attention.py 15 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import math
Kashif Rasul's avatar
Kashif Rasul committed
15
from typing import Optional
16
17

import torch
Patrick von Platen's avatar
Patrick von Platen committed
18
import torch.nn.functional as F
19
20
21
from torch import nn


22
class AttentionBlock(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
23
24
25
26
    """
    An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
    to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
Kashif Rasul's avatar
Kashif Rasul committed
27
28
29
30
31
32
33
34
35
    Uses three q, k, v linear layers to compute attention.

    Parameters:
        channels (:obj:`int`): The number of channels in the input and output.
        num_head_channels (:obj:`int`, *optional*):
            The number of channels in each head. If None, then `num_heads` = 1.
        num_groups (:obj:`int`, *optional*, defaults to 32): The number of groups to use for group norm.
        rescale_output_factor (:obj:`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
        eps (:obj:`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
Patrick von Platen's avatar
Patrick von Platen committed
36
37
38
39
    """

    def __init__(
        self,
Kashif Rasul's avatar
Kashif Rasul committed
40
41
42
43
44
        channels: int,
        num_head_channels: Optional[int] = None,
        num_groups: int = 32,
        rescale_output_factor: float = 1.0,
        eps: float = 1e-5,
Patrick von Platen's avatar
Patrick von Platen committed
45
46
47
48
    ):
        super().__init__()
        self.channels = channels

Patrick von Platen's avatar
Patrick von Platen committed
49
        self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
Patrick von Platen's avatar
Patrick von Platen committed
50
51
52
53
54
55
56
57
58
        self.num_head_size = num_head_channels
        self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=eps, affine=True)

        # define q,k,v as linear layers
        self.query = nn.Linear(channels, channels)
        self.key = nn.Linear(channels, channels)
        self.value = nn.Linear(channels, channels)

        self.rescale_output_factor = rescale_output_factor
Patrick von Platen's avatar
Patrick von Platen committed
59
        self.proj_attn = nn.Linear(channels, channels, 1)
Patrick von Platen's avatar
Patrick von Platen committed
60
61

    def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor:
62
        new_projection_shape = projection.size()[:-1] + (self.num_heads, -1)
Patrick von Platen's avatar
Patrick von Platen committed
63
64
65
66
67
68
69
70
71
72
        # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
        new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3)
        return new_projection

    def forward(self, hidden_states):
        residual = hidden_states
        batch, channel, height, width = hidden_states.shape

        # norm
        hidden_states = self.group_norm(hidden_states)
73

Patrick von Platen's avatar
Patrick von Platen committed
74
75
76
77
78
79
80
81
82
83
84
85
86
        hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)

        # proj to q, k, v
        query_proj = self.query(hidden_states)
        key_proj = self.key(hidden_states)
        value_proj = self.value(hidden_states)

        # transpose
        query_states = self.transpose_for_scores(query_proj)
        key_states = self.transpose_for_scores(key_proj)
        value_states = self.transpose_for_scores(value_proj)

        # get scores
87
        scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads))
88
        attention_scores = torch.matmul(query_states * scale, key_states.transpose(-1, -2) * scale)  # TODO: use baddmm
89
        attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)
Patrick von Platen's avatar
Patrick von Platen committed
90
91

        # compute attention output
92
        hidden_states = torch.matmul(attention_probs, value_states)
Patrick von Platen's avatar
Patrick von Platen committed
93

94
95
96
        hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous()
        new_hidden_states_shape = hidden_states.size()[:-2] + (self.channels,)
        hidden_states = hidden_states.view(new_hidden_states_shape)
Patrick von Platen's avatar
Patrick von Platen committed
97
98

        # compute next hidden_states
99
        hidden_states = self.proj_attn(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
100
101
102
103
104
105
        hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)

        # res connect and rescale
        hidden_states = (hidden_states + residual) / self.rescale_output_factor
        return hidden_states

Patrick von Platen's avatar
Patrick von Platen committed
106

Patrick von Platen's avatar
Patrick von Platen committed
107
108
109
class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply
Kashif Rasul's avatar
Kashif Rasul committed
110
111
112
113
114
115
116
117
118
    standard transformer action. Finally, reshape to image.

