attention.py 37.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import math
15
import warnings
Will Berman's avatar
Will Berman committed
16
from dataclasses import dataclass
Kashif Rasul's avatar
Kashif Rasul committed
17
from typing import Optional
18
19

import torch
Patrick von Platen's avatar
Patrick von Platen committed
20
import torch.nn.functional as F
21
22
from torch import nn

Will Berman's avatar
Will Berman committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from ..configuration_utils import ConfigMixin, register_to_config
from ..modeling_utils import ModelMixin
from ..models.embeddings import ImagePositionalEmbeddings
from ..utils import BaseOutput
from ..utils.import_utils import is_xformers_available


@dataclass
class Transformer2DModelOutput(BaseOutput):
    """
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
            Hidden states conditioned on `encoder_hidden_states` input. If discrete, returns probability distributions
            for the unnoised latent pixels.
    """

    sample: torch.FloatTensor
40
41
42
43
44
45
46
47


if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None

48

Will Berman's avatar
Will Berman committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
class Transformer2DModel(ModelMixin, ConfigMixin):
    """
    Transformer model for image-like data. Takes either discrete (classes of vector embeddings) or continuous (actual
    embeddings) inputs.

    When input is continuous: First, project the input (aka embedding) and reshape to b, t, d. Then apply standard
    transformer action. Finally, reshape to image.

    When input is discrete: First, input (classes of latent pixels) is converted to embeddings and has positional
    embeddings applied, see `ImagePositionalEmbeddings`. Then apply standard transformer action. Finally, predict
    classes of unnoised image.

    Note that it is assumed one of the input classes is the masked latent pixel. The predicted classes of the unnoised
    image do not contain a prediction for the masked pixel as the unnoised image cannot be masked.

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
            Pass if the input is continuous. The number of channels in the input and output.
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The number of context dimensions to use.
        sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
            Note that this is fixed at training time as it is used for learning a number of position embeddings. See
            `ImagePositionalEmbeddings`.
        num_vector_embeds (`int`, *optional*):
            Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
            Includes the class for the masked latent pixel.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
            The number of diffusion steps used during training. Note that this is fixed at training time as it is used
            to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
            up to but not more than steps than `num_embeds_ada_norm`.
        attention_bias (`bool`, *optional*):
            Configure if the TransformerBlocks' attention should contain a bias parameter.
    """

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        sample_size: Optional[int] = None,
        num_vector_embeds: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
Suraj Patil's avatar
Suraj Patil committed
102
        use_linear_projection: bool = False,
103
        only_cross_attention: bool = False,
Will Berman's avatar
Will Berman committed
104
105
    ):
        super().__init__()
Suraj Patil's avatar
Suraj Patil committed
106
        self.use_linear_projection = use_linear_projection
Will Berman's avatar
Will Berman committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim

        # 1. Transformer2DModel can process both standard continous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
        # Define whether input is continuous or discrete depending on configuration
        self.is_input_continuous = in_channels is not None
        self.is_input_vectorized = num_vector_embeds is not None

        if self.is_input_continuous and self.is_input_vectorized:
            raise ValueError(
                f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
                " sure that either `in_channels` or `num_vector_embeds` is None."
            )
        elif not self.is_input_continuous and not self.is_input_vectorized:
            raise ValueError(
                f"Has to define either `in_channels`: {in_channels} or `num_vector_embeds`: {num_vector_embeds}. Make"
                " sure that either `in_channels` or `num_vector_embeds` is not None."
            )

        # 2. Define input layers
        if self.is_input_continuous:
            self.in_channels = in_channels

            self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
Suraj Patil's avatar
Suraj Patil committed
132
133
134
135
            if use_linear_projection:
                self.proj_in = nn.Linear(in_channels, inner_dim)
            else:
                self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
Will Berman's avatar
Will Berman committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        elif self.is_input_vectorized:
            assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
            assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"

            self.height = sample_size
            self.width = sample_size
            self.num_vector_embeds = num_vector_embeds
            self.num_latent_pixels = self.height * self.width

            self.latent_image_embedding = ImagePositionalEmbeddings(
                num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
            )

        # 3. Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                    attention_bias=attention_bias,
161
                    only_cross_attention=only_cross_attention,
Will Berman's avatar
Will Berman committed
162
163
164
165
166
167
168
                )
                for d in range(num_layers)
            ]
        )

        # 4. Define output layers
        if self.is_input_continuous:
Suraj Patil's avatar
Suraj Patil committed
169
170
171
172
            if use_linear_projection:
                self.proj_out = nn.Linear(in_channels, inner_dim)
            else:
                self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
Will Berman's avatar
Will Berman committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
        elif self.is_input_vectorized:
            self.norm_out = nn.LayerNorm(inner_dim)
            self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)

    def _set_attention_slice(self, slice_size):
        for block in self.transformer_blocks:
            block._set_attention_slice(slice_size)

    def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
        """
        Args:
            hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
                When continous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
                hidden_states
            encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, context dim)`, *optional*):
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep ( `torch.long`, *optional*):
                Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.

