"tests/pytorch/test_pickle.py" did not exist on "05f464f824020e68d26012a8cfe236ad0c7a68c7"
scheduling_sde_ve.py 12.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 Google Brain and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
15
16
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch

17
import math
18
19
from dataclasses import dataclass
from typing import Optional, Tuple, Union
20
21
22

import torch

23
from ..configuration_utils import ConfigMixin, register_to_config
24
from ..utils import BaseOutput, randn_tensor
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from .scheduling_utils import SchedulerMixin, SchedulerOutput


@dataclass
class SdeVeOutput(BaseOutput):
    """
    Output class for the ScoreSdeVeScheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        prev_sample_mean (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Mean averaged `prev_sample`. Same as `prev_sample`, only mean-averaged over previous timesteps.
    """

    prev_sample: torch.FloatTensor
    prev_sample_mean: torch.FloatTensor
43
44


Patrick von Platen's avatar
Patrick von Platen committed
45
class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
Nathan Lambert's avatar
Nathan Lambert committed
46
47
48
    """
    The variance exploding stochastic differential equation (SDE) scheduler.

49
50
    For more information, see the original paper: https://arxiv.org/abs/2011.13456

51
52
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
53
54
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
55

56
    Args:
57
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
58
59
60
61
62
63
        snr (`float`):
            coefficient weighting the step from the model_output sample (from the network) to the random noise.
        sigma_min (`float`):
                initial noise scale for sigma sequence in sampling procedure. The minimum sigma should mirror the
                distribution of the data.
        sigma_max (`float`): maximum value used for the range of continuous timesteps passed into the model.
Nathan Lambert's avatar
Nathan Lambert committed
64
        sampling_eps (`float`): the end value of sampling, where timesteps decrease progressively from 1 to
65
66
        epsilon.
        correct_steps (`int`): number of correction steps performed on a produced sample.
Nathan Lambert's avatar
Nathan Lambert committed
67
68
    """

69
70
    order = 1

71
    @register_to_config
Nathan Lambert's avatar
Nathan Lambert committed
72
73
    def __init__(
        self,
74
75
76
77
78
79
        num_train_timesteps: int = 2000,
        snr: float = 0.15,
        sigma_min: float = 0.01,
        sigma_max: float = 1348.0,
        sampling_eps: float = 1e-5,
        correct_steps: int = 1,
Nathan Lambert's avatar
Nathan Lambert committed
80
    ):
81
82
83
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = sigma_max

84
        # setable values
Patrick von Platen's avatar
Patrick von Platen committed
85
86
        self.timesteps = None

87
        self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps)
88

89
90
91
92
93
94
95
96
97
98
99
100
101
102
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

103
104
105
    def set_timesteps(
        self, num_inference_steps: int, sampling_eps: float = None, device: Union[str, torch.device] = None
    ):
106
107
108
109
110
111
        """
        Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
112
113
            sampling_eps (`float`, optional):
                final timestep value (overrides value given at Scheduler instantiation).
114
115

        """
116
        sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
117

118
        self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps, device=device)
Patrick von Platen's avatar
Patrick von Platen committed
119

120
121
122
    def set_sigmas(
        self, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None, sampling_eps: float = None
    ):
123
124
125
126
127
128
129
130
131
132
        """
        Sets the noise scales used for the diffusion chain. Supporting function to be run before inference.

        The sigmas control the weight of the `drift` and `diffusion` components of sample update.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
            sigma_min (`float`, optional):
                initial noise scale value (overrides value given at Scheduler instantiation).
133
134
135
136
            sigma_max (`float`, optional):
                final noise scale value (overrides value given at Scheduler instantiation).
            sampling_eps (`float`, optional):
                final timestep value (overrides value given at Scheduler instantiation).
137
138

        """
139
140
141
        sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min
        sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max
        sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
Patrick von Platen's avatar
Patrick von Platen committed
142
        if self.timesteps is None:
143
            self.set_timesteps(num_inference_steps, sampling_eps)
Patrick von Platen's avatar
Patrick von Platen committed
144

145
146
147
        self.sigmas = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
        self.discrete_sigmas = torch.exp(torch.linspace(math.log(sigma_min), math.log(sigma_max), num_inference_steps))
        self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])
Nathan Lambert's avatar
Nathan Lambert committed
148
149

    def get_adjacent_sigma(self, timesteps, t):
150
151
152
153
154
        return torch.where(
            timesteps == 0,
            torch.zeros_like(t.to(timesteps.device)),
            self.discrete_sigmas[timesteps - 1].to(timesteps.device),
        )
Nathan Lambert's avatar
Nathan Lambert committed
155