    Parameters:
        in_channels (:obj:`int`): The number of channels in the input and output.
        n_heads (:obj:`int`): The number of heads to use for multi-head attention.
        d_head (:obj:`int`): The number of channels in each head.
        depth (:obj:`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (:obj:`float`, *optional*, defaults to 0.1): The dropout probability to use.
        context_dim (:obj:`int`, *optional*): The number of context dimensions to use.
Patrick von Platen's avatar
Patrick von Platen committed
119
120
    """

Kashif Rasul's avatar
Kashif Rasul committed
121
122
123
124
125
126
127
    def __init__(
        self,
        in_channels: int,
        n_heads: int,
        d_head: int,
        depth: int = 1,
        dropout: float = 0.0,
128
        num_groups: int = 32,
Kashif Rasul's avatar
Kashif Rasul committed
129
130
        context_dim: Optional[int] = None,
    ):
Patrick von Platen's avatar
Patrick von Platen committed
131
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
132
133
        self.n_heads = n_heads
        self.d_head = d_head
Patrick von Platen's avatar
Patrick von Platen committed
134
135
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
136
        self.norm = torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
Patrick von Platen's avatar
Patrick von Platen committed
137
138
139
140
141
142
143
144
145
146

        self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)

        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
                for d in range(depth)
            ]
        )

Patrick von Platen's avatar
Patrick von Platen committed
147
        self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
Patrick von Platen's avatar
Patrick von Platen committed
148

149
150
151
152
    def _set_attention_slice(self, slice_size):
        for block in self.transformer_blocks:
            block._set_attention_slice(slice_size)

153
    def forward(self, hidden_states, context=None):
Patrick von Platen's avatar
Patrick von Platen committed
154
        # note: if no context is given, cross-attention defaults to self-attention
155
156
157
158
        batch, channel, height, weight = hidden_states.shape
        residual = hidden_states
        hidden_states = self.norm(hidden_states)
        hidden_states = self.proj_in(hidden_states)
Yih-Dar's avatar
Yih-Dar committed
159
160
        inner_dim = hidden_states.shape[1]
        hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
Patrick von Platen's avatar
Patrick von Platen committed
161
        for block in self.transformer_blocks:
162
            hidden_states = block(hidden_states, context=context)
Yih-Dar's avatar
Yih-Dar committed
163
        hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2)
164
165
        hidden_states = self.proj_out(hidden_states)
        return hidden_states + residual
Patrick von Platen's avatar
Patrick von Platen committed
166
167
168


class BasicTransformerBlock(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    r"""
    A basic Transformer block.

    Parameters:
        dim (:obj:`int`): The number of channels in the input and output.
        n_heads (:obj:`int`): The number of heads to use for multi-head attention.
        d_head (:obj:`int`): The number of channels in each head.
        dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
        context_dim (:obj:`int`, *optional*): The size of the context vector for cross attention.
        gated_ff (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use a gated feed-forward network.
        checkpoint (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use checkpointing.
    """

    def __init__(
        self,
        dim: int,
        n_heads: int,
        d_head: int,
        dropout=0.0,
        context_dim: Optional[int] = None,
        gated_ff: bool = True,
        checkpoint: bool = True,
    ):
Patrick von Platen's avatar
Patrick von Platen committed
192
193
194
195
196
197
198
199
200
201
202
203
204
        super().__init__()
        self.attn1 = CrossAttention(
            query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is a self-attention
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
        self.attn2 = CrossAttention(
            query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is self-attn if context is none
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.norm3 = nn.LayerNorm(dim)
        self.checkpoint = checkpoint

205
206
207
208
    def _set_attention_slice(self, slice_size):
        self.attn1._slice_size = slice_size
        self.attn2._slice_size = slice_size

209
210
211
212
213
214
    def forward(self, hidden_states, context=None):
        hidden_states = hidden_states.contiguous() if hidden_states.device.type == "mps" else hidden_states
        hidden_states = self.attn1(self.norm1(hidden_states)) + hidden_states
        hidden_states = self.attn2(self.norm2(hidden_states), context=context) + hidden_states
        hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
215
216
217


class CrossAttention(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    r"""
    A cross attention layer.

