scheduling_sde_ve.py 11.8 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2022 Google Brain and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
15
16
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch

17
import math
18
19
from dataclasses import dataclass
from typing import Optional, Tuple, Union
20
21
22

import torch

23
from ..configuration_utils import ConfigMixin, register_to_config
24
from ..utils import BaseOutput, deprecate
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from .scheduling_utils import SchedulerMixin, SchedulerOutput


@dataclass
class SdeVeOutput(BaseOutput):
    """
    Output class for the ScoreSdeVeScheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        prev_sample_mean (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Mean averaged `prev_sample`. Same as `prev_sample`, only mean-averaged over previous timesteps.
    """

    prev_sample: torch.FloatTensor
    prev_sample_mean: torch.FloatTensor
43
44


Patrick von Platen's avatar
Patrick von Platen committed
45
class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
Nathan Lambert's avatar
Nathan Lambert committed
46
47
48
    """
    The variance exploding stochastic differential equation (SDE) scheduler.

49
50
    For more information, see the original paper: https://arxiv.org/abs/2011.13456

51
52
53
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
54
    [`~ConfigMixin.from_config`] functions.
55

56
    Args:
57
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
58
59
60
61
62
63
        snr (`float`):
            coefficient weighting the step from the model_output sample (from the network) to the random noise.
        sigma_min (`float`):
                initial noise scale for sigma sequence in sampling procedure. The minimum sigma should mirror the
                distribution of the data.
        sigma_max (`float`): maximum value used for the range of continuous timesteps passed into the model.
Nathan Lambert's avatar
Nathan Lambert committed
64
        sampling_eps (`float`): the end value of sampling, where timesteps decrease progressively from 1 to
65
66
        epsilon.
        correct_steps (`int`): number of correction steps performed on a produced sample.
Nathan Lambert's avatar
Nathan Lambert committed
67
68
    """

69
    @register_to_config
Nathan Lambert's avatar
Nathan Lambert committed
70
71
    def __init__(
        self,
72
73
74
75
76
77
        num_train_timesteps: int = 2000,
        snr: float = 0.15,
        sigma_min: float = 0.01,
        sigma_max: float = 1348.0,
        sampling_eps: float = 1e-5,
        correct_steps: int = 1,
78
        **kwargs,
Nathan Lambert's avatar
Nathan Lambert committed
79
    ):
80
81
82
83
84
85
        deprecate(
            "tensor_format",
            "0.5.0",
            "If you're running your code in PyTorch, you can safely remove this argument.",
            take_from=kwargs,
        )
86

87
        # setable values
Patrick von Platen's avatar
Patrick von Platen committed
88
89
        self.timesteps = None

90
        self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps)
91

92
    def set_timesteps(self, num_inference_steps: int, sampling_eps: float = None):
93
94
95
96
97
98
99
100
101
        """
        Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
            sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation).

        """
102
        sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
103
104

        self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
105

106
107
108
    def set_sigmas(
        self, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None, sampling_eps: float = None
    ):
109
110
111
112
113
114
115
116
117
118
119
120
121
122
        """
        Sets the noise scales used for the diffusion chain. Supporting function to be run before inference.

        The sigmas control the weight of the `drift` and `diffusion` components of sample update.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
            sigma_min (`float`, optional):
                initial noise scale value (overrides value given at Scheduler instantiation).
            sigma_max (`float`, optional): final noise scale value (overrides value given at Scheduler instantiation).
            sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation).

        """
123
124
125
        sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min
        sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max
        sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
Patrick von Platen's avatar
Patrick von Platen committed
126
        if self.timesteps is None:
127
            self.set_timesteps(num_inference_steps, sampling_eps)
Patrick von Platen's avatar
Patrick von Platen committed
128

129
130
131
        self.sigmas = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
        self.discrete_sigmas = torch.exp(torch.linspace(math.log(sigma_min), math.log(sigma_max), num_inference_steps))
        self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])
Nathan Lambert's avatar
Nathan Lambert committed
132
133

    def get_adjacent_sigma(self, timesteps, t):
134
135
136
137
138
        return torch.where(
            timesteps == 0,
            torch.zeros_like(t.to(timesteps.device)),
            self.discrete_sigmas[timesteps - 1].to(timesteps.device),
        )
Nathan Lambert's avatar
Nathan Lambert committed
139

