scheduling_sde_ve.py 12.9 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2022 Google Brain and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
15
16
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch

17
import warnings
18
19
from dataclasses import dataclass
from typing import Optional, Tuple, Union
20
21
22
23

import numpy as np
import torch

24
from ..configuration_utils import ConfigMixin, register_to_config
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from ..utils import BaseOutput
from .scheduling_utils import SchedulerMixin, SchedulerOutput


@dataclass
class SdeVeOutput(BaseOutput):
    """
    Output class for the ScoreSdeVeScheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        prev_sample_mean (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Mean averaged `prev_sample`. Same as `prev_sample`, only mean-averaged over previous timesteps.
    """

    prev_sample: torch.FloatTensor
    prev_sample_mean: torch.FloatTensor
44
45


Patrick von Platen's avatar
Patrick von Platen committed
46
class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
Nathan Lambert's avatar
Nathan Lambert committed
47
48
49
    """
    The variance exploding stochastic differential equation (SDE) scheduler.

50
51
    For more information, see the original paper: https://arxiv.org/abs/2011.13456

52
53
54
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
55
    [`~ConfigMixin.from_config`] functions.
56

57
58
59
60
61
62
63
    Args:
        snr (`float`):
            coefficient weighting the step from the model_output sample (from the network) to the random noise.
        sigma_min (`float`):
                initial noise scale for sigma sequence in sampling procedure. The minimum sigma should mirror the
                distribution of the data.
        sigma_max (`float`): maximum value used for the range of continuous timesteps passed into the model.
Nathan Lambert's avatar
Nathan Lambert committed
64
        sampling_eps (`float`): the end value of sampling, where timesteps decrease progressively from 1 to
65
66
67
        epsilon.
        correct_steps (`int`): number of correction steps performed on a produced sample.
        tensor_format (`str`): "np" or "pt" for the expected format of samples passed to the Scheduler.
Nathan Lambert's avatar
Nathan Lambert committed
68
69
    """

70
    @register_to_config
Nathan Lambert's avatar
Nathan Lambert committed
71
72
    def __init__(
        self,
73
74
75
76
77
78
79
        num_train_timesteps: int = 2000,
        snr: float = 0.15,
        sigma_min: float = 0.01,
        sigma_max: float = 1348.0,
        sampling_eps: float = 1e-5,
        correct_steps: int = 1,
        tensor_format: str = "pt",
Nathan Lambert's avatar
Nathan Lambert committed
80
    ):
81
        # setable values
Patrick von Platen's avatar
Patrick von Platen committed
82
83
        self.timesteps = None

84
        self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps)
85
86

        self.tensor_format = tensor_format
Nathan Lambert's avatar
Nathan Lambert committed
87
88
        self.set_format(tensor_format=tensor_format)

89
    def set_timesteps(self, num_inference_steps: int, sampling_eps: float = None):
90
91
92
93
94
95
96
97
98
        """
        Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
            sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation).

        """
99
        sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
Nathan Lambert's avatar
Nathan Lambert committed
100
101
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
102
            self.timesteps = np.linspace(1, sampling_eps, num_inference_steps)
Nathan Lambert's avatar
Nathan Lambert committed
103
        elif tensor_format == "pt":
104
            self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps)
Nathan Lambert's avatar
Nathan Lambert committed
105
106
        else:
            raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")
Patrick von Platen's avatar
Patrick von Platen committed
107

108
109
110
    def set_sigmas(
        self, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None, sampling_eps: float = None
    ):
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        """
        Sets the noise scales used for the diffusion chain. Supporting function to be run before inference.

        The sigmas control the weight of the `drift` and `diffusion` components of sample update.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
            sigma_min (`float`, optional):
                initial noise scale value (overrides value given at Scheduler instantiation).
            sigma_max (`float`, optional): final noise scale value (overrides value given at Scheduler instantiation).
            sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation).

        """
125
126
127
        sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min
        sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max
        sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
Patrick von Platen's avatar
Patrick von Platen committed
128
        if self.timesteps is None:
129
            self.set_timesteps(num_inference_steps, sampling_eps)
Patrick von Platen's avatar
Patrick von Platen committed
130

Nathan Lambert's avatar
Nathan Lambert committed
131
132
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
133
134
            self.discrete_sigmas = np.exp(np.linspace(np.log(sigma_min), np.log(sigma_max), num_inference_steps))
            self.sigmas = np.array([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])
Nathan Lambert's avatar
Nathan Lambert committed
135
        elif tensor_format == "pt":
136
137
            self.discrete_sigmas = torch.exp(torch.linspace(np.log(sigma_min), np.log(sigma_max), num_inference_steps))
            self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])
Nathan Lambert's avatar
Nathan Lambert committed
138
139
140
141
142
143
144
145
146
        else:
            raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

