attention.py 29.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import math
Will Berman's avatar
Will Berman committed
15
from dataclasses import dataclass
Kashif Rasul's avatar
Kashif Rasul committed
16
from typing import Optional
17
18

import torch
Patrick von Platen's avatar
Patrick von Platen committed
19
import torch.nn.functional as F
20
21
from torch import nn

Will Berman's avatar
Will Berman committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from ..configuration_utils import ConfigMixin, register_to_config
from ..modeling_utils import ModelMixin
from ..models.embeddings import ImagePositionalEmbeddings
from ..utils import BaseOutput
from ..utils.import_utils import is_xformers_available


@dataclass
class Transformer2DModelOutput(BaseOutput):
    """
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
            Hidden states conditioned on `encoder_hidden_states` input. If discrete, returns probability distributions
            for the unnoised latent pixels.
    """

    sample: torch.FloatTensor
39
40
41
42
43
44
45
46


if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None

47

Will Berman's avatar
Will Berman committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
class Transformer2DModel(ModelMixin, ConfigMixin):
    """
    Transformer model for image-like data. Takes either discrete (classes of vector embeddings) or continuous (actual
    embeddings) inputs.

    When input is continuous: First, project the input (aka embedding) and reshape to b, t, d. Then apply standard
    transformer action. Finally, reshape to image.

    When input is discrete: First, input (classes of latent pixels) is converted to embeddings and has positional
    embeddings applied, see `ImagePositionalEmbeddings`. Then apply standard transformer action. Finally, predict
    classes of unnoised image.

    Note that it is assumed one of the input classes is the masked latent pixel. The predicted classes of the unnoised
    image do not contain a prediction for the masked pixel as the unnoised image cannot be masked.

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
            Pass if the input is continuous. The number of channels in the input and output.
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The number of context dimensions to use.
        sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
            Note that this is fixed at training time as it is used for learning a number of position embeddings. See
            `ImagePositionalEmbeddings`.
        num_vector_embeds (`int`, *optional*):
            Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
            Includes the class for the masked latent pixel.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
            The number of diffusion steps used during training. Note that this is fixed at training time as it is used
            to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
            up to but not more than steps than `num_embeds_ada_norm`.
        attention_bias (`bool`, *optional*):
            Configure if the TransformerBlocks' attention should contain a bias parameter.
    """

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        sample_size: Optional[int] = None,
        num_vector_embeds: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
    ):
        super().__init__()
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim

        # 1. Transformer2DModel can process both standard continous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
        # Define whether input is continuous or discrete depending on configuration
        self.is_input_continuous = in_channels is not None
        self.is_input_vectorized = num_vector_embeds is not None

        if self.is_input_continuous and self.is_input_vectorized:
            raise ValueError(
                f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
                " sure that either `in_channels` or `num_vector_embeds` is None."
            )
        elif not self.is_input_continuous and not self.is_input_vectorized:
            raise ValueError(
                f"Has to define either `in_channels`: {in_channels} or `num_vector_embeds`: {num_vector_embeds}. Make"
                " sure that either `in_channels` or `num_vector_embeds` is not None."
            )

        # 2. Define input layers
        if self.is_input_continuous:
            self.in_channels = in_channels

            self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
            self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
        elif self.is_input_vectorized:
            assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
            assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"

            self.height = sample_size
            self.width = sample_size
            self.num_vector_embeds = num_vector_embeds
            self.num_latent_pixels = self.height * self.width

            self.latent_image_embedding = ImagePositionalEmbeddings(
                num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
            )

        # 3. Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                    attention_bias=attention_bias,
                )
                for d in range(num_layers)
            ]
        )

        # 4. Define output layers
        if self.is_input_continuous:
            self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
        elif self.is_input_vectorized:
            self.norm_out = nn.LayerNorm(inner_dim)
            self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)

    def _set_attention_slice(self, slice_size):
        for block in self.transformer_blocks:
            block._set_attention_slice(slice_size)

    def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
        """
        Args:
            hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
                When continous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
                hidden_states
            encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, context dim)`, *optional*):
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep ( `torch.long`, *optional*):
                Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.

