, regular_linear_layer, lora_scale=1, network_alpha=None, rank=4, dtype=None):
        super().__init__()
        self.regular_linear_layer = regular_linear_layer

        device = self.regular_linear_layer.weight.device

        if dtype is None:
            dtype = self.regular_linear_layer.weight.dtype

        self.lora_linear_layer = LoRALinearLayer(
            self.regular_linear_layer.in_features,
            self.regular_linear_layer.out_features,
            network_alpha=network_alpha,
            device=device,
            dtype=dtype,
            rank=rank,
        )

        self.lora_scale = lora_scale

    def forward(self, input):
        return self.regular_linear_layer(input) + self.lora_scale * self.lora_linear_layer(input)


def text_encoder_attn_modules(text_encoder):
    attn_modules = []

    if isinstance(text_encoder, CLIPTextModel):
        for i, layer in enumerate(text_encoder.text_model.encoder.layers):
            name = f"text_model.encoder.layers.{i}.self_attn"
            mod = layer.self_attn
            attn_modules.append((name, mod))
    else:
        raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}")

    return attn_modules


def text_encoder_lora_state_dict(text_encoder):
    state_dict = {}

    for name, module in text_encoder_attn_modules(text_encoder):
        for k, v in module.q_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v

        for k, v in module.k_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v

        for k, v in module.v_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v

        for k, v in module.out_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v

    return state_dict


131
132
133
134
class AttnProcsLayers(torch.nn.Module):
    def __init__(self, state_dict: Dict[str, torch.Tensor]):
        super().__init__()
        self.layers = torch.nn.ModuleList(state_dict.values())
135
        self.mapping = dict(enumerate(state_dict.keys()))
136
137
        self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}

138
139
        # .processor for unet, .self_attn for text encoder
        self.split_keys = [".processor", ".self_attn"]
140

141
142
143
144
145
146
147
148
149
150
151
        # we add a hook to state_dict() and load_state_dict() so that the
        # naming fits with `unet.attn_processors`
        def map_to(module, state_dict, *args, **kwargs):
            new_state_dict = {}
            for key, value in state_dict.items():
                num = int(key.split(".")[1])  # 0 is always "layers"
                new_key = key.replace(f"layers.{num}", module.mapping[num])
                new_state_dict[new_key] = value

            return new_state_dict

152
153
154
155
156
157
158
159
160
        def remap_key(key, state_dict):
            for k in self.split_keys:
                if k in key:
                    return key.split(k)[0] + k

            raise ValueError(
                f"There seems to be a problem with the state_dict: {set(state_dict.keys())}. {key} has to have one of {self.split_keys}."
            )

161
162
163
        def map_from(module, state_dict, *args, **kwargs):
            all_keys = list(state_dict.keys())
            for key in all_keys:
164
                replace_key = remap_key(key, state_dict)
165
166
167
168
169
170
171
172
173
                new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
                state_dict[new_key] = state_dict[key]
                del state_dict[key]

        self._register_state_dict_hook(map_to)
        self._register_load_state_dict_pre_hook(map_from, with_module=True)


class UNet2DConditionLoadersMixin:
174
175
176
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME

177
178
    def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
        r"""
Steven Liu's avatar
Steven Liu committed
179
        Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be
180
        defined in
181
        [`cross_attention.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py)
182
183
184
185
186
187
        and be a `torch.nn.Module` class.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

Steven Liu's avatar
Steven Liu committed
188
189
190
191
                    - A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a directory (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
192
193
194
195
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
196
197
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
198
199
200
201
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
202
203
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
204
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
205
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
206
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
207
208
209
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
210
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
211
212
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
213
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
214
215
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
216
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
217
                The subfolder location of a model file within a larger model repository on the Hub or locally.
218
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
219
220
221
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
222
223
224
225
226
227
228
229
230
231
232

        """

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
233
        weight_name = kwargs.pop("weight_name", None)
234
        use_safetensors = kwargs.pop("use_safetensors", None)
235
236
237
        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
        network_alpha = kwargs.pop("network_alpha", None)
238
239
240

        if use_safetensors and not is_safetensors_available():
            raise ValueError(
241
                "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors"
242
243
244
245
246
247
            )

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = is_safetensors_available()
            allow_pickle = True
248
249
250
251
252
253

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

254
        model_file = None
255
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
256
            # Let's first try to load .safetensors weights
257
            if (use_safetensors and weight_name is None) or (
258
259
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
260
261
262
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
263
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
264
265
266
267
268
269
270
271
272
273
274
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
275
276
277
                except IOError as e:
                    if not allow_pickle:
                        raise e
278
279
                    # try loading non-safetensors weights
                    pass
280
281
282
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
283
                    weights_name=weight_name or LORA_WEIGHT_NAME,
284
285
286
287
288
289
290
291
292
293
294
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
295
296
297
298
299
300
301
        else:
            state_dict = pretrained_model_name_or_path_or_dict

        # fill attn processors
        attn_processors = {}

        is_lora = all("lora" in k for k in state_dict.keys())
302
        is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())
303
304

        if is_lora:
305
306
307
308
309
310
311
312
313
314
315
316
            is_new_lora_format = all(
                key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys()
            )
            if is_new_lora_format:
                # Strip the `"unet"` prefix.
                is_text_encoder_present = any(key.startswith(self.text_encoder_name) for key in state_dict.keys())
                if is_text_encoder_present:
                    warn_message = "The state_dict contains LoRA params corresponding to the text encoder which are not being used here. To use both UNet and text encoder related LoRA params, use [`pipe.load_lora_weights()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights)."
                    warnings.warn(warn_message)
                unet_keys = [k for k in state_dict.keys() if k.startswith(self.unet_name)]
                state_dict = {k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}