        Returns:
            [`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
            if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
            tensor.
        """
        # 1. Input
        if self.is_input_continuous:
            batch, channel, height, weight = hidden_states.shape
            residual = hidden_states
Suraj Patil's avatar
Suraj Patil committed
204

Will Berman's avatar
Will Berman committed
205
            hidden_states = self.norm(hidden_states)
Suraj Patil's avatar
Suraj Patil committed
206
207
208
209
210
211
212
213
            if not self.use_linear_projection:
                hidden_states = self.proj_in(hidden_states)
                inner_dim = hidden_states.shape[1]
                hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
            else:
                inner_dim = hidden_states.shape[1]
                hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
                hidden_states = self.proj_in(hidden_states)
Will Berman's avatar
Will Berman committed
214
215
216
217
218
219
220
221
222
        elif self.is_input_vectorized:
            hidden_states = self.latent_image_embedding(hidden_states)

        # 2. Blocks
        for block in self.transformer_blocks:
            hidden_states = block(hidden_states, context=encoder_hidden_states, timestep=timestep)

        # 3. Output
        if self.is_input_continuous:
Suraj Patil's avatar
Suraj Patil committed
223
224
225
226
227
228
229
            if not self.use_linear_projection:
                hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2)
                hidden_states = self.proj_out(hidden_states)
            else:
                hidden_states = self.proj_out(hidden_states)
                hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2)

Will Berman's avatar
Will Berman committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
            output = hidden_states + residual
        elif self.is_input_vectorized:
            hidden_states = self.norm_out(hidden_states)
            logits = self.out(hidden_states)
            # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
            logits = logits.permute(0, 2, 1)

            # log(p(x_0))
            output = F.log_softmax(logits.double(), dim=1).float()

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)

    def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
        for block in self.transformer_blocks:
            block._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)


250
class AttentionBlock(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
251
252
253
254
    """
    An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
    to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
Kashif Rasul's avatar
Kashif Rasul committed
255
256
257
    Uses three q, k, v linear layers to compute attention.

    Parameters:
Will Berman's avatar
Will Berman committed
258
259
        channels (`int`): The number of channels in the input and output.
        num_head_channels (`int`, *optional*):
Kashif Rasul's avatar
Kashif Rasul committed
260
            The number of channels in each head. If None, then `num_heads` = 1.
Will Berman's avatar
Will Berman committed
261
262
263
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for group norm.
        rescale_output_factor (`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
        eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
Patrick von Platen's avatar
Patrick von Platen committed
264
265
266
267
    """

    def __init__(
        self,
Kashif Rasul's avatar
Kashif Rasul committed
268
269
        channels: int,
        num_head_channels: Optional[int] = None,
Will Berman's avatar
Will Berman committed
270
        norm_num_groups: int = 32,
Kashif Rasul's avatar
Kashif Rasul committed
271
272
        rescale_output_factor: float = 1.0,
        eps: float = 1e-5,
Patrick von Platen's avatar
Patrick von Platen committed
273
274
275
276
    ):
        super().__init__()
        self.channels = channels

Patrick von Platen's avatar
Patrick von Platen committed
277
        self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
Patrick von Platen's avatar
Patrick von Platen committed
278
        self.num_head_size = num_head_channels
Will Berman's avatar
Will Berman committed
279
        self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=norm_num_groups, eps=eps, affine=True)
Patrick von Platen's avatar
Patrick von Platen committed
280
281
282
283
284
285
286

        # define q,k,v as linear layers
        self.query = nn.Linear(channels, channels)
        self.key = nn.Linear(channels, channels)
        self.value = nn.Linear(channels, channels)

        self.rescale_output_factor = rescale_output_factor
Patrick von Platen's avatar
Patrick von Platen committed
287
        self.proj_attn = nn.Linear(channels, channels, 1)
Patrick von Platen's avatar
Patrick von Platen committed
288
289

    def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor:
290
        new_projection_shape = projection.size()[:-1] + (self.num_heads, -1)
Patrick von Platen's avatar
Patrick von Platen committed
291
292
293
294
295
296
297
298
299
300
        # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
        new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3)
        return new_projection

    def forward(self, hidden_states):
        residual = hidden_states
        batch, channel, height, width = hidden_states.shape