        Returns:
            [`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
            if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
            tensor.
        """
        # 1. Input
        if self.is_input_continuous:
            batch, channel, height, weight = hidden_states.shape
            residual = hidden_states
            hidden_states = self.norm(hidden_states)
            hidden_states = self.proj_in(hidden_states)
            inner_dim = hidden_states.shape[1]
            hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
        elif self.is_input_vectorized:
            hidden_states = self.latent_image_embedding(hidden_states)

        # 2. Blocks
        for block in self.transformer_blocks:
            hidden_states = block(hidden_states, context=encoder_hidden_states, timestep=timestep)

        # 3. Output
        if self.is_input_continuous:
            hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2)
            hidden_states = self.proj_out(hidden_states)
            output = hidden_states + residual
        elif self.is_input_vectorized:
            hidden_states = self.norm_out(hidden_states)
            logits = self.out(hidden_states)
            # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
            logits = logits.permute(0, 2, 1)

            # log(p(x_0))
            output = F.log_softmax(logits.double(), dim=1).float()

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)

    def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
        for block in self.transformer_blocks:
            block._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)


228
class AttentionBlock(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
229
230
231
232
    """
    An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
    to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
Kashif Rasul's avatar
Kashif Rasul committed
233
234
235
    Uses three q, k, v linear layers to compute attention.

    Parameters:
Will Berman's avatar
Will Berman committed
236
237
        channels (`int`): The number of channels in the input and output.
        num_head_channels (`int`, *optional*):
Kashif Rasul's avatar
Kashif Rasul committed
238
            The number of channels in each head. If None, then `num_heads` = 1.
Will Berman's avatar
Will Berman committed
239
240
241
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for group norm.
        rescale_output_factor (`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
        eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
Patrick von Platen's avatar
Patrick von Platen committed
242
243
244
245
    """

    def __init__(
        self,
Kashif Rasul's avatar
Kashif Rasul committed
246
247
        channels: int,
        num_head_channels: Optional[int] = None,
Will Berman's avatar
Will Berman committed
248
        norm_num_groups: int = 32,
Kashif Rasul's avatar
Kashif Rasul committed
249
250
        rescale_output_factor: float = 1.0,
        eps: float = 1e-5,
Patrick von Platen's avatar
Patrick von Platen committed
251
252
253
254
    ):
        super().__init__()
        self.channels = channels

Patrick von Platen's avatar
Patrick von Platen committed
255
        self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
Patrick von Platen's avatar
Patrick von Platen committed
256
        self.num_head_size = num_head_channels
Will Berman's avatar
Will Berman committed
257
        self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=norm_num_groups, eps=eps, affine=True)
Patrick von Platen's avatar
Patrick von Platen committed
258
259
260
261
262
263
264

        # define q,k,v as linear layers
        self.query = nn.Linear(channels, channels)
        self.key = nn.Linear(channels, channels)
        self.value = nn.Linear(channels, channels)

        self.rescale_output_factor = rescale_output_factor
Patrick von Platen's avatar
Patrick von Platen committed
265
        self.proj_attn = nn.Linear(channels, channels, 1)
Patrick von Platen's avatar
Patrick von Platen committed
266
267

    def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor:
268
        new_projection_shape = projection.size()[:-1] + (self.num_heads, -1)
Patrick von Platen's avatar
Patrick von Platen committed
269
270
271
272
273
274
275
276
277
278
        # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
        new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3)
        return new_projection

    def forward(self, hidden_states):
        residual = hidden_states
        batch, channel, height, width = hidden_states.shape

        # norm
        hidden_states = self.group_norm(hidden_states)
279

Patrick von Platen's avatar
Patrick von Platen committed
280
281
282
283
284
285
286
        hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)

        # proj to q, k, v
        query_proj = self.query(hidden_states)
        key_proj = self.key(hidden_states)
        value_proj = self.value(hidden_states)

287
        scale = 1 / math.sqrt(self.channels / self.num_heads)
Patrick von Platen's avatar
Patrick von Platen committed
288
289

        # get scores
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        if self.num_heads > 1:
            query_states = self.transpose_for_scores(query_proj)
            key_states = self.transpose_for_scores(key_proj)
            value_states = self.transpose_for_scores(value_proj)