317
318
319
320
321
322
323
324
325
            lora_grouped_dict = defaultdict(dict)
            for key, value in state_dict.items():
                attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                lora_grouped_dict[attn_processor_key][sub_key] = value

            for key, value_dict in lora_grouped_dict.items():
                rank = value_dict["to_k_lora.down.weight"].shape[0]
                hidden_size = value_dict["to_k_lora.up.weight"].shape[0]

Will Berman's avatar
Will Berman committed
326
327
328
329
330
331
332
333
334
335
336
                attn_processor = self
                for sub_key in key.split("."):
                    attn_processor = getattr(attn_processor, sub_key)

                if isinstance(
                    attn_processor, (AttnAddedKVProcessor, SlicedAttnAddedKVProcessor, AttnAddedKVProcessor2_0)
                ):
                    cross_attention_dim = value_dict["add_k_proj_lora.down.weight"].shape[1]
                    attn_processor_class = LoRAAttnAddedKVProcessor
                else:
                    cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[1]
337
338
339
                    if isinstance(attn_processor, (XFormersAttnProcessor, LoRAXFormersAttnProcessor)):
                        attn_processor_class = LoRAXFormersAttnProcessor
                    else:
340
341
342
                        attn_processor_class = (
                            LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
                        )
Will Berman's avatar
Will Berman committed
343
344

                attn_processors[key] = attn_processor_class(
345
346
347
348
                    hidden_size=hidden_size,
                    cross_attention_dim=cross_attention_dim,
                    rank=rank,
                    network_alpha=network_alpha,
349
350
                )
                attn_processors[key].load_state_dict(value_dict)
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
        elif is_custom_diffusion:
            custom_diffusion_grouped_dict = defaultdict(dict)
            for key, value in state_dict.items():
                if len(value) == 0:
                    custom_diffusion_grouped_dict[key] = {}
                else:
                    if "to_out" in key:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                    else:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
                    custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value

            for key, value_dict in custom_diffusion_grouped_dict.items():
                if len(value_dict) == 0:
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
                    )
                else:
                    cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
                    hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
                    train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=True,
                        train_q_out=train_q_out,
                        hidden_size=hidden_size,
                        cross_attention_dim=cross_attention_dim,
                    )
                    attn_processors[key].load_state_dict(value_dict)
379
        else:
380
381
382
            raise ValueError(
                f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training."
            )
383
384
385
386
387
388
389
390
391
392
393

        # set correct dtype & device
        attn_processors = {k: v.to(device=self.device, dtype=self.dtype) for k, v in attn_processors.items()}

        # set layers
        self.set_attn_processor(attn_processors)

    def save_attn_procs(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
394
        weight_name: str = None,
395
        save_function: Callable = None,
396
        safe_serialization: bool = False,
397
        **kwargs,
398
399
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
400
        Save an attention processor to a directory so that it can be reloaded using the
401
        [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method.
402
403
404

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
405
                Directory to save an attention processor to. Will be created if it doesn't exist.
406
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
407
408
409
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
410
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
411
412
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
413
                `DIFFUSERS_SAVE_MODE`.
Steven Liu's avatar
Steven Liu committed
414

415
        """
416
417
        weight_name = weight_name or deprecate(
            "weights_name",
418
            "0.20.0",
419
420
421
            "`weights_name` is deprecated, please use `weight_name` instead.",
            take_from=kwargs,
        )
422
423
424
425
426
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
427
428
429
430
431
432
433
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save
434
435
436

        os.makedirs(save_directory, exist_ok=True)

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
        is_custom_diffusion = any(
            isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor))
            for (_, x) in self.attn_processors.items()
        )
        if is_custom_diffusion:
            model_to_save = AttnProcsLayers(
                {
                    y: x
                    for (y, x) in self.attn_processors.items()
                    if isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor))
                }
            )
            state_dict = model_to_save.state_dict()
            for name, attn in self.attn_processors.items():
                if len(attn.state_dict()) == 0:
                    state_dict[name] = {}
        else:
            model_to_save = AttnProcsLayers(self.attn_processors)
            state_dict = model_to_save.state_dict()
456

457
        if weight_name is None:
458
            if safe_serialization:
459
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE
460
            else:
461
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME
462

463
        # Save the model
464
465
        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
466
467
468
469


class TextualInversionLoaderMixin:
    r"""
Steven Liu's avatar
Steven Liu committed
470
    Load textual inversion tokens and embeddings to the tokenizer and text encoder.
471
472
    """

473
    def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"):
474
        r"""
Steven Liu's avatar
Steven Liu committed
475
476
477
        Processes prompts that include a special token corresponding to a multi-vector textual inversion embedding to
        be replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or if the textual inversion token is a single vector, the input prompt is returned.
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

        Parameters:
            prompt (`str` or list of `str`):
                The prompt or prompts to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str` or list of `str`: The converted prompt
        """
        if not isinstance(prompt, List):
            prompts = [prompt]
        else:
            prompts = prompt

        prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts]

        if not isinstance(prompt, List):
            return prompts[0]

        return prompts

500
    def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"):
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
        r"""
        Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds
        to a multi-vector textual inversion embedding, this function will process the prompt so that the special token
        is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or a textual inversion token that is a single vector, the input prompt is simply returned.

