scheduling_sde_ve.py 12.4 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2022 Google Brain and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
15
16
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch

17
import math
18
19
from dataclasses import dataclass
from typing import Optional, Tuple, Union
20
21
22

import torch

23
from ..configuration_utils import ConfigMixin, register_to_config
Anton Lozhkov's avatar
Anton Lozhkov committed
24
from ..utils import BaseOutput
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from .scheduling_utils import SchedulerMixin, SchedulerOutput


@dataclass
class SdeVeOutput(BaseOutput):
    """
    Output class for the ScoreSdeVeScheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        prev_sample_mean (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Mean averaged `prev_sample`. Same as `prev_sample`, only mean-averaged over previous timesteps.
    """

    prev_sample: torch.FloatTensor
    prev_sample_mean: torch.FloatTensor
43
44


Patrick von Platen's avatar
Patrick von Platen committed
45
class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
Nathan Lambert's avatar
Nathan Lambert committed
46
47
48
    """
    The variance exploding stochastic differential equation (SDE) scheduler.

49
50
    For more information, see the original paper: https://arxiv.org/abs/2011.13456

51
52
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
53
54
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
55

56
    Args:
57
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
58
59
60
61
62
63
        snr (`float`):
            coefficient weighting the step from the model_output sample (from the network) to the random noise.
        sigma_min (`float`):
                initial noise scale for sigma sequence in sampling procedure. The minimum sigma should mirror the
                distribution of the data.
        sigma_max (`float`): maximum value used for the range of continuous timesteps passed into the model.
Nathan Lambert's avatar
Nathan Lambert committed
64
        sampling_eps (`float`): the end value of sampling, where timesteps decrease progressively from 1 to
65
66
        epsilon.
        correct_steps (`int`): number of correction steps performed on a produced sample.
Nathan Lambert's avatar
Nathan Lambert committed
67
68
    """

69
70
    order = 1

71
    @register_to_config
Nathan Lambert's avatar
Nathan Lambert committed
72
73
    def __init__(
        self,
74
75
76
77
78
79
        num_train_timesteps: int = 2000,
        snr: float = 0.15,
        sigma_min: float = 0.01,
        sigma_max: float = 1348.0,
        sampling_eps: float = 1e-5,
        correct_steps: int = 1,
Nathan Lambert's avatar
Nathan Lambert committed
80
    ):
81
82
83
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = sigma_max

84
        # setable values
Patrick von Platen's avatar
Patrick von Platen committed
85
86
        self.timesteps = None

87
        self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps)
88

89
90
91
92
93
94
95
96
97
98
99
100
101
102
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

103
104
105
    def set_timesteps(
        self, num_inference_steps: int, sampling_eps: float = None, device: Union[str, torch.device] = None
    ):
106
107
108
109
110
111
112
113
114
        """
        Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
            sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation).

        """
115
        sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
116

117
        self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps, device=device)
Patrick von Platen's avatar
Patrick von Platen committed
118

119
120
121
    def set_sigmas(
        self, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None, sampling_eps: float = None
    ):
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        """
        Sets the noise scales used for the diffusion chain. Supporting function to be run before inference.

        The sigmas control the weight of the `drift` and `diffusion` components of sample update.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
            sigma_min (`float`, optional):
                initial noise scale value (overrides value given at Scheduler instantiation).
            sigma_max (`float`, optional): final noise scale value (overrides value given at Scheduler instantiation).
            sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation).

        """
136
137
138
        sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min
        sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max
        sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
Patrick von Platen's avatar
Patrick von Platen committed
139
        if self.timesteps is None:
140
            self.set_timesteps(num_inference_steps, sampling_eps)
Patrick von Platen's avatar
Patrick von Platen committed
141

142
143
144
        self.sigmas = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
        self.discrete_sigmas = torch.exp(torch.linspace(math.log(sigma_min), math.log(sigma_max), num_inference_steps))
        self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])
Nathan Lambert's avatar
Nathan Lambert committed
145
146

    def get_adjacent_sigma(self, timesteps, t):
147
148
149
150
151
        return torch.where(
            timesteps == 0,
            torch.zeros_like(t.to(timesteps.device)),
            self.discrete_sigmas[timesteps - 1].to(timesteps.device),
        )
Nathan Lambert's avatar
Nathan Lambert committed
152

