attention.py 14.9 KB
Newer Older
1
import math
Patrick von Platen's avatar
Patrick von Platen committed
2
from inspect import isfunction
3
4

import torch
Patrick von Platen's avatar
Patrick von Platen committed
5
import torch.nn.functional as F
6
7
8
from torch import nn


Patrick von Platen's avatar
Patrick von Platen committed
9
# unet_grad_tts.py
Patrick von Platen's avatar
Patrick von Platen committed
10
# TODO(Patrick) - weird linear attention layer. Check with: https://github.com/huawei-noah/Speech-Backbones/issues/15
Patrick von Platen's avatar
Patrick von Platen committed
11
12
13
14
15
16
17
18
19
class LinearAttention(torch.nn.Module):
    def __init__(self, dim, heads=4, dim_head=32):
        super(LinearAttention, self).__init__()
        self.heads = heads
        self.dim_head = dim_head
        hidden_dim = dim_head * heads
        self.to_qkv = torch.nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
        self.to_out = torch.nn.Conv2d(hidden_dim, dim, 1)

20
    def forward(self, x, encoder_states=None):
Patrick von Platen's avatar
Patrick von Platen committed
21
22
23
24
25
26
27
28
29
30
31
32
33
        b, c, h, w = x.shape
        qkv = self.to_qkv(x)
        q, k, v = (
            qkv.reshape(b, 3, self.heads, self.dim_head, h, w)
            .permute(1, 0, 2, 3, 4, 5)
            .reshape(3, b, self.heads, self.dim_head, -1)
        )
        k = k.softmax(dim=-1)
        context = torch.einsum("bhdn,bhen->bhde", k, v)
        out = torch.einsum("bhde,bhdn->bhen", context, q)
        out = out.reshape(b, self.heads, self.dim_head, h, w).reshape(b, self.heads * self.dim_head, h, w)
        return self.to_out(out)

34

Patrick von Platen's avatar
Patrick von Platen committed
35
# the main attention block that is used for all models
Patrick von Platen's avatar
Patrick von Platen committed
36
37
38
39
40
41
42
43
44
45
46
47
class AttentionBlock(nn.Module):
    """
    An attention block that allows spatial positions to attend to each other.

    Originally ported from here, but adapted to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
    """

    def __init__(
        self,
        channels,
        num_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
48
        num_head_channels=None,
Patrick von Platen's avatar
Patrick von Platen committed
49
        num_groups=32,
Patrick von Platen's avatar
Patrick von Platen committed
50
        encoder_channels=None,
Patrick von Platen's avatar
Patrick von Platen committed
51
        overwrite_qkv=False,
Patrick von Platen's avatar
Patrick von Platen committed
52
53
        overwrite_linear=False,
        rescale_output_factor=1.0,
Patrick von Platen's avatar
Patrick von Platen committed
54
55
56
    ):
        super().__init__()
        self.channels = channels
Patrick von Platen's avatar
Patrick von Platen committed
57
        if num_head_channels is None:
Patrick von Platen's avatar
Patrick von Platen committed
58
59
60
61
62
63
            self.num_heads = num_heads
        else:
            assert (
                channels % num_head_channels == 0
            ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
            self.num_heads = channels // num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
64

Patrick von Platen's avatar
Patrick von Platen committed
65
66
        self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=1e-5, affine=True)
        self.qkv = nn.Conv1d(channels, channels * 3, 1)
Patrick von Platen's avatar
Patrick von Platen committed
67
        self.n_heads = self.num_heads
Patrick von Platen's avatar
Patrick von Platen committed
68
        self.rescale_output_factor = rescale_output_factor
Patrick von Platen's avatar
Patrick von Platen committed
69
70

        if encoder_channels is not None:
Patrick von Platen's avatar
Patrick von Platen committed
71
            self.encoder_kv = nn.Conv1d(encoder_channels, channels * 2, 1)
Patrick von Platen's avatar
Patrick von Platen committed
72

73
        self.proj = zero_module(nn.Conv1d(channels, channels, 1))
Patrick von Platen's avatar
Patrick von Platen committed
74