        Parameters:
            prompt (`str`):
                The prompt to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str`: The converted prompt
        """
        tokens = tokenizer.tokenize(prompt)
517
518
        unique_tokens = set(tokens)
        for token in unique_tokens:
519
520
521
522
            if token in tokenizer.added_tokens_encoder:
                replacement = token
                i = 1
                while f"{token}_{i}" in tokenizer.added_tokens_encoder:
523
                    replacement += f" {token}_{i}"
524
525
526
527
528
529
530
                    i += 1

                prompt = prompt.replace(token, replacement)

        return prompt

    def load_textual_inversion(
531
        self,
532
        pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]],
533
534
        token: Optional[Union[str, List[str]]] = None,
        **kwargs,
535
536
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
537
538
        Load textual inversion embeddings into the text encoder of [`StableDiffusionPipeline`] (both 🤗 Diffusers and
        Automatic1111 formats are supported).
539
540

        Parameters:
541
            pretrained_model_name_or_path (`str` or `os.PathLike` or `List[str or os.PathLike]` or `Dict` or `List[Dict]`):
Steven Liu's avatar
Steven Liu committed
542
                Can be either one of the following or a list of them:
543

Steven Liu's avatar
Steven Liu committed
544
545
546
547
548
                    - A string, the *model id* (for example `sd-concepts-library/low-poly-hd-logos-icons`) of a
                      pretrained model hosted on the Hub.
                    - A path to a *directory* (for example `./my_text_inversion_directory/`) containing the textual
                      inversion weights.
                    - A path to a *file* (for example `./my_text_inversions.pt`) containing textual inversion weights.
549
550
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
551
552
553
554

            token (`str` or `List[str]`, *optional*):
                Override the token to use for the textual inversion weights. If `pretrained_model_name_or_path` is a
                list, then `token` must also be a list of equal length.
555
            weight_name (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
556
                Name of a custom weight file. This should be used when:
557

Steven Liu's avatar
Steven Liu committed
558
559
560
                    - The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight
                      name such as `text_inv.bin`.
                    - The saved textual inversion file is in the Automatic1111 format.
561
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
562
563
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
564
565
566
567
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
568
569
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
570
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
571
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
572
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
573
574
575
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
576
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
577
578
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
579
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
580
581
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
582
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
583
                The subfolder location of a model file within a larger model repository on the Hub or locally.
584
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
585
586
587
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
588
589
590

        Example:

Steven Liu's avatar
Steven Liu committed
591
        To load a textual inversion embedding vector in 🤗 Diffusers format:
1lint's avatar
1lint committed
592

593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

        pipe.load_textual_inversion("sd-concepts-library/cat-toy")

        prompt = "A <cat-toy> backpack"

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("cat-backpack.png")
        ```

Steven Liu's avatar
Steven Liu committed
608
609
610
        To load a textual inversion embedding vector in Automatic1111 format, make sure to download the vector first
        (for example from [civitAI](https://civitai.com/models/3036?modelVersionId=9857)) and then load the vector
        locally:
611
612
613
614
615
616
617
618

        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

619
        pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
620
621
622
623
624
625

        prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("character.png")
        ```
1lint's avatar
1lint committed
626

627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
        """
        if not hasattr(self, "tokenizer") or not isinstance(self.tokenizer, PreTrainedTokenizer):
            raise ValueError(
                f"{self.__class__.__name__} requires `self.tokenizer` of type `PreTrainedTokenizer` for calling"
                f" `{self.load_textual_inversion.__name__}`"
            )

        if not hasattr(self, "text_encoder") or not isinstance(self.text_encoder, PreTrainedModel):
            raise ValueError(
                f"{self.__class__.__name__} requires `self.text_encoder` of type `PreTrainedModel` for calling"
                f" `{self.load_textual_inversion.__name__}`"
            )

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)

        if use_safetensors and not is_safetensors_available():
            raise ValueError(
653
                "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors"
654
655
656
657
658
659
660
661
662
663
664
665
            )

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = is_safetensors_available()
            allow_pickle = True

        user_agent = {
            "file_type": "text_inversion",
            "framework": "pytorch",
        }

666
        if not isinstance(pretrained_model_name_or_path, list):
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
            pretrained_model_name_or_paths = [pretrained_model_name_or_path]
        else:
            pretrained_model_name_or_paths = pretrained_model_name_or_path

        if isinstance(token, str):
            tokens = [token]
        elif token is None:
            tokens = [None] * len(pretrained_model_name_or_paths)
        else:
            tokens = token

        if len(pretrained_model_name_or_paths) != len(tokens):
            raise ValueError(
                f"You have passed a list of models of length {len(pretrained_model_name_or_paths)}, and list of tokens of length {len(tokens)}"
                f"Make sure both lists have the same length."
            )

        valid_tokens = [t for t in tokens if t is not None]
        if len(set(valid_tokens)) < len(valid_tokens):
            raise ValueError(f"You have passed a list of tokens that contains duplicates: {tokens}")

        token_ids_and_embeddings = []