156
157
    def step_pred(
        self,
158
        model_output: torch.FloatTensor,
159
        timestep: int,
160
        sample: torch.FloatTensor,
161
        generator: Optional[torch.Generator] = None,
162
163
        return_dict: bool = True,
    ) -> Union[SdeVeOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
164
        """
165
166
167
168
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
169
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
170
            timestep (`int`): current discrete timestep in the diffusion chain.
171
            sample (`torch.FloatTensor`):
172
173
174
175
176
                current instance of sample being created by diffusion process.
            generator: random number generator.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
177
178
            [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] if
            `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
179

Nathan Lambert's avatar
Nathan Lambert committed
180
        """
181
182
183
184
185
        if self.timesteps is None:
            raise ValueError(
                "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
            )

186
187
188
189
        timestep = timestep * torch.ones(
            sample.shape[0], device=sample.device
        )  # torch.repeat_interleave(timestep, sample.shape[0])
        timesteps = (timestep * (len(self.timesteps) - 1)).long()
Nathan Lambert's avatar
Nathan Lambert committed
190

191
192
193
        # mps requires indices to be in the same device, so we use cpu as is the default with cuda
        timesteps = timesteps.to(self.discrete_sigmas.device)

194
        sigma = self.discrete_sigmas[timesteps].to(sample.device)
195
        adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep).to(sample.device)
196
        drift = torch.zeros_like(sample)
Nathan Lambert's avatar
Nathan Lambert committed
197
198
        diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5

199
        # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
Nathan Lambert's avatar
Nathan Lambert committed
200
        # also equation 47 shows the analog from SDE models to ancestral sampling methods
201
202
203
204
        diffusion = diffusion.flatten()
        while len(diffusion.shape) < len(sample.shape):
            diffusion = diffusion.unsqueeze(-1)
        drift = drift - diffusion**2 * model_output
Nathan Lambert's avatar
Nathan Lambert committed
205
206

        #  equation 6: sample noise for the diffusion term of
207
208
209
        noise = randn_tensor(
            sample.shape, layout=sample.layout, generator=generator, device=sample.device, dtype=sample.dtype
        )
210
        prev_sample_mean = sample - drift  # subtract because `dt` is a small negative timestep
Nathan Lambert's avatar
Nathan Lambert committed
211
        # TODO is the variable diffusion the correct scaling term for the noise?
212
        prev_sample = prev_sample_mean + diffusion * noise  # add impact of diffusion field g
213

214
215
216
217
        if not return_dict:
            return (prev_sample, prev_sample_mean)

        return SdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean)
218
219
220

    def step_correct(
        self,
221
222
        model_output: torch.FloatTensor,
        sample: torch.FloatTensor,
223
        generator: Optional[torch.Generator] = None,
224
225
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
226
        """
227
228
        Correct the predicted sample based on the output model_output of the network. This is often run repeatedly
        after making the prediction for the previous timestep.
229
230

        Args:
231
232
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
            sample (`torch.FloatTensor`):
233
234
235
236
237
                current instance of sample being created by diffusion process.
            generator: random number generator.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
238
239
            [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] if
            `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
240

Nathan Lambert's avatar
Nathan Lambert committed
241
        """
242
243
244
245
246
        if self.timesteps is None:
            raise ValueError(
                "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
            )

Nathan Lambert's avatar
Nathan Lambert committed
247
248
        # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
        # sample noise for correction
249
        noise = randn_tensor(sample.shape, layout=sample.layout, generator=generator).to(sample.device)
250

251
        # compute step size from the model_output, the noise, and the snr
252
253
        grad_norm = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean()
        noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean()
Patrick von Platen's avatar
Patrick von Platen committed
254
        step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
255
256
        step_size = step_size * torch.ones(sample.shape[0]).to(sample.device)
        # self.repeat_scalar(step_size, sample.shape[0])
257

258
        # compute corrected sample: model_output term and noise term
259
260
261
262
263
        step_size = step_size.flatten()
        while len(step_size.shape) < len(sample.shape):
            step_size = step_size.unsqueeze(-1)
        prev_sample_mean = sample + step_size * model_output
        prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
264

265
266
267
268
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Nathan Lambert's avatar
Nathan Lambert committed
269

270
271
272
273
274
275
276
277
278
    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.FloatTensor,
    ) -> torch.FloatTensor:
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        timesteps = timesteps.to(original_samples.device)
        sigmas = self.discrete_sigmas.to(original_samples.device)[timesteps]
Uranus's avatar
Uranus committed
279
280
281
282
283
        noise = (
            noise * sigmas[:, None, None, None]
            if noise is not None
            else torch.randn_like(original_samples) * sigmas[:, None, None, None]
        )
284
285
286
        noisy_samples = noise + original_samples
        return noisy_samples

Nathan Lambert's avatar
Nathan Lambert committed
287
288
    def __len__(self):
        return self.config.num_train_timesteps