140
    def set_seed(self, seed):
141
        deprecate("set_seed", "0.5.0", "Please consider passing a generator instead.")
142
        torch.manual_seed(seed)
143
144
145

    def step_pred(
        self,
146
        model_output: torch.FloatTensor,
147
        timestep: int,
148
        sample: torch.FloatTensor,
149
        generator: Optional[torch.Generator] = None,
150
        return_dict: bool = True,
151
        **kwargs,
152
    ) -> Union[SdeVeOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
153
        """
154
155
156
157
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
158
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
159
            timestep (`int`): current discrete timestep in the diffusion chain.
160
            sample (`torch.FloatTensor`):
161
162
163
164
165
                current instance of sample being created by diffusion process.
            generator: random number generator.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
166
167
            [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] if
            `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
168

Nathan Lambert's avatar
Nathan Lambert committed
169
        """
170
171
        if "seed" in kwargs and kwargs["seed"] is not None:
            self.set_seed(kwargs["seed"])
172

173
174
175
176
177
        if self.timesteps is None:
            raise ValueError(
                "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
            )

178
179
180
181
        timestep = timestep * torch.ones(
            sample.shape[0], device=sample.device
        )  # torch.repeat_interleave(timestep, sample.shape[0])
        timesteps = (timestep * (len(self.timesteps) - 1)).long()
Nathan Lambert's avatar
Nathan Lambert committed
182

183
184
185
        # mps requires indices to be in the same device, so we use cpu as is the default with cuda
        timesteps = timesteps.to(self.discrete_sigmas.device)

186
        sigma = self.discrete_sigmas[timesteps].to(sample.device)
187
        adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep).to(sample.device)
188
        drift = torch.zeros_like(sample)
Nathan Lambert's avatar
Nathan Lambert committed
189
190
        diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5

191
        # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
Nathan Lambert's avatar
Nathan Lambert committed
192
        # also equation 47 shows the analog from SDE models to ancestral sampling methods
193
194
195
196
        diffusion = diffusion.flatten()
        while len(diffusion.shape) < len(sample.shape):
            diffusion = diffusion.unsqueeze(-1)
        drift = drift - diffusion**2 * model_output
Nathan Lambert's avatar
Nathan Lambert committed
197
198

        #  equation 6: sample noise for the diffusion term of
199
        noise = torch.randn(sample.shape, layout=sample.layout, generator=generator).to(sample.device)
200
        prev_sample_mean = sample - drift  # subtract because `dt` is a small negative timestep
Nathan Lambert's avatar
Nathan Lambert committed
201
        # TODO is the variable diffusion the correct scaling term for the noise?
202
        prev_sample = prev_sample_mean + diffusion * noise  # add impact of diffusion field g
203

204
205
206
207
        if not return_dict:
            return (prev_sample, prev_sample_mean)

        return SdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean)
208
209
210

    def step_correct(
        self,
211
212
        model_output: torch.FloatTensor,
        sample: torch.FloatTensor,
213
        generator: Optional[torch.Generator] = None,
214
        return_dict: bool = True,
215
        **kwargs,
216
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
217
        """
218
219
        Correct the predicted sample based on the output model_output of the network. This is often run repeatedly
        after making the prediction for the previous timestep.
220
221

        Args:
222
223
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
            sample (`torch.FloatTensor`):
224
225
226
227
228
                current instance of sample being created by diffusion process.
            generator: random number generator.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
229
230
            [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] if
            `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
231

Nathan Lambert's avatar
Nathan Lambert committed
232
        """
233
234
        if "seed" in kwargs and kwargs["seed"] is not None:
            self.set_seed(kwargs["seed"])
235

236
237
238
239
240
        if self.timesteps is None:
            raise ValueError(
                "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
            )

Nathan Lambert's avatar
Nathan Lambert committed
241
242
        # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
        # sample noise for correction
243
        noise = torch.randn(sample.shape, layout=sample.layout, generator=generator).to(sample.device)
244

245
        # compute step size from the model_output, the noise, and the snr
246
247
        grad_norm = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean()
        noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean()
Patrick von Platen's avatar
Patrick von Platen committed
248
        step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
249
250
        step_size = step_size * torch.ones(sample.shape[0]).to(sample.device)
        # self.repeat_scalar(step_size, sample.shape[0])
251

252
        # compute corrected sample: model_output term and noise term
253
254
255
256
257
        step_size = step_size.flatten()
        while len(step_size.shape) < len(sample.shape):
            step_size = step_size.unsqueeze(-1)
        prev_sample_mean = sample + step_size * model_output
        prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
258

259
260
261
262
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Nathan Lambert's avatar
Nathan Lambert committed
263
264
265

    def __len__(self):
        return self.config.num_train_timesteps