Patrick von Platen's avatar
Patrick von Platen committed
75
        self.overwrite_qkv = overwrite_qkv
Anton Lozhkov's avatar
Anton Lozhkov committed
76
77
        self.overwrite_linear = overwrite_linear

Patrick von Platen's avatar
Patrick von Platen committed
78
79
        if overwrite_qkv:
            in_channels = channels
Patrick von Platen's avatar
Patrick von Platen committed
80
            self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=1e-6)
Patrick von Platen's avatar
Patrick von Platen committed
81
82
83
84
            self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
            self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
            self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
            self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
Anton Lozhkov's avatar
Anton Lozhkov committed
85
        elif self.overwrite_linear:
Patrick von Platen's avatar
Patrick von Platen committed
86
87
88
89
90
91
92
            num_groups = min(channels // 4, 32)
            self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=1e-6)
            self.NIN_0 = NIN(channels, channels)
            self.NIN_1 = NIN(channels, channels)
            self.NIN_2 = NIN(channels, channels)
            self.NIN_3 = NIN(channels, channels)

Patrick von Platen's avatar
Patrick von Platen committed
93
            self.GroupNorm_0 = nn.GroupNorm(num_groups=num_groups, num_channels=channels, eps=1e-6)
Anton Lozhkov's avatar
Anton Lozhkov committed
94
95
        else:
            self.proj_out = zero_module(nn.Conv1d(channels, channels, 1))
96
            self.set_weights(self)
Patrick von Platen's avatar
Patrick von Platen committed
97

Patrick von Platen's avatar
Patrick von Platen committed
98
        self.is_overwritten = False
99

Patrick von Platen's avatar
Patrick von Platen committed
100
101
    def set_weights(self, module):
        if self.overwrite_qkv:
Patrick von Platen's avatar
Patrick von Platen committed
102
103
104
            qkv_weight = torch.cat([module.q.weight.data, module.k.weight.data, module.v.weight.data], dim=0)[
                :, :, :, 0
            ]
Patrick von Platen's avatar
Patrick von Platen committed
105
            qkv_bias = torch.cat([module.q.bias.data, module.k.bias.data, module.v.bias.data], dim=0)
Patrick von Platen's avatar
Patrick von Platen committed
106

Patrick von Platen's avatar
Patrick von Platen committed
107
108
109
            self.qkv.weight.data = qkv_weight
            self.qkv.bias.data = qkv_bias

Patrick von Platen's avatar
Patrick von Platen committed
110
            proj_out = zero_module(nn.Conv1d(self.channels, self.channels, 1))
Patrick von Platen's avatar
Patrick von Platen committed
111
112
            proj_out.weight.data = module.proj_out.weight.data[:, :, :, 0]
            proj_out.bias.data = module.proj_out.bias.data
Patrick von Platen's avatar
Patrick von Platen committed
113

114
            self.proj = proj_out
Patrick von Platen's avatar
Patrick von Platen committed
115
        elif self.overwrite_linear:
Patrick von Platen's avatar
Patrick von Platen committed
116
117
118
            self.qkv.weight.data = torch.concat(
                [self.NIN_0.W.data.T, self.NIN_1.W.data.T, self.NIN_2.W.data.T], dim=0
            )[:, :, None]
Patrick von Platen's avatar
Patrick von Platen committed
119
120
            self.qkv.bias.data = torch.concat([self.NIN_0.b.data, self.NIN_1.b.data, self.NIN_2.b.data], dim=0)

121
122
            self.proj.weight.data = self.NIN_3.W.data.T[:, :, None]
            self.proj.bias.data = self.NIN_3.b.data
Patrick von Platen's avatar
Patrick von Platen committed
123

Patrick von Platen's avatar
Patrick von Platen committed
124
125
            self.norm.weight.data = self.GroupNorm_0.weight.data
            self.norm.bias.data = self.GroupNorm_0.bias.data
Anton Lozhkov's avatar
Anton Lozhkov committed
126
        else:
127
128
            self.proj.weight.data = self.proj_out.weight.data
            self.proj.bias.data = self.proj_out.bias.data
Patrick von Platen's avatar
Patrick von Platen committed
129