    def get_adjacent_sigma(self, timesteps, t):
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            return np.where(timesteps == 0, np.zeros_like(t), self.discrete_sigmas[timesteps - 1])
        elif tensor_format == "pt":
            return torch.where(
147
148
149
                timesteps == 0,
                torch.zeros_like(t.to(timesteps.device)),
                self.discrete_sigmas[timesteps - 1].to(timesteps.device),
Nathan Lambert's avatar
Nathan Lambert committed
150
151
152
153
            )

        raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

154
    def set_seed(self, seed):
155
156
157
158
159
        warnings.warn(
            "The method `set_seed` is deprecated and will be removed in version `0.4.0`. Please consider passing a"
            " generator instead.",
            DeprecationWarning,
        )
160
161
162
163
164
165
166
167
168
169
170
171
172
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            np.random.seed(seed)
        elif tensor_format == "pt":
            torch.manual_seed(seed)
        else:
            raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

    def step_pred(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
173
        generator: Optional[torch.Generator] = None,
174
        return_dict: bool = True,
175
        **kwargs,
176
    ) -> Union[SdeVeOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
177
        """
178
179
180
181
182
183
184
185
186
187
188
189
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor` or `np.ndarray`):
                current instance of sample being created by diffusion process.
            generator: random number generator.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
190
191
            [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] if
            `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
192

Nathan Lambert's avatar
Nathan Lambert committed
193
        """
194
195
        if "seed" in kwargs and kwargs["seed"] is not None:
            self.set_seed(kwargs["seed"])
196

197
198
199
200
201
        if self.timesteps is None:
            raise ValueError(
                "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
            )

202
203
204
205
        timestep = timestep * torch.ones(
            sample.shape[0], device=sample.device
        )  # torch.repeat_interleave(timestep, sample.shape[0])
        timesteps = (timestep * (len(self.timesteps) - 1)).long()
Nathan Lambert's avatar
Nathan Lambert committed
206

207
208
209
        # mps requires indices to be in the same device, so we use cpu as is the default with cuda
        timesteps = timesteps.to(self.discrete_sigmas.device)

210
        sigma = self.discrete_sigmas[timesteps].to(sample.device)
211
        adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep).to(sample.device)
212
        drift = self.zeros_like(sample)
Nathan Lambert's avatar
Nathan Lambert committed
213
214
        diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5

215
        # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
Nathan Lambert's avatar
Nathan Lambert committed
216
        # also equation 47 shows the analog from SDE models to ancestral sampling methods
217
        drift = drift - diffusion[:, None, None, None] ** 2 * model_output
Nathan Lambert's avatar
Nathan Lambert committed
218
219

        #  equation 6: sample noise for the diffusion term of
220
        noise = self.randn_like(sample, generator=generator)
221
        prev_sample_mean = sample - drift  # subtract because `dt` is a small negative timestep
Nathan Lambert's avatar
Nathan Lambert committed
222
        # TODO is the variable diffusion the correct scaling term for the noise?
223
        prev_sample = prev_sample_mean + diffusion[:, None, None, None] * noise  # add impact of diffusion field g
224

225
226
227
228
        if not return_dict:
            return (prev_sample, prev_sample_mean)

        return SdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean)
229
230
231
232
233

    def step_correct(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        sample: Union[torch.FloatTensor, np.ndarray],
234
        generator: Optional[torch.Generator] = None,
235
        return_dict: bool = True,
236
        **kwargs,
237
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
238
        """
239
240
        Correct the predicted sample based on the output model_output of the network. This is often run repeatedly
        after making the prediction for the previous timestep.
241
242
243
244
245
246
247
248
249

        Args:
            model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model.
            sample (`torch.FloatTensor` or `np.ndarray`):
                current instance of sample being created by diffusion process.
            generator: random number generator.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
250
251
            [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] if
            `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
252

Nathan Lambert's avatar
Nathan Lambert committed
253
        """
254
255
        if "seed" in kwargs and kwargs["seed"] is not None:
            self.set_seed(kwargs["seed"])
256

257
258
259
260
261
        if self.timesteps is None:
            raise ValueError(
                "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
            )

Nathan Lambert's avatar
Nathan Lambert committed
262
263
        # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
        # sample noise for correction
264
        noise = self.randn_like(sample, generator=generator)
265

266
267
        # compute step size from the model_output, the noise, and the snr
        grad_norm = self.norm(model_output)
Nathan Lambert's avatar
Nathan Lambert committed
268
        noise_norm = self.norm(noise)
Patrick von Platen's avatar
Patrick von Platen committed
269
        step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
270
271
        step_size = step_size * torch.ones(sample.shape[0]).to(sample.device)
        # self.repeat_scalar(step_size, sample.shape[0])
272

273
274
275
        # compute corrected sample: model_output term and noise term
        prev_sample_mean = sample + step_size[:, None, None, None] * model_output
        prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5)[:, None, None, None] * noise
276

277
278
279
280
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Nathan Lambert's avatar
Nathan Lambert committed
281
282
283

    def __len__(self):
        return self.config.num_train_timesteps