        for pretrained_model_name_or_path, token in zip(pretrained_model_name_or_paths, tokens):
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
            if not isinstance(pretrained_model_name_or_path, dict):
                # 1. Load textual inversion file
                model_file = None
                # Let's first try to load .safetensors weights
                if (use_safetensors and weight_name is None) or (
                    weight_name is not None and weight_name.endswith(".safetensors")
                ):
                    try:
                        model_file = _get_model_file(
                            pretrained_model_name_or_path,
                            weights_name=weight_name or TEXT_INVERSION_NAME_SAFE,
                            cache_dir=cache_dir,
                            force_download=force_download,
                            resume_download=resume_download,
                            proxies=proxies,
                            local_files_only=local_files_only,
                            use_auth_token=use_auth_token,
                            revision=revision,
                            subfolder=subfolder,
                            user_agent=user_agent,
                        )
                        state_dict = safetensors.torch.load_file(model_file, device="cpu")
                    except Exception as e:
                        if not allow_pickle:
                            raise e

                        model_file = None

                if model_file is None:
720
721
                    model_file = _get_model_file(
                        pretrained_model_name_or_path,
722
                        weights_name=weight_name or TEXT_INVERSION_NAME,
723
724
725
726
727
728
729
730
731
732
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
733
734
735
                    state_dict = torch.load(model_file, map_location="cpu")
            else:
                state_dict = pretrained_model_name_or_path
736
737

            # 2. Load token and embedding correcly from file
738
            loaded_token = None
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
            if isinstance(state_dict, torch.Tensor):
                if token is None:
                    raise ValueError(
                        "You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`."
                    )
                embedding = state_dict
            elif len(state_dict) == 1:
                # diffusers
                loaded_token, embedding = next(iter(state_dict.items()))
            elif "string_to_param" in state_dict:
                # A1111
                loaded_token = state_dict["name"]
                embedding = state_dict["string_to_param"]["*"]

            if token is not None and loaded_token != token:
                logger.info(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.")
            else:
                token = loaded_token

            embedding = embedding.to(dtype=self.text_encoder.dtype, device=self.text_encoder.device)
759

760
761
762
            # 3. Make sure we don't mess up the tokenizer or text encoder
            vocab = self.tokenizer.get_vocab()
            if token in vocab:
763
                raise ValueError(
764
                    f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder."
765
                )
766
767
768
769
770
771
            elif f"{token}_1" in vocab:
                multi_vector_tokens = [token]
                i = 1
                while f"{token}_{i}" in self.tokenizer.added_tokens_encoder:
                    multi_vector_tokens.append(f"{token}_{i}")
                    i += 1
772

773
774
775
                raise ValueError(
                    f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder."
                )
776

777
            is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1
778

779
780
781
782
783
784
            if is_multi_vector:
                tokens = [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])]
                embeddings = [e for e in embedding]  # noqa: C416
            else:
                tokens = [token]
                embeddings = [embedding[0]] if len(embedding.shape) > 1 else [embedding]
785

786
787
788
789
            # add tokens and get ids
            self.tokenizer.add_tokens(tokens)
            token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
            token_ids_and_embeddings += zip(token_ids, embeddings)
790

791
            logger.info(f"Loaded textual inversion embedding for {token}.")
792

793
        # resize token embeddings and set all new embeddings
794
        self.text_encoder.resize_token_embeddings(len(self.tokenizer))
795
        for token_id, embedding in token_ids_and_embeddings:
796
797
            self.text_encoder.get_input_embeddings().weight.data[token_id] = embedding

798
799
800

class LoraLoaderMixin:
    r"""
Steven Liu's avatar
Steven Liu committed
801
802
    Load LoRA layers into [`UNet2DConditionModel`] and
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
803
    """
804
805
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME
806
807

    def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
Will Berman's avatar
Will Berman committed
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into self.unet and self.text_encoder.

        All kwargs are forwarded to `self.lora_state_dict`.

        See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.

        See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into
        `self.unet`.

        See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded
        into `self.text_encoder`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].

            kwargs:
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
        """
        state_dict, network_alpha = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
        self.load_lora_into_unet(state_dict, network_alpha=network_alpha, unet=self.unet)
        self.load_lora_into_text_encoder(
            state_dict, network_alpha=network_alpha, text_encoder=self.text_encoder, lora_scale=self.lora_scale
        )

    @classmethod
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
840
        r"""
Will Berman's avatar
Will Berman committed
841
842
843
844
845
846
847
848
849
        Return state dict for lora weights

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>
850
851
852
853
854

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

Steven Liu's avatar
Steven Liu committed
855
856
857
858
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
859
860
861
862
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
863
864
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
865
866
867
868
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
869
870
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
871
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
872
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
873
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
874
875
876
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
877
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
878
879
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
880
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
881
882
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
883
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
884
                The subfolder location of a model file within a larger model repository on the Hub or locally.
885
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
886
887
888
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905

        """
        # Load the main state dict first which has the LoRA layers for either of
        # UNet and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)

        if use_safetensors and not is_safetensors_available():
            raise ValueError(
906
                "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors"
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
            )

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = is_safetensors_available()
            allow_pickle = True

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

        model_file = None
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
            # Let's first try to load .safetensors weights
            if (use_safetensors and weight_name is None) or (
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
Will Berman's avatar
Will Berman committed
940
                except (IOError, safetensors.SafetensorError) as e:
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
                    if not allow_pickle:
                        raise e
                    # try loading non-safetensors weights
                    pass
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
                    weights_name=weight_name or LORA_WEIGHT_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
        else:
            state_dict = pretrained_model_name_or_path_or_dict