        # norm
        hidden_states = self.group_norm(hidden_states)
301

Patrick von Platen's avatar
Patrick von Platen committed
302
303
304
305
306
307
308
        hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)

        # proj to q, k, v
        query_proj = self.query(hidden_states)
        key_proj = self.key(hidden_states)
        value_proj = self.value(hidden_states)

309
        scale = 1 / math.sqrt(self.channels / self.num_heads)
Patrick von Platen's avatar
Patrick von Platen committed
310
311

        # get scores
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
        if self.num_heads > 1:
            query_states = self.transpose_for_scores(query_proj)
            key_states = self.transpose_for_scores(key_proj)
            value_states = self.transpose_for_scores(value_proj)

            # TODO: is there a way to perform batched matmul (e.g. baddbmm) on 4D tensors?
            #       or reformulate this into a 3D problem?
            # TODO: measure whether on MPS device it would be faster to do this matmul via einsum
            #       as some matmuls can be 1.94x slower than an equivalent einsum on MPS
            #       https://gist.github.com/Birch-san/cba16789ec27bb20996a4b4831b13ce0
            attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) * scale
        else:
            query_states, key_states, value_states = query_proj, key_proj, value_proj

            attention_scores = torch.baddbmm(
                torch.empty(
                    query_states.shape[0],
                    query_states.shape[1],
                    key_states.shape[1],
                    dtype=query_states.dtype,
                    device=query_states.device,
                ),
                query_states,
                key_states.transpose(-1, -2),
                beta=0,
                alpha=scale,
            )

340
        attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)
Patrick von Platen's avatar
Patrick von Platen committed
341
342

        # compute attention output
343
344
345
346
347
348
349
350
351
352
353
354
        if self.num_heads > 1:
            # TODO: is there a way to perform batched matmul (e.g. bmm) on 4D tensors?
            #       or reformulate this into a 3D problem?
            # TODO: measure whether on MPS device it would be faster to do this matmul via einsum
            #       as some matmuls can be 1.94x slower than an equivalent einsum on MPS
            #       https://gist.github.com/Birch-san/cba16789ec27bb20996a4b4831b13ce0
            hidden_states = torch.matmul(attention_probs, value_states)
            hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous()
            new_hidden_states_shape = hidden_states.size()[:-2] + (self.channels,)
            hidden_states = hidden_states.view(new_hidden_states_shape)
        else:
            hidden_states = torch.bmm(attention_probs, value_states)
Patrick von Platen's avatar
Patrick von Platen committed
355
356

        # compute next hidden_states
357
        hidden_states = self.proj_attn(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
358
359
360
361
362
363
        hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)

        # res connect and rescale
        hidden_states = (hidden_states + residual) / self.rescale_output_factor
        return hidden_states

Patrick von Platen's avatar
Patrick von Platen committed
364

Patrick von Platen's avatar
Patrick von Platen committed
365
class BasicTransformerBlock(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
366
367
368
369
    r"""
    A basic Transformer block.

    Parameters:
Will Berman's avatar
Will Berman committed
370
371
372
373
374
375
376
377
378
379
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The size of the context vector for cross attention.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
Kashif Rasul's avatar
Kashif Rasul committed
380
381
382
383
384
    """

    def __init__(
        self,
        dim: int,
Will Berman's avatar
Will Berman committed
385
386
        num_attention_heads: int,
        attention_head_dim: int,
Kashif Rasul's avatar
Kashif Rasul committed
387
        dropout=0.0,
Will Berman's avatar
Will Berman committed
388
389
390
391
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
392
        only_cross_attention: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
393
    ):
Patrick von Platen's avatar
Patrick von Platen committed
394
        super().__init__()
395
        self.only_cross_attention = only_cross_attention
Patrick von Platen's avatar
Patrick von Platen committed
396
        self.attn1 = CrossAttention(
Will Berman's avatar
Will Berman committed
397
398
399
400
401
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
402
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
Patrick von Platen's avatar
Patrick von Platen committed
403
        )  # is a self-attention
Will Berman's avatar
Will Berman committed
404
        self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
Patrick von Platen's avatar
Patrick von Platen committed
405
        self.attn2 = CrossAttention(
Will Berman's avatar
Will Berman committed
406
407
408
409
410
411
            query_dim=dim,
            cross_attention_dim=cross_attention_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
Patrick von Platen's avatar
Patrick von Platen committed
412
        )  # is self-attn if context is none
Will Berman's avatar
Will Berman committed
413
414
415
416
417
418
419
420
421