    Parameters:
        query_dim (:obj:`int`): The number of channels in the query.
        context_dim (:obj:`int`, *optional*):
            The number of channels in the context. If not given, defaults to `query_dim`.
        heads (:obj:`int`,  *optional*, defaults to 8): The number of heads to use for multi-head attention.
        dim_head (:obj:`int`,  *optional*, defaults to 64): The number of channels in each head.
        dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
    """

    def __init__(
        self, query_dim: int, context_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: int = 0.0
    ):
Patrick von Platen's avatar
Patrick von Platen committed
233
234
        super().__init__()
        inner_dim = dim_head * heads
235
        context_dim = context_dim if context_dim is not None else query_dim
Patrick von Platen's avatar
Patrick von Platen committed
236
237
238

        self.scale = dim_head**-0.5
        self.heads = heads
239
240
241
242
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
        self._slice_size = None
Patrick von Platen's avatar
Patrick von Platen committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

        self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))

    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

264
    def forward(self, hidden_states, context=None, mask=None):
265
        batch_size, sequence_length, _ = hidden_states.shape
Patrick von Platen's avatar
Patrick von Platen committed
266

267
268
269
270
        query = self.to_q(hidden_states)
        context = context if context is not None else hidden_states
        key = self.to_k(context)
        value = self.to_v(context)
Patrick von Platen's avatar
Patrick von Platen committed
271

272
273
        dim = query.shape[-1]

274
275
276
        query = self.reshape_heads_to_batch_dim(query)
        key = self.reshape_heads_to_batch_dim(key)
        value = self.reshape_heads_to_batch_dim(value)
Patrick von Platen's avatar
Patrick von Platen committed
277

278
        # TODO(PVP) - mask is currently never used. Remember to re-implement when used
Patrick von Platen's avatar
Patrick von Platen committed
279
280

        # attention, what we cannot get enough of
281
282
283
284

        if self._slice_size is None or query.shape[0] // self._slice_size == 1:
            hidden_states = self._attention(query, key, value)
        else:
ydshieh's avatar
ydshieh committed
285
            hidden_states = self._sliced_attention(query, key, value, sequence_length, dim)
286
287

        return self.to_out(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
288

289
    def _attention(self, query, key, value):
Nouamane Tazi's avatar
Nouamane Tazi committed
290
291
        # TODO: use baddbmm for better performance
        attention_scores = torch.matmul(query, key.transpose(-1, -2)) * self.scale
292
293
294
295
296
297
298
299
        attention_probs = attention_scores.softmax(dim=-1)
        # compute attention output
        hidden_states = torch.matmul(attention_probs, value)
        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states

    def _sliced_attention(self, query, key, value, sequence_length, dim):
300
301
302
303
304
305
306
307
        batch_size_attention = query.shape[0]
        hidden_states = torch.zeros(
            (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
        )
        slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
        for i in range(hidden_states.shape[0] // slice_size):
            start_idx = i * slice_size
            end_idx = (i + 1) * slice_size
308
309
310
            attn_slice = (
                torch.matmul(query[start_idx:end_idx], key[start_idx:end_idx].transpose(1, 2)) * self.scale
            )  # TODO: use baddbmm for better performance
311
            attn_slice = attn_slice.softmax(dim=-1)
312
            attn_slice = torch.matmul(attn_slice, value[start_idx:end_idx])
313
314
315
316
317
318

            hidden_states[start_idx:end_idx] = attn_slice

        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
319
320
321


class FeedForward(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    r"""
    A feed-forward layer.

    Parameters:
        dim (:obj:`int`): The number of channels in the input.
        dim_out (:obj:`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (:obj:`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        glu (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use GLU activation.
        dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
    """

    def __init__(
        self, dim: int, dim_out: Optional[int] = None, mult: int = 4, glu: bool = False, dropout: float = 0.0
    ):
Patrick von Platen's avatar
Patrick von Platen committed
336
337
        super().__init__()
        inner_dim = int(dim * mult)
338
339
        dim_out = dim_out if dim_out is not None else dim
        project_in = GEGLU(dim, inner_dim)
Patrick von Platen's avatar
Patrick von Platen committed
340
341
342

        self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))

343
344
    def forward(self, hidden_states):
        return self.net(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
345

Patrick von Platen's avatar
Patrick von Platen committed
346

Patrick von Platen's avatar
Patrick von Platen committed
347
348
# feedforward
class GEGLU(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
349
350
351
352
353
354
355
356
357
    r"""
    A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.

    Parameters:
        dim_in (:obj:`int`): The number of channels in the input.
        dim_out (:obj:`int`): The number of channels in the output.
    """

    def __init__(self, dim_in: int, dim_out: int):
Patrick von Platen's avatar
Patrick von Platen committed
358
359
360
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

361
362
363
    def forward(self, hidden_states):
        hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
        return hidden_states * F.gelu(gate)