963
964
965
        # Convert kohya-ss Style LoRA attn procs to diffusers attn procs
        network_alpha = None
        if all((k.startswith("lora_te_") or k.startswith("lora_unet_")) for k in state_dict.keys()):
Will Berman's avatar
Will Berman committed
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
            state_dict, network_alpha = cls._convert_kohya_lora_to_diffusers(state_dict)

        return state_dict, network_alpha

    @classmethod
    def load_lora_into_unet(cls, state_dict, network_alpha, unet):
        """
        This will load the LoRA layers specified in `state_dict` into `unet`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            network_alpha (`float`):
                See `LoRALinearLayer` for more details.
            unet (`UNet2DConditionModel`):
                The UNet model to load the LoRA layers into.
        """
985

986
987
988
989
        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
        # their prefixes.
        keys = list(state_dict.keys())
Will Berman's avatar
Will Berman committed
990
        if all(key.startswith(cls.unet_name) or key.startswith(cls.text_encoder_name) for key in keys):
991
            # Load the layers corresponding to UNet.
Will Berman's avatar
Will Berman committed
992
993
            unet_keys = [k for k in keys if k.startswith(cls.unet_name)]
            logger.info(f"Loading {cls.unet_name}.")
994
            unet_lora_state_dict = {
Will Berman's avatar
Will Berman committed
995
                k.replace(f"{cls.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys
996
            }
Will Berman's avatar
Will Berman committed
997
            unet.load_attn_procs(unet_lora_state_dict, network_alpha=network_alpha)
998

999
1000
1001
        # Otherwise, we're dealing with the old format. This means the `state_dict` should only
        # contain the module names of the `unet` as its keys WITHOUT any prefix.
        elif not all(
Will Berman's avatar
Will Berman committed
1002
            key.startswith(cls.unet_name) or key.startswith(cls.text_encoder_name) for key in state_dict.keys()
1003
        ):
Will Berman's avatar
Will Berman committed
1004
            unet.load_attn_procs(state_dict)
1005
1006
            warn_message = "You have saved the LoRA weights using the old format. To convert the old LoRA weights to the new format, you can first load them in a dictionary and then create a new dictionary like the following: `new_state_dict = {f'unet'.{module_name}: params for module_name, params in old_state_dict.items()}`."
            warnings.warn(warn_message)
1007

Will Berman's avatar
Will Berman committed
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
    @classmethod
    def load_lora_into_text_encoder(cls, state_dict, network_alpha, text_encoder, lora_scale=1.0):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key shoult be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alpha (`float`):
                See `LoRALinearLayer` for more details.
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
        """

        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
        # their prefixes.
        keys = list(state_dict.keys())
        if all(key.startswith(cls.unet_name) or key.startswith(cls.text_encoder_name) for key in keys):
            # Load the layers corresponding to text encoder and make necessary adjustments.
            text_encoder_keys = [k for k in keys if k.startswith(cls.text_encoder_name)]
            text_encoder_lora_state_dict = {
                k.replace(f"{cls.text_encoder_name}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys
            }
            if len(text_encoder_lora_state_dict) > 0:
                logger.info(f"Loading {cls.text_encoder_name}.")

                if any("to_out_lora" in k for k in text_encoder_lora_state_dict.keys()):
                    # Convert from the old naming convention to the new naming convention.
                    #
                    # Previously, the old LoRA layers were stored on the state dict at the
                    # same level as the attention block i.e.
                    # `text_model.encoder.layers.11.self_attn.to_out_lora.up.weight`.
                    #
                    # This is no actual module at that point, they were monkey patched on to the
                    # existing module. We want to be able to load them via their actual state dict.
                    # They're in `PatchedLoraProjection.lora_linear_layer` now.
                    for name, _ in text_encoder_attn_modules(text_encoder):
                        text_encoder_lora_state_dict[
                            f"{name}.q_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_q_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.k_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_k_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.v_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_v_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.out_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_out_lora.up.weight")

                        text_encoder_lora_state_dict[
                            f"{name}.q_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_q_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.k_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_k_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.v_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_v_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.out_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_out_lora.down.weight")

                rank = text_encoder_lora_state_dict[
                    "text_model.encoder.layers.0.self_attn.out_proj.lora_linear_layer.up.weight"
                ].shape[1]

                cls._modify_text_encoder(text_encoder, lora_scale, network_alpha, rank=rank)

                # set correct dtype & device
                text_encoder_lora_state_dict = {
                    k: v.to(device=text_encoder.device, dtype=text_encoder.dtype)
                    for k, v in text_encoder_lora_state_dict.items()
                }

                load_state_dict_results = text_encoder.load_state_dict(text_encoder_lora_state_dict, strict=False)
                if len(load_state_dict_results.unexpected_keys) != 0:
                    raise ValueError(
                        f"failed to load text encoder state dict, unexpected keys: {load_state_dict_results.unexpected_keys}"
                    )

1094
1095
1096
1097
1098
1099
    @property
    def lora_scale(self) -> float:
        # property function that returns the lora scale which can be set at run time by the pipeline.
        # if _lora_scale has not been set, return 1
        return self._lora_scale if hasattr(self, "_lora_scale") else 1.0

1100
    def _remove_text_encoder_monkey_patch(self):
Will Berman's avatar
Will Berman committed
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
        self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)