            # TODO: is there a way to perform batched matmul (e.g. baddbmm) on 4D tensors?
            #       or reformulate this into a 3D problem?
            # TODO: measure whether on MPS device it would be faster to do this matmul via einsum
            #       as some matmuls can be 1.94x slower than an equivalent einsum on MPS
            #       https://gist.github.com/Birch-san/cba16789ec27bb20996a4b4831b13ce0
            attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) * scale
        else:
            query_states, key_states, value_states = query_proj, key_proj, value_proj

            attention_scores = torch.baddbmm(
                torch.empty(
                    query_states.shape[0],
                    query_states.shape[1],
                    key_states.shape[1],
                    dtype=query_states.dtype,
                    device=query_states.device,
                ),
                query_states,
                key_states.transpose(-1, -2),
                beta=0,
                alpha=scale,
            )

318
        attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)
Patrick von Platen's avatar
Patrick von Platen committed
319
320

        # compute attention output
321
322
323
324
325
326
327
328
329
330
331
332
        if self.num_heads > 1:
            # TODO: is there a way to perform batched matmul (e.g. bmm) on 4D tensors?
            #       or reformulate this into a 3D problem?
            # TODO: measure whether on MPS device it would be faster to do this matmul via einsum
            #       as some matmuls can be 1.94x slower than an equivalent einsum on MPS
            #       https://gist.github.com/Birch-san/cba16789ec27bb20996a4b4831b13ce0
            hidden_states = torch.matmul(attention_probs, value_states)
            hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous()
            new_hidden_states_shape = hidden_states.size()[:-2] + (self.channels,)
            hidden_states = hidden_states.view(new_hidden_states_shape)
        else:
            hidden_states = torch.bmm(attention_probs, value_states)
Patrick von Platen's avatar
Patrick von Platen committed
333
334

        # compute next hidden_states
335
        hidden_states = self.proj_attn(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
336
337
338
339
340
341
        hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)

        # res connect and rescale
        hidden_states = (hidden_states + residual) / self.rescale_output_factor
        return hidden_states

Patrick von Platen's avatar
Patrick von Platen committed
342

Patrick von Platen's avatar
Patrick von Platen committed
343
class BasicTransformerBlock(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
344
345
346
347
    r"""
    A basic Transformer block.

    Parameters:
Will Berman's avatar
Will Berman committed
348
349
350
351
352
353
354
355
356
357
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The size of the context vector for cross attention.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
Kashif Rasul's avatar
Kashif Rasul committed
358
359
360
361
362
    """

    def __init__(
        self,
        dim: int,
Will Berman's avatar
Will Berman committed
363
364
        num_attention_heads: int,
        attention_head_dim: int,
Kashif Rasul's avatar
Kashif Rasul committed
365
        dropout=0.0,
Will Berman's avatar
Will Berman committed
366
367
368
369
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
370
    ):
Patrick von Platen's avatar
Patrick von Platen committed
371
372
        super().__init__()
        self.attn1 = CrossAttention(
Will Berman's avatar
Will Berman committed
373
374
375
376
377
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
Patrick von Platen's avatar
Patrick von Platen committed
378
        )  # is a self-attention
Will Berman's avatar
Will Berman committed
379
        self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
Patrick von Platen's avatar
Patrick von Platen committed
380
        self.attn2 = CrossAttention(
Will Berman's avatar
Will Berman committed
381
382
383
384
385
386
            query_dim=dim,
            cross_attention_dim=cross_attention_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
Patrick von Platen's avatar
Patrick von Platen committed
387
        )  # is self-attn if context is none
Will Berman's avatar
Will Berman committed
388
389
390
391
392
393
394
395
396

        # layer norms
        self.use_ada_layer_norm = num_embeds_ada_norm is not None
        if self.use_ada_layer_norm:
            self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
            self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
        else:
            self.norm1 = nn.LayerNorm(dim)
            self.norm2 = nn.LayerNorm(dim)
Patrick von Platen's avatar
Patrick von Platen committed
397
398
        self.norm3 = nn.LayerNorm(dim)

399
400
401
402
    def _set_attention_slice(self, slice_size):
        self.attn1._slice_size = slice_size
        self.attn2._slice_size = slice_size

403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
    def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
        if not is_xformers_available():
            print("Here is how to install it")
            raise ModuleNotFoundError(
                "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                " xformers",
                name="xformers",
            )
        elif not torch.cuda.is_available():
            raise ValueError(
                "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
                " available for GPU "
            )
        else:
            try:
                # Make sure we can run the memory efficient attention
                _ = xformers.ops.memory_efficient_attention(
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                )
            except Exception as e:
                raise e
            self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
            self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers

Will Berman's avatar
Will Berman committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
    def forward(self, hidden_states, context=None, timestep=None):
        # 1. Self-Attention
        norm_hidden_states = (
            self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
        )
        hidden_states = self.attn1(norm_hidden_states) + hidden_states

        # 2. Cross-Attention
        norm_hidden_states = (
            self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
        )
        hidden_states = self.attn2(norm_hidden_states, context=context) + hidden_states

        # 3. Feed-forward
443
        hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
Will Berman's avatar
Will Berman committed
444

445
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
446
447
448


class CrossAttention(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
449
450
451
452
    r"""
    A cross attention layer.

    Parameters:
Will Berman's avatar
Will Berman committed
453
454
        query_dim (`int`): The number of channels in the query.
        cross_attention_dim (`int`, *optional*):
Kashif Rasul's avatar
Kashif Rasul committed
455
            The number of channels in the context. If not given, defaults to `query_dim`.
Will Berman's avatar
Will Berman committed
456
457
458
459
460
        heads (`int`,  *optional*, defaults to 8): The number of heads to use for multi-head attention.
        dim_head (`int`,  *optional*, defaults to 64): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        bias (`bool`, *optional*, defaults to False):
            Set to `True` for the query, key, and value linear layers to contain a bias parameter.
Kashif Rasul's avatar
Kashif Rasul committed
461
462
463
    """

    def __init__(
Will Berman's avatar
Will Berman committed
464
465
466
467
468
469
470
        self,
        query_dim: int,
        cross_attention_dim: Optional[int] = None,
        heads: int = 8,
        dim_head: int = 64,
        dropout: float = 0.0,
        bias=False,
Kashif Rasul's avatar
Kashif Rasul committed
471
    ):
Patrick von Platen's avatar
Patrick von Platen committed
472
473
        super().__init__()
        inner_dim = dim_head * heads
Will Berman's avatar
Will Berman committed
474
        cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
Patrick von Platen's avatar
Patrick von Platen committed
475
476
477

        self.scale = dim_head**-0.5
        self.heads = heads
478
479
480
481
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
        self._slice_size = None
482
        self._use_memory_efficient_attention_xformers = False
Patrick von Platen's avatar
Patrick von Platen committed
483

Will Berman's avatar
Will Berman committed
484
485
486
        self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
        self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
        self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
Patrick von Platen's avatar
Patrick von Platen committed
487

488
489
490
        self.to_out = nn.ModuleList([])
        self.to_out.append(nn.Linear(inner_dim, query_dim))
        self.to_out.append(nn.Dropout(dropout))
Patrick von Platen's avatar
Patrick von Platen committed
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

506
    def forward(self, hidden_states, context=None, mask=None):
507
        batch_size, sequence_length, _ = hidden_states.shape
Patrick von Platen's avatar
Patrick von Platen committed
508

509
510
511
512
        query = self.to_q(hidden_states)
        context = context if context is not None else hidden_states
        key = self.to_k(context)
        value = self.to_v(context)
Patrick von Platen's avatar
Patrick von Platen committed
513

514
515
        dim = query.shape[-1]

516
517
518
        query = self.reshape_heads_to_batch_dim(query)
        key = self.reshape_heads_to_batch_dim(key)
        value = self.reshape_heads_to_batch_dim(value)
Patrick von Platen's avatar
Patrick von Platen committed
519

520
        # TODO(PVP) - mask is currently never used. Remember to re-implement when used
Patrick von Platen's avatar
Patrick von Platen committed
521
522

        # attention, what we cannot get enough of
523
524
        if self._use_memory_efficient_attention_xformers:
            hidden_states = self._memory_efficient_attention_xformers(query, key, value)
525
526
            # Some versions of xformers return output in fp32, cast it back to the dtype of the input
            hidden_states = hidden_states.to(query.dtype)
527
        else:
528
529
530
531
            if self._slice_size is None or query.shape[0] // self._slice_size == 1:
                hidden_states = self._attention(query, key, value)
            else:
                hidden_states = self._sliced_attention(query, key, value, sequence_length, dim)
532

533
534
535
536
537
        # linear proj
        hidden_states = self.to_out[0](hidden_states)
        # dropout
        hidden_states = self.to_out[1](hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
538