153
154
    def step_pred(
        self,
155
        model_output: torch.FloatTensor,
156
        timestep: int,
157
        sample: torch.FloatTensor,
158
        generator: Optional[torch.Generator] = None,
159
160
        return_dict: bool = True,
    ) -> Union[SdeVeOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
161
        """
162
163
164
165
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
166
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
167
            timestep (`int`): current discrete timestep in the diffusion chain.
168
            sample (`torch.FloatTensor`):
169
170
171
172
173
                current instance of sample being created by diffusion process.
            generator: random number generator.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
174
175
            [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] if
            `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
176

Nathan Lambert's avatar
Nathan Lambert committed
177
        """
178
179
180
181
182
        if self.timesteps is None:
            raise ValueError(
                "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
            )

183
184
185
186
        timestep = timestep * torch.ones(
            sample.shape[0], device=sample.device
        )  # torch.repeat_interleave(timestep, sample.shape[0])
        timesteps = (timestep * (len(self.timesteps) - 1)).long()
Nathan Lambert's avatar
Nathan Lambert committed
187

188
189
190
        # mps requires indices to be in the same device, so we use cpu as is the default with cuda
        timesteps = timesteps.to(self.discrete_sigmas.device)

191
        sigma = self.discrete_sigmas[timesteps].to(sample.device)
192
        adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep).to(sample.device)
193
        drift = torch.zeros_like(sample)
Nathan Lambert's avatar
Nathan Lambert committed
194
195
        diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5

196
        # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
Nathan Lambert's avatar
Nathan Lambert committed
197
        # also equation 47 shows the analog from SDE models to ancestral sampling methods
198
199
200
201
        diffusion = diffusion.flatten()
        while len(diffusion.shape) < len(sample.shape):
            diffusion = diffusion.unsqueeze(-1)
        drift = drift - diffusion**2 * model_output
Nathan Lambert's avatar
Nathan Lambert committed
202
203

        #  equation 6: sample noise for the diffusion term of
204
        noise = torch.randn(sample.shape, layout=sample.layout, generator=generator).to(sample.device)
205
        prev_sample_mean = sample - drift  # subtract because `dt` is a small negative timestep
Nathan Lambert's avatar
Nathan Lambert committed
206
        # TODO is the variable diffusion the correct scaling term for the noise?
207
        prev_sample = prev_sample_mean + diffusion * noise  # add impact of diffusion field g
208

209
210
211
212
        if not return_dict:
            return (prev_sample, prev_sample_mean)

        return SdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean)
213
214
215

    def step_correct(
        self,
216
217
        model_output: torch.FloatTensor,
        sample: torch.FloatTensor,
218
        generator: Optional[torch.Generator] = None,
219
220
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
221
        """
222
223
        Correct the predicted sample based on the output model_output of the network. This is often run repeatedly
        after making the prediction for the previous timestep.
224
225

        Args:
226
227
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
            sample (`torch.FloatTensor`):
228
229
230
231
232
                current instance of sample being created by diffusion process.
            generator: random number generator.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
233
234
            [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] if
            `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
235

Nathan Lambert's avatar
Nathan Lambert committed
236
        """
237
238
239
240
241
        if self.timesteps is None:
            raise ValueError(
                "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
            )

Nathan Lambert's avatar
Nathan Lambert committed
242
243
        # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
        # sample noise for correction
244
        noise = torch.randn(sample.shape, layout=sample.layout, generator=generator).to(sample.device)
245

246
        # compute step size from the model_output, the noise, and the snr
247
248
        grad_norm = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean()
        noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean()
Patrick von Platen's avatar
Patrick von Platen committed
249
        step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
250
251
        step_size = step_size * torch.ones(sample.shape[0]).to(sample.device)
        # self.repeat_scalar(step_size, sample.shape[0])
252

253
        # compute corrected sample: model_output term and noise term
254
255
256
257
258
        step_size = step_size.flatten()
        while len(step_size.shape) < len(sample.shape):
            step_size = step_size.unsqueeze(-1)
        prev_sample_mean = sample + step_size * model_output
        prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
259

260
261
262
263
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Nathan Lambert's avatar
Nathan Lambert committed
264

265
266
267
268
269
270
271
272
273
274
275
276
277
    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.FloatTensor,
    ) -> torch.FloatTensor:
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        timesteps = timesteps.to(original_samples.device)
        sigmas = self.discrete_sigmas.to(original_samples.device)[timesteps]
        noise = torch.randn_like(original_samples) * sigmas[:, None, None, None]
        noisy_samples = noise + original_samples
        return noisy_samples

Nathan Lambert's avatar
Nathan Lambert committed
278
279
    def __len__(self):
        return self.config.num_train_timesteps