    @classmethod
    def _remove_text_encoder_monkey_patch_classmethod(cls, text_encoder):
        for _, attn_module in text_encoder_attn_modules(text_encoder):
            if isinstance(attn_module.q_proj, PatchedLoraProjection):
                attn_module.q_proj = attn_module.q_proj.regular_linear_layer
                attn_module.k_proj = attn_module.k_proj.regular_linear_layer
                attn_module.v_proj = attn_module.v_proj.regular_linear_layer
                attn_module.out_proj = attn_module.out_proj.regular_linear_layer

    @classmethod
    def _modify_text_encoder(cls, text_encoder, lora_scale=1, network_alpha=None, rank=4, dtype=None):
1114
1115
1116
        r"""
        Monkey-patches the forward passes of attention modules of the text encoder.
        """
1117
1118

        # First, remove any monkey-patch that might have been applied before
Will Berman's avatar
Will Berman committed
1119
        cls._remove_text_encoder_monkey_patch_classmethod(text_encoder)
1120

Will Berman's avatar
Will Berman committed
1121
        lora_parameters = []
1122

Will Berman's avatar
Will Berman committed
1123
1124
1125
        for _, attn_module in text_encoder_attn_modules(text_encoder):
            attn_module.q_proj = PatchedLoraProjection(
                attn_module.q_proj, lora_scale, network_alpha, rank=rank, dtype=dtype
1126
            )
Will Berman's avatar
Will Berman committed
1127
            lora_parameters.extend(attn_module.q_proj.lora_linear_layer.parameters())
1128

Will Berman's avatar
Will Berman committed
1129
1130
1131
1132
            attn_module.k_proj = PatchedLoraProjection(
                attn_module.k_proj, lora_scale, network_alpha, rank=rank, dtype=dtype
            )
            lora_parameters.extend(attn_module.k_proj.lora_linear_layer.parameters())
1133

Will Berman's avatar
Will Berman committed
1134
1135
1136
1137
            attn_module.v_proj = PatchedLoraProjection(
                attn_module.v_proj, lora_scale, network_alpha, rank=rank, dtype=dtype
            )
            lora_parameters.extend(attn_module.v_proj.lora_linear_layer.parameters())
1138

Will Berman's avatar
Will Berman committed
1139
1140
1141
1142
            attn_module.out_proj = PatchedLoraProjection(
                attn_module.out_proj, lora_scale, network_alpha, rank=rank, dtype=dtype
            )
            lora_parameters.extend(attn_module.out_proj.lora_linear_layer.parameters())
1143

Will Berman's avatar
Will Berman committed
1144
        return lora_parameters
1145
1146
1147
1148
1149

    @classmethod
    def save_lora_weights(
        self,
        save_directory: Union[str, os.PathLike],
1150
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1151
1152
1153
1154
1155
1156
1157
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = False,
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
1158
        Save the LoRA parameters corresponding to the UNet and text encoder.
1159
1160
1161

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
1162
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
1163
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
Steven Liu's avatar
Steven Liu committed
1164
                State dict of the LoRA layers corresponding to the UNet.
1165
            text_encoder_lora_layers (`Dict[str, torch.nn.Module] or `Dict[str, torch.Tensor]`):
Steven Liu's avatar
Steven Liu committed
1166
1167
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes 🤗 Transformers.
1168
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
1169
1170
1171
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
1172
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
1173
1174
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
                `DIFFUSERS_SAVE_MODE`.
        """
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save

        os.makedirs(save_directory, exist_ok=True)

        # Create a flat dictionary.
        state_dict = {}
        if unet_lora_layers is not None:
1195
1196
1197
1198
1199
            weights = (
                unet_lora_layers.state_dict() if isinstance(unet_lora_layers, torch.nn.Module) else unet_lora_layers
            )

            unet_lora_state_dict = {f"{self.unet_name}.{module_name}": param for module_name, param in weights.items()}
1200
            state_dict.update(unet_lora_state_dict)
1201

1202
        if text_encoder_lora_layers is not None:
1203
1204
1205
1206
1207
1208
            weights = (
                text_encoder_lora_layers.state_dict()
                if isinstance(text_encoder_lora_layers, torch.nn.Module)
                else text_encoder_lora_layers
            )

1209
            text_encoder_lora_state_dict = {
1210
                f"{self.text_encoder_name}.{module_name}": param for module_name, param in weights.items()
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
            }
            state_dict.update(text_encoder_lora_state_dict)

        # Save the model
        if weight_name is None:
            if safe_serialization:
                weight_name = LORA_WEIGHT_NAME_SAFE
            else:
                weight_name = LORA_WEIGHT_NAME

        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
1lint's avatar
1lint committed
1223