539
    def _attention(self, query, key, value):
540
541
542
543
544
545
546
        attention_scores = torch.baddbmm(
            torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
            query,
            key.transpose(-1, -2),
            beta=0,
            alpha=self.scale,
        )
547
548
        attention_probs = attention_scores.softmax(dim=-1)
        # compute attention output
549

550
        hidden_states = torch.bmm(attention_probs, value)
551

552
553
554
555
556
        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states

    def _sliced_attention(self, query, key, value, sequence_length, dim):
557
558
559
560
561
562
563
564
        batch_size_attention = query.shape[0]
        hidden_states = torch.zeros(
            (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
        )
        slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
        for i in range(hidden_states.shape[0] // slice_size):
            start_idx = i * slice_size
            end_idx = (i + 1) * slice_size
565
566
567
568
569
570
571
            attn_slice = torch.baddbmm(
                torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
                query[start_idx:end_idx],
                key[start_idx:end_idx].transpose(-1, -2),
                beta=0,
                alpha=self.scale,
            )
572
            attn_slice = attn_slice.softmax(dim=-1)
573
            attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
574
575
576
577
578
579

            hidden_states[start_idx:end_idx] = attn_slice

        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states
580
581

    def _memory_efficient_attention_xformers(self, query, key, value):
582
583
584
        query = query.contiguous()
        key = key.contiguous()
        value = value.contiguous()
585
586
587
        hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=None)
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
588
589
590


class FeedForward(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
591
592
593
594
    r"""
    A feed-forward layer.

    Parameters:
Will Berman's avatar
Will Berman committed
595
596
597
598
599
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
Kashif Rasul's avatar
Kashif Rasul committed
600
601
602
    """

    def __init__(
Will Berman's avatar
Will Berman committed
603
604
605
606
607
608
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
Kashif Rasul's avatar
Kashif Rasul committed
609
    ):
Patrick von Platen's avatar
Patrick von Platen committed
610
611
        super().__init__()
        inner_dim = int(dim * mult)
612
        dim_out = dim_out if dim_out is not None else dim
Patrick von Platen's avatar
Patrick von Platen committed
613

Will Berman's avatar
Will Berman committed
614
615
616
617
618
619
        if activation_fn == "geglu":
            geglu = GEGLU(dim, inner_dim)
        elif activation_fn == "geglu-approximate":
            geglu = ApproximateGELU(dim, inner_dim)

        self.net = nn.ModuleList([])
620
        # project in
Will Berman's avatar
Will Berman committed
621
        self.net.append(geglu)
622
623
624
625
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
        self.net.append(nn.Linear(inner_dim, dim_out))
Patrick von Platen's avatar
Patrick von Platen committed
626

627
    def forward(self, hidden_states):
628
629
630
        for module in self.net:
            hidden_states = module(hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
631

Patrick von Platen's avatar
Patrick von Platen committed
632

Patrick von Platen's avatar
Patrick von Platen committed
633
634
# feedforward
class GEGLU(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
635
636
637
638
    r"""
    A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.

    Parameters:
Will Berman's avatar
Will Berman committed
639
640
        dim_in (`int`): The number of channels in the input.
        dim_out (`int`): The number of channels in the output.
Kashif Rasul's avatar
Kashif Rasul committed
641
642
643
    """

    def __init__(self, dim_in: int, dim_out: int):
Patrick von Platen's avatar
Patrick von Platen committed
644
645
646
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

647
648
649
650
651
652
    def gelu(self, gate):
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

653
654
    def forward(self, hidden_states):
        hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
655
        return hidden_states * self.gelu(gate)
Will Berman's avatar
Will Berman committed
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690


class ApproximateGELU(nn.Module):
    """
    The approximate form of Gaussian Error Linear Unit (GELU)

    For more details, see section 2: https://arxiv.org/abs/1606.08415
    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)

    def forward(self, x):
        x = self.proj(x)
        return x * torch.sigmoid(1.702 * x)


class AdaLayerNorm(nn.Module):
    """
    Norm layer modified to incorporate timestep embeddings.
    """

    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()
        self.emb = nn.Embedding(num_embeddings, embedding_dim)
        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)

    def forward(self, x, timestep):
        emb = self.linear(self.silu(self.emb(timestep)))
        scale, shift = torch.chunk(emb, 2)
        x = self.norm(x) * (1 + scale) + shift
        return x