        # layer norms
        self.use_ada_layer_norm = num_embeds_ada_norm is not None
        if self.use_ada_layer_norm:
            self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
            self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
        else:
            self.norm1 = nn.LayerNorm(dim)
            self.norm2 = nn.LayerNorm(dim)
Patrick von Platen's avatar
Patrick von Platen committed
422
423
        self.norm3 = nn.LayerNorm(dim)

424
425
426
427
428
429
430
431
432
433
        # if xformers is installed try to use memory_efficient_attention by default
        if is_xformers_available():
            try:
                self._set_use_memory_efficient_attention_xformers(True)
            except Exception as e:
                warnings.warn(
                    "Could not enable memory efficient attention. Make sure xformers is installed"
                    f" correctly and a GPU is available: {e}"
                )

434
435
436
437
    def _set_attention_slice(self, slice_size):
        self.attn1._slice_size = slice_size
        self.attn2._slice_size = slice_size

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
    def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
        if not is_xformers_available():
            print("Here is how to install it")
            raise ModuleNotFoundError(
                "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                " xformers",
                name="xformers",
            )
        elif not torch.cuda.is_available():
            raise ValueError(
                "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
                " available for GPU "
            )
        else:
            try:
                # Make sure we can run the memory efficient attention
                _ = xformers.ops.memory_efficient_attention(
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                )
            except Exception as e:
                raise e
            self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
            self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers

Will Berman's avatar
Will Berman committed
464
465
466
467
468
    def forward(self, hidden_states, context=None, timestep=None):
        # 1. Self-Attention
        norm_hidden_states = (
            self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
        )
469
470
471
472
473

        if self.only_cross_attention:
            hidden_states = self.attn1(norm_hidden_states, context) + hidden_states
        else:
            hidden_states = self.attn1(norm_hidden_states) + hidden_states
Will Berman's avatar
Will Berman committed
474
475
476
477
478
479
480
481

        # 2. Cross-Attention
        norm_hidden_states = (
            self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
        )
        hidden_states = self.attn2(norm_hidden_states, context=context) + hidden_states

        # 3. Feed-forward
482
        hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
Will Berman's avatar
Will Berman committed
483

484
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
485
486
487


class CrossAttention(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
488
489
490
491
    r"""
    A cross attention layer.

    Parameters:
Will Berman's avatar
Will Berman committed
492
493
        query_dim (`int`): The number of channels in the query.
        cross_attention_dim (`int`, *optional*):
Kashif Rasul's avatar
Kashif Rasul committed
494
            The number of channels in the context. If not given, defaults to `query_dim`.
Will Berman's avatar
Will Berman committed
495
496
497
498
499
        heads (`int`,  *optional*, defaults to 8): The number of heads to use for multi-head attention.
        dim_head (`int`,  *optional*, defaults to 64): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        bias (`bool`, *optional*, defaults to False):
            Set to `True` for the query, key, and value linear layers to contain a bias parameter.
Kashif Rasul's avatar
Kashif Rasul committed
500
501
502
    """

    def __init__(
Will Berman's avatar
Will Berman committed
503
504
505
506
507
508
509
        self,
        query_dim: int,
        cross_attention_dim: Optional[int] = None,
        heads: int = 8,
        dim_head: int = 64,
        dropout: float = 0.0,
        bias=False,
Kashif Rasul's avatar
Kashif Rasul committed
510
    ):
Patrick von Platen's avatar
Patrick von Platen committed
511
512
        super().__init__()
        inner_dim = dim_head * heads
Will Berman's avatar
Will Berman committed
513
        cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
Patrick von Platen's avatar
Patrick von Platen committed
514
515
516

        self.scale = dim_head**-0.5
        self.heads = heads
517
518
519
520
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
        self._slice_size = None
521
        self._use_memory_efficient_attention_xformers = False
Patrick von Platen's avatar
Patrick von Platen committed
522

Will Berman's avatar
Will Berman committed
523
524
525
        self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
        self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
        self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
Patrick von Platen's avatar
Patrick von Platen committed
526