Will Berman's avatar
Will Berman committed
1224
1225
    @classmethod
    def _convert_kohya_lora_to_diffusers(cls, state_dict):
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
        unet_state_dict = {}
        te_state_dict = {}
        network_alpha = None

        for key, value in state_dict.items():
            if "lora_down" in key:
                lora_name = key.split(".")[0]
                lora_name_up = lora_name + ".lora_up.weight"
                lora_name_alpha = lora_name + ".alpha"
                if lora_name_alpha in state_dict:
                    alpha = state_dict[lora_name_alpha].item()
                    if network_alpha is None:
                        network_alpha = alpha
                    elif network_alpha != alpha:
                        raise ValueError("Network alpha is not consistent")

                if lora_name.startswith("lora_unet_"):
                    diffusers_name = key.replace("lora_unet_", "").replace("_", ".")
                    diffusers_name = diffusers_name.replace("down.blocks", "down_blocks")
                    diffusers_name = diffusers_name.replace("mid.block", "mid_block")
                    diffusers_name = diffusers_name.replace("up.blocks", "up_blocks")
                    diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks")
                    diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
                    diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
                    diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
                    diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora")
                    if "transformer_blocks" in diffusers_name:
                        if "attn1" in diffusers_name or "attn2" in diffusers_name:
                            diffusers_name = diffusers_name.replace("attn1", "attn1.processor")
                            diffusers_name = diffusers_name.replace("attn2", "attn2.processor")
                            unet_state_dict[diffusers_name] = value
                            unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict[lora_name_up]
                elif lora_name.startswith("lora_te_"):
                    diffusers_name = key.replace("lora_te_", "").replace("_", ".")
                    diffusers_name = diffusers_name.replace("text.model", "text_model")
                    diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                    diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                    diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                    diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                    diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                    if "self_attn" in diffusers_name:
                        te_state_dict[diffusers_name] = value
                        te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict[lora_name_up]

        unet_state_dict = {f"{UNET_NAME}.{module_name}": params for module_name, params in unet_state_dict.items()}
        te_state_dict = {f"{TEXT_ENCODER_NAME}.{module_name}": params for module_name, params in te_state_dict.items()}
        new_state_dict = {**unet_state_dict, **te_state_dict}
        return new_state_dict, network_alpha

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
    def unload_lora_weights(self):
        """
        Unloads the LoRA parameters.

        Examples:

        ```python
        >>> # Assuming `pipeline` is already loaded with the LoRA parameters.
        >>> pipeline.unload_lora_weights()
        >>> ...
        ```
        """
        is_unet_lora = all(
            isinstance(processor, (LoRAAttnProcessor2_0, LoRAAttnProcessor, LoRAAttnAddedKVProcessor))
            for _, processor in self.unet.attn_processors.items()
        )
        # Handle attention processors that are a mix of regular attention and AddedKV
        # attention.
        if is_unet_lora:
            is_attn_procs_mixed = all(
                isinstance(processor, (LoRAAttnProcessor2_0, LoRAAttnProcessor))
                for _, processor in self.unet.attn_processors.items()
            )
            if not is_attn_procs_mixed:
                unet_attn_proc_cls = AttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else AttnProcessor
                self.unet.set_attn_processor(unet_attn_proc_cls())
            else:
                self.unet.set_default_attn_processor()

        # Safe to call the following regardless of LoRA.
        self._remove_text_encoder_monkey_patch()

1lint's avatar
1lint committed
1307

Patrick von Platen's avatar
Patrick von Platen committed
1308
class FromSingleFileMixin:
Steven Liu's avatar
Steven Liu committed
1309
1310
1311
    """
    Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`].
    """
1lint's avatar
1lint committed
1312
1313

    @classmethod
Patrick von Platen's avatar
Patrick von Platen committed
1314
1315
1316
1317
1318
1319
1320
    def from_ckpt(cls, *args, **kwargs):
        deprecation_message = "The function `from_ckpt` is deprecated in favor of `from_single_file` and will be removed in diffusers v.0.21. Please make sure to use `StableDiffusionPipeline.from_single_file(...)` instead."
        deprecate("from_ckpt", "0.21.0", deprecation_message, standard_warn=False)
        return cls.from_single_file(*args, **kwargs)

    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
1lint's avatar
1lint committed
1321
        r"""
Steven Liu's avatar
Steven Liu committed
1322
1323
        Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` format. The pipeline
        is set in evaluation mode (`model.eval()`) by default.
1lint's avatar
1lint committed
1324
1325
1326
1327

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
Steven Liu's avatar
Steven Liu committed
1328
1329
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
1lint's avatar
1lint committed
1330
1331
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
1332
1333
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
1lint's avatar
1lint committed
1334
1335
1336
1337
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1338
1339
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
1lint's avatar
1lint committed
1340
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1341
1342
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
1lint's avatar
1lint committed
1343
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1344
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1lint's avatar
1lint committed
1345
1346
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1347
1348
                Whether to only load local model weights and configuration files or not. If set to True, the model
                won't be downloaded from the Hub.
1lint's avatar
1lint committed
1349
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1350
1351
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1lint's avatar
1lint committed
1352
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1353
1354
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
1355
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
1356
1357
1358
1359
1360
1361
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            extract_ema (`bool`, *optional*, defaults to `False`):
                Whether to extract the EMA weights or not. Pass `True` to extract the EMA weights which usually yield
                higher quality images for inference. Non-EMA weights are usually better to continue finetuning.
1lint's avatar
1lint committed
1362
            upcast_attention (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
1363
                Whether the attention computation should always be upcasted.
1lint's avatar
1lint committed
1364
            image_size (`int`, *optional*, defaults to 512):
Steven Liu's avatar
Steven Liu committed
1365
1366
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
1lint's avatar
1lint committed
1367
            prediction_type (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1368
1369
1370
                The prediction type the model was trained on. Use `'epsilon'` for all Stable Diffusion v1 models and
                the Stable Diffusion v2 base model. Use `'v_prediction'` for Stable Diffusion v2.
            num_in_channels (`int`, *optional*, defaults to `None`):
1lint's avatar
1lint committed
1371
                The number of input channels. If `None`, it will be automatically inferred.
Steven Liu's avatar
Steven Liu committed
1372
            scheduler_type (`str`, *optional*, defaults to `"pndm"`):
1lint's avatar
1lint committed
1373
1374
1375
                Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm",
                "ddim"]`.
            load_safety_checker (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
1376
                Whether to load the safety checker or not.
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
            text_encoder (`CLIPTextModel`, *optional*, defaults to `None`):
                An instance of
                [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel) to use,
                specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)
                variant. If this parameter is `None`, the function will load a new instance of [CLIP] by itself, if
                needed.
            tokenizer (`CLIPTokenizer`, *optional*, defaults to `None`):
                An instance of
                [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer)
                to use. If this parameter is `None`, the function will load a new instance of [CLIPTokenizer] by
                itself, if needed.
1lint's avatar
1lint committed
1388
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
1389
1390
1391
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.
1lint's avatar
1lint committed
1392
1393
1394
1395
1396
1397
1398