Patrick von Platen's avatar
Patrick von Platen committed
130
    def forward(self, x, encoder_out=None):
131
        if not self.is_overwritten and (self.overwrite_qkv or self.overwrite_linear):
Patrick von Platen's avatar
Patrick von Platen committed
132
133
134
135
            self.set_weights(self)
            self.is_overwritten = True

        b, c, *spatial = x.shape
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        hid_states = self.norm(x).view(b, c, -1)

        qkv = self.qkv(hid_states)
        bs, width, length = qkv.shape
        assert width % (3 * self.n_heads) == 0
        ch = width // (3 * self.n_heads)
        q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)

        if encoder_out is not None:
            encoder_kv = self.encoder_kv(encoder_out)
            assert encoder_kv.shape[1] == self.n_heads * ch * 2
            ek, ev = encoder_kv.reshape(bs * self.n_heads, ch * 2, -1).split(ch, dim=1)
            k = torch.cat([ek, k], dim=-1)
            v = torch.cat([ev, v], dim=-1)

        scale = 1 / math.sqrt(math.sqrt(ch))
        weight = torch.einsum("bct,bcs->bts", q * scale, k * scale)  # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)

        a = torch.einsum("bts,bcs->bct", weight, v)
        h = a.reshape(bs, -1, length)

        h = self.proj(h)
        h = h.reshape(b, c, *spatial)

        result = x + h

        result = result / self.rescale_output_factor

        return result


class AttentionBlockNew(nn.Module):
    """
    An attention block that allows spatial positions to attend to each other.

    Originally ported from here, but adapted to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
    """

    def __init__(
        self,
        channels,
        num_head_channels=1,
        num_groups=32,
        encoder_channels=None,
        rescale_output_factor=1.0,
    ):
        super().__init__()
        self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=1e-5, affine=True)
        self.qkv = nn.Conv1d(channels, channels * 3, 1)
        self.n_heads = channels // num_head_channels
        self.rescale_output_factor = rescale_output_factor

        if encoder_channels is not None:
            self.encoder_kv = nn.Conv1d(encoder_channels, channels * 2, 1)

        self.proj = zero_module(nn.Conv1d(channels, channels, 1))

    def set_weight(self, attn_layer):
        self.norm.weight.data = attn_layer.norm.weight.data
        self.norm.bias.data = attn_layer.norm.bias.data

        self.qkv.weight.data = attn_layer.qkv.weight.data
        self.qkv.bias.data = attn_layer.qkv.bias.data

        self.proj.weight.data = attn_layer.proj.weight.data
        self.proj.bias.data = attn_layer.proj.bias.data

    def forward(self, x, encoder_out=None):
        b, c, *spatial = x.shape
Patrick von Platen's avatar
Patrick von Platen committed
207
        hid_states = self.norm(x).view(b, c, -1)
Patrick von Platen's avatar
Patrick von Platen committed
208

Patrick von Platen's avatar
Patrick von Platen committed
209
        qkv = self.qkv(hid_states)
Patrick von Platen's avatar
Patrick von Platen committed
210
211
212
213
        bs, width, length = qkv.shape
        assert width % (3 * self.n_heads) == 0
        ch = width // (3 * self.n_heads)
        q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
Patrick von Platen's avatar
Patrick von Platen committed
214
215
216

        if encoder_out is not None:
            encoder_kv = self.encoder_kv(encoder_out)
Patrick von Platen's avatar
Patrick von Platen committed
217
218
219
220
            assert encoder_kv.shape[1] == self.n_heads * ch * 2
            ek, ev = encoder_kv.reshape(bs * self.n_heads, ch * 2, -1).split(ch, dim=1)
            k = torch.cat([ek, k], dim=-1)
            v = torch.cat([ev, v], dim=-1)
Patrick von Platen's avatar
Patrick von Platen committed
221

Patrick von Platen's avatar
Patrick von Platen committed
222
223
224
        scale = 1 / math.sqrt(math.sqrt(ch))
        weight = torch.einsum("bct,bcs->bts", q * scale, k * scale)  # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
Patrick von Platen's avatar
Patrick von Platen committed
225