527
528
529
        self.to_out = nn.ModuleList([])
        self.to_out.append(nn.Linear(inner_dim, query_dim))
        self.to_out.append(nn.Dropout(dropout))
Patrick von Platen's avatar
Patrick von Platen committed
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544

    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

545
    def forward(self, hidden_states, context=None, mask=None):
546
        batch_size, sequence_length, _ = hidden_states.shape
Patrick von Platen's avatar
Patrick von Platen committed
547

548
549
550
551
        query = self.to_q(hidden_states)
        context = context if context is not None else hidden_states
        key = self.to_k(context)
        value = self.to_v(context)
Patrick von Platen's avatar
Patrick von Platen committed
552

553
554
        dim = query.shape[-1]

555
556
557
        query = self.reshape_heads_to_batch_dim(query)
        key = self.reshape_heads_to_batch_dim(key)
        value = self.reshape_heads_to_batch_dim(value)
Patrick von Platen's avatar
Patrick von Platen committed
558

559
        # TODO(PVP) - mask is currently never used. Remember to re-implement when used
Patrick von Platen's avatar
Patrick von Platen committed
560
561

        # attention, what we cannot get enough of
562
563
        if self._use_memory_efficient_attention_xformers:
            hidden_states = self._memory_efficient_attention_xformers(query, key, value)
564
565
            # Some versions of xformers return output in fp32, cast it back to the dtype of the input
            hidden_states = hidden_states.to(query.dtype)
566
        else:
567
568
569
570
            if self._slice_size is None or query.shape[0] // self._slice_size == 1:
                hidden_states = self._attention(query, key, value)
            else:
                hidden_states = self._sliced_attention(query, key, value, sequence_length, dim)
571

572
573
574
575
576
        # linear proj
        hidden_states = self.to_out[0](hidden_states)
        # dropout
        hidden_states = self.to_out[1](hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
577

578
    def _attention(self, query, key, value):
579
580
581
582
583
584
585
        attention_scores = torch.baddbmm(
            torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
            query,
            key.transpose(-1, -2),
            beta=0,
            alpha=self.scale,
        )
586
587
        attention_probs = attention_scores.softmax(dim=-1)
        # compute attention output
588

589
        hidden_states = torch.bmm(attention_probs, value)
590

591
592
593
594
595
        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states

    def _sliced_attention(self, query, key, value, sequence_length, dim):
596
597
598
599
600
601
602
603
        batch_size_attention = query.shape[0]
        hidden_states = torch.zeros(
            (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
        )
        slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
        for i in range(hidden_states.shape[0] // slice_size):
            start_idx = i * slice_size
            end_idx = (i + 1) * slice_size
604
605
606
607
608
609
610
            attn_slice = torch.baddbmm(
                torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
                query[start_idx:end_idx],
                key[start_idx:end_idx].transpose(-1, -2),
                beta=0,
                alpha=self.scale,
            )
611
            attn_slice = attn_slice.softmax(dim=-1)
612
            attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
613
614
615
616
617
618

            hidden_states[start_idx:end_idx] = attn_slice

        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states
619
620

    def _memory_efficient_attention_xformers(self, query, key, value):
621
622
623
        query = query.contiguous()
        key = key.contiguous()
        value = value.contiguous()
624
625
626
        hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=None)
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
627
628
629


class FeedForward(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
630
631
632
633
    r"""
    A feed-forward layer.

    Parameters:
Will Berman's avatar
Will Berman committed
634
635
636
637
638
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
Kashif Rasul's avatar
Kashif Rasul committed
639
640
641
    """

    def __init__(
Will Berman's avatar
Will Berman committed
642
643
644
645
646
647
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
Kashif Rasul's avatar
Kashif Rasul committed
648
    ):
Patrick von Platen's avatar
Patrick von Platen committed
649
650
        super().__init__()
        inner_dim = int(dim * mult)
651
        dim_out = dim_out if dim_out is not None else dim
Patrick von Platen's avatar
Patrick von Platen committed
652

Will Berman's avatar
Will Berman committed
653
654
655
656
657
658
        if activation_fn == "geglu":
            geglu = GEGLU(dim, inner_dim)
        elif activation_fn == "geglu-approximate":
            geglu = ApproximateGELU(dim, inner_dim)

        self.net = nn.ModuleList([])
659
        # project in
Will Berman's avatar
Will Berman committed
660
        self.net.append(geglu)
661
662
663
664
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
        self.net.append(nn.Linear(inner_dim, dim_out))
Patrick von Platen's avatar
Patrick von Platen committed
665

666
    def forward(self, hidden_states):
667
668
669
        for module in self.net:
            hidden_states = module(hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
670

Patrick von Platen's avatar
Patrick von Platen committed
671

Patrick von Platen's avatar
Patrick von Platen committed
672
673
# feedforward
class GEGLU(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
674
675
676
677
    r"""
    A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.