        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
Patrick von Platen's avatar
Patrick von Platen committed
1399
        >>> pipeline = StableDiffusionPipeline.from_single_file(
1lint's avatar
1lint committed
1400
1401
1402
1403
1404
        ...     "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
        ... )

        >>> # Download pipeline from local file
        >>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
Patrick von Platen's avatar
Patrick von Platen committed
1405
        >>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly")
1lint's avatar
1lint committed
1406
1407

        >>> # Enable float16 and move to GPU
Patrick von Platen's avatar
Patrick von Platen committed
1408
        >>> pipeline = StableDiffusionPipeline.from_single_file(
1lint's avatar
1lint committed
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
        ...     "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
        ...     torch_dtype=torch.float16,
        ... )
        >>> pipeline.to("cuda")
        ```
        """
        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        extract_ema = kwargs.pop("extract_ema", False)
1426
        image_size = kwargs.pop("image_size", None)
1lint's avatar
1lint committed
1427
1428
1429
1430
1431
        scheduler_type = kwargs.pop("scheduler_type", "pndm")
        num_in_channels = kwargs.pop("num_in_channels", None)
        upcast_attention = kwargs.pop("upcast_attention", None)
        load_safety_checker = kwargs.pop("load_safety_checker", True)
        prediction_type = kwargs.pop("prediction_type", None)
1432
1433
        text_encoder = kwargs.pop("text_encoder", None)
        tokenizer = kwargs.pop("tokenizer", None)
1lint's avatar
1lint committed
1434
1435
1436
1437
1438
1439
1440
1441
1442

        torch_dtype = kwargs.pop("torch_dtype", None)

        use_safetensors = kwargs.pop("use_safetensors", None if is_safetensors_available() else False)

        pipeline_name = cls.__name__
        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

1443
        if from_safetensors and use_safetensors is False:
1lint's avatar
1lint committed
1444
1445
1446
1447
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # TODO: For now we only support stable diffusion
        stable_unclip = None
1448
        model_type = None
1lint's avatar
1lint committed
1449
1450
1451
        controlnet = False

        if pipeline_name == "StableDiffusionControlNetPipeline":
1452
            # Model type will be inferred from the checkpoint.
1lint's avatar
1lint committed
1453
1454
            controlnet = True
        elif "StableDiffusion" in pipeline_name:
1455
1456
            # Model type will be inferred from the checkpoint.
            pass
1lint's avatar
1lint committed
1457
        elif pipeline_name == "StableUnCLIPPipeline":
1458
            model_type = "FrozenOpenCLIPEmbedder"
1lint's avatar
1lint committed
1459
1460
            stable_unclip = "txt2img"
        elif pipeline_name == "StableUnCLIPImg2ImgPipeline":
1461
            model_type = "FrozenOpenCLIPEmbedder"
1lint's avatar
1lint committed
1462
1463
            stable_unclip = "img2img"
        elif pipeline_name == "PaintByExamplePipeline":
1464
            model_type = "PaintByExample"
1lint's avatar
1lint committed
1465
        elif pipeline_name == "LDMTextToImagePipeline":
1466
            model_type = "LDMTextToImage"
1lint's avatar
1lint committed
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
        else:
            raise ValueError(f"Unhandled pipeline class: {pipeline_name}")

        # remove huggingface url
        for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
            # get repo_id and (potentially nested) file path of ckpt in repo
1479
1480
            repo_id = os.path.join(*ckpt_path.parts[:2])
            file_path = os.path.join(*ckpt_path.parts[2:])
1lint's avatar
1lint committed
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        pipe = download_from_original_stable_diffusion_ckpt(
            pretrained_model_link_or_path,
            pipeline_class=cls,
            model_type=model_type,
            stable_unclip=stable_unclip,
            controlnet=controlnet,
            from_safetensors=from_safetensors,
            extract_ema=extract_ema,
            image_size=image_size,
            scheduler_type=scheduler_type,
            num_in_channels=num_in_channels,
            upcast_attention=upcast_attention,
            load_safety_checker=load_safety_checker,
            prediction_type=prediction_type,
1514
1515
            text_encoder=text_encoder,
            tokenizer=tokenizer,
1lint's avatar
1lint committed
1516
1517
1518
1519
1520
1521
        )

        if torch_dtype is not None:
            pipe.to(torch_dtype=torch_dtype)

        return pipe