Patrick von Platen's avatar
Patrick von Platen committed
226
        a = torch.einsum("bts,bcs->bct", weight, v)
Patrick von Platen's avatar
Patrick von Platen committed
227
228
        h = a.reshape(bs, -1, length)

229
        h = self.proj(h)
Patrick von Platen's avatar
Patrick von Platen committed
230
        h = h.reshape(b, c, *spatial)
Patrick von Platen's avatar
Patrick von Platen committed
231

Patrick von Platen's avatar
Patrick von Platen committed
232
        result = x + h
Patrick von Platen's avatar
Patrick von Platen committed
233

Patrick von Platen's avatar
Patrick von Platen committed
234
        result = result / self.rescale_output_factor
Patrick von Platen's avatar
Patrick von Platen committed
235

Patrick von Platen's avatar
Patrick von Platen committed
236
        return result
Patrick von Platen's avatar
Patrick von Platen committed
237
238


Patrick von Platen's avatar
Patrick von Platen committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply
    standard transformer action. Finally, reshape to image
    """

    def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0.0, context_dim=None):
        super().__init__()
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
        self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)

        self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)

        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
                for d in range(depth)
            ]
        )

        self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))

    def forward(self, x, context=None):
        # note: if no context is given, cross-attention defaults to self-attention
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        x = self.proj_in(x)
        x = x.permute(0, 2, 3, 1).reshape(b, h * w, c)
        for block in self.transformer_blocks:
            x = block(x, context=context)
        x = x.reshape(b, h, w, c).permute(0, 3, 1, 2)
        x = self.proj_out(x)
        return x + x_in


class BasicTransformerBlock(nn.Module):
    def __init__(self, dim, n_heads, d_head, dropout=0.0, context_dim=None, gated_ff=True, checkpoint=True):
        super().__init__()
        self.attn1 = CrossAttention(
            query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is a self-attention
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
        self.attn2 = CrossAttention(
            query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is self-attn if context is none
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.norm3 = nn.LayerNorm(dim)
        self.checkpoint = checkpoint

    def forward(self, x, context=None):
        x = self.attn1(self.norm1(x)) + x
        x = self.attn2(self.norm2(x), context=context) + x
        x = self.ff(self.norm3(x)) + x
        return x


class CrossAttention(nn.Module):
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.scale = dim_head**-0.5
        self.heads = heads

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

        self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))

    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

    def forward(self, x, context=None, mask=None):
        batch_size, sequence_length, dim = x.shape

        h = self.heads

        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
        v = self.to_v(context)

        q = self.reshape_heads_to_batch_dim(q)
        k = self.reshape_heads_to_batch_dim(k)
        v = self.reshape_heads_to_batch_dim(v)

        sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale

        if exists(mask):
            mask = mask.reshape(batch_size, -1)
            max_neg_value = -torch.finfo(sim.dtype).max
            mask = mask[:, None, :].repeat(h, 1, 1)
            sim.masked_fill_(~mask, max_neg_value)

        # attention, what we cannot get enough of
        attn = sim.softmax(dim=-1)

        out = torch.einsum("b i j, b j d -> b i d", attn, v)
        out = self.reshape_batch_dim_to_heads(out)
        return self.to_out(out)


class FeedForward(nn.Module):
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
        project_in = nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) if not glu else GEGLU(dim, inner_dim)

        self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))

    def forward(self, x):
        return self.net(x)
Patrick von Platen's avatar
Patrick von Platen committed
368

Patrick von Platen's avatar
Patrick von Platen committed
369

Patrick von Platen's avatar
Patrick von Platen committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# TODO(Patrick) - this can and should be removed
def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


# TODO(Patrick) - remove once all weights have been converted -> not needed anymore then
class NIN(nn.Module):
    def __init__(self, in_dim, num_units, init_scale=0.1):
        super().__init__()
        self.W = nn.Parameter(torch.zeros(in_dim, num_units), requires_grad=True)
        self.b = nn.Parameter(torch.zeros(num_units), requires_grad=True)
Patrick von Platen's avatar
Patrick von Platen committed
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406


def exists(val):
    return val is not None


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


# feedforward
class GEGLU(nn.Module):
    def __init__(self, dim_in, dim_out):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)