    Parameters:
Will Berman's avatar
Will Berman committed
678
679
        dim_in (`int`): The number of channels in the input.
        dim_out (`int`): The number of channels in the output.
Kashif Rasul's avatar
Kashif Rasul committed
680
681
682
    """

    def __init__(self, dim_in: int, dim_out: int):
Patrick von Platen's avatar
Patrick von Platen committed
683
684
685
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

686
687
688
689
690
691
    def gelu(self, gate):
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

692
693
    def forward(self, hidden_states):
        hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
694
        return hidden_states * self.gelu(gate)
Will Berman's avatar
Will Berman committed
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729


class ApproximateGELU(nn.Module):
    """
    The approximate form of Gaussian Error Linear Unit (GELU)

    For more details, see section 2: https://arxiv.org/abs/1606.08415
    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)

    def forward(self, x):
        x = self.proj(x)
        return x * torch.sigmoid(1.702 * x)


class AdaLayerNorm(nn.Module):
    """
    Norm layer modified to incorporate timestep embeddings.
    """

    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()
        self.emb = nn.Embedding(num_embeddings, embedding_dim)
        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)

    def forward(self, x, timestep):
        emb = self.linear(self.silu(self.emb(timestep)))
        scale, shift = torch.chunk(emb, 2)
        x = self.norm(x) * (1 + scale) + shift
        return x
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855


class DualTransformer2DModel(nn.Module):
    """
    Dual transformer wrapper that combines two `Transformer2DModel`s for mixed inference.

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
            Pass if the input is continuous. The number of channels in the input and output.
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The number of context dimensions to use.
        sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
            Note that this is fixed at training time as it is used for learning a number of position embeddings. See
            `ImagePositionalEmbeddings`.
        num_vector_embeds (`int`, *optional*):
            Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
            Includes the class for the masked latent pixel.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
            The number of diffusion steps used during training. Note that this is fixed at training time as it is used
            to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
            up to but not more than steps than `num_embeds_ada_norm`.
        attention_bias (`bool`, *optional*):
            Configure if the TransformerBlocks' attention should contain a bias parameter.
    """

    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        sample_size: Optional[int] = None,
        num_vector_embeds: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
    ):
        super().__init__()
        self.transformers = nn.ModuleList(
            [
                Transformer2DModel(
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    in_channels=in_channels,
                    num_layers=num_layers,
                    dropout=dropout,
                    norm_num_groups=norm_num_groups,
                    cross_attention_dim=cross_attention_dim,
                    attention_bias=attention_bias,
                    sample_size=sample_size,
                    num_vector_embeds=num_vector_embeds,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                )
                for _ in range(2)
            ]
        )

        # Variables that can be set by a pipeline:

        # The ratio of transformer1 to transformer2's output states to be combined during inference
        self.mix_ratio = 0.5

        # The shape of `encoder_hidden_states` is expected to be
        # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
        self.condition_lengths = [77, 257]

        # Which transformer to use to encode which condition.
        # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
        self.transformer_index_for_condition = [1, 0]

    def forward(self, hidden_states, encoder_hidden_states, timestep=None, return_dict: bool = True):
        """
        Args:
            hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
                When continuous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
                hidden_states
            encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, context dim)`, *optional*):
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep ( `torch.long`, *optional*):
                Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.

        Returns:
            [`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
            if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
            tensor.
        """
        input_states = hidden_states

        encoded_states = []
        tokens_start = 0
        for i in range(2):
            # for each of the two transformers, pass the corresponding condition tokens
            condition_state = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
            transformer_index = self.transformer_index_for_condition[i]
            encoded_state = self.transformers[transformer_index](input_states, condition_state, timestep, return_dict)[
                0
            ]
            encoded_states.append(encoded_state - input_states)
            tokens_start += self.condition_lengths[i]

        output_states = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
        output_states = output_states + input_states

        if not return_dict:
            return (output_states,)

        return Transformer2DModelOutput(sample=output_states)

    def _set_attention_slice(self, slice_size):
        for transformer in self.transformers:
            transformer._set_attention_slice(slice_size)

    def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
        for transformer in self.transformers:
            transformer._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)