scheduling_sde_ve.py 9.38 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2022 Google Brain and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
15
16
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch

17
import warnings
18
19
from dataclasses import dataclass
from typing import Optional, Tuple, Union
20
21
22
23

import numpy as np
import torch

24
from ..configuration_utils import ConfigMixin, register_to_config
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from ..utils import BaseOutput
from .scheduling_utils import SchedulerMixin, SchedulerOutput


@dataclass
class SdeVeOutput(BaseOutput):
    """
    Output class for the ScoreSdeVeScheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        prev_sample_mean (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Mean averaged `prev_sample`. Same as `prev_sample`, only mean-averaged over previous timesteps.
    """

    prev_sample: torch.FloatTensor
    prev_sample_mean: torch.FloatTensor
44
45


Patrick von Platen's avatar
Patrick von Platen committed
46
class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
Nathan Lambert's avatar
Nathan Lambert committed
47
48
49
    """
    The variance exploding stochastic differential equation (SDE) scheduler.

50
51
    :param snr: coefficient weighting the step from the model_output sample (from the network) to the random noise.
    :param sigma_min: initial noise scale for sigma sequence in sampling procedure. The minimum sigma should mirror the
Nathan Lambert's avatar
Nathan Lambert committed
52
53
54
55
56
57
            distribution of the data.
    :param sigma_max: :param sampling_eps: the end value of sampling, where timesteps decrease progessively from 1 to
    epsilon. :param correct_steps: number of correction steps performed on a produced sample. :param tensor_format:
    "np" or "pt" for the expected format of samples passed to the Scheduler.
    """

58
    @register_to_config
Nathan Lambert's avatar
Nathan Lambert committed
59
60
61
62
63
64
65
66
67
68
    def __init__(
        self,
        num_train_timesteps=2000,
        snr=0.15,
        sigma_min=0.01,
        sigma_max=1348,
        sampling_eps=1e-5,
        correct_steps=1,
        tensor_format="pt",
    ):
69
70
71
72
73
        # self.sigmas = None
        # self.discrete_sigmas = None
        #
        # # setable values
        # self.num_inference_steps = None
Patrick von Platen's avatar
Patrick von Platen committed
74
75
        self.timesteps = None

76
        self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps)
77
78

        self.tensor_format = tensor_format
Nathan Lambert's avatar
Nathan Lambert committed
79
80
        self.set_format(tensor_format=tensor_format)

81
82
    def set_timesteps(self, num_inference_steps, sampling_eps=None):
        sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
Nathan Lambert's avatar
Nathan Lambert committed
83
84
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
85
            self.timesteps = np.linspace(1, sampling_eps, num_inference_steps)
Nathan Lambert's avatar
Nathan Lambert committed
86
        elif tensor_format == "pt":
87
            self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps)
Nathan Lambert's avatar
Nathan Lambert committed
88
89
        else:
            raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")
Patrick von Platen's avatar
Patrick von Platen committed
90

91
92
93
94
    def set_sigmas(self, num_inference_steps, sigma_min=None, sigma_max=None, sampling_eps=None):
        sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min
        sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max
        sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
Patrick von Platen's avatar
Patrick von Platen committed
95
        if self.timesteps is None:
96
            self.set_timesteps(num_inference_steps, sampling_eps)
Patrick von Platen's avatar
Patrick von Platen committed
97

Nathan Lambert's avatar
Nathan Lambert committed
98
99
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
100
101
            self.discrete_sigmas = np.exp(np.linspace(np.log(sigma_min), np.log(sigma_max), num_inference_steps))
            self.sigmas = np.array([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])
Nathan Lambert's avatar
Nathan Lambert committed
102
        elif tensor_format == "pt":
103
104
            self.discrete_sigmas = torch.exp(torch.linspace(np.log(sigma_min), np.log(sigma_max), num_inference_steps))
            self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])
Nathan Lambert's avatar
Nathan Lambert committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        else:
            raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

    def get_adjacent_sigma(self, timesteps, t):
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            return np.where(timesteps == 0, np.zeros_like(t), self.discrete_sigmas[timesteps - 1])
        elif tensor_format == "pt":
            return torch.where(
                timesteps == 0, torch.zeros_like(t), self.discrete_sigmas[timesteps - 1].to(timesteps.device)
            )

        raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

119
    def set_seed(self, seed):
120
121
122
123
124
        warnings.warn(
            "The method `set_seed` is deprecated and will be removed in version `0.4.0`. Please consider passing a"
            " generator instead.",
            DeprecationWarning,
        )
125
126
127
128
129
130
131
132
133
134
135
136
137
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            np.random.seed(seed)
        elif tensor_format == "pt":
            torch.manual_seed(seed)
        else:
            raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

    def step_pred(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
138
        generator: Optional[torch.Generator] = None,
139
        return_dict: bool = True,
140
        **kwargs,
141
    ) -> Union[SdeVeOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
142
143
144
        """
        Predict the sample at the previous timestep by reversing the SDE.
        """
145
146
        if "seed" in kwargs and kwargs["seed"] is not None:
            self.set_seed(kwargs["seed"])
147

148
149
150
151
152
        if self.timesteps is None:
            raise ValueError(
                "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
            )

153
154
155
156
        timestep = timestep * torch.ones(
            sample.shape[0], device=sample.device
        )  # torch.repeat_interleave(timestep, sample.shape[0])
        timesteps = (timestep * (len(self.timesteps) - 1)).long()
Nathan Lambert's avatar
Nathan Lambert committed
157

158
159
160
        sigma = self.discrete_sigmas[timesteps].to(sample.device)
        adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep)
        drift = self.zeros_like(sample)
Nathan Lambert's avatar
Nathan Lambert committed
161
162
        diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5

163
        # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
Nathan Lambert's avatar
Nathan Lambert committed
164
        # also equation 47 shows the analog from SDE models to ancestral sampling methods
165
        drift = drift - diffusion[:, None, None, None] ** 2 * model_output
Nathan Lambert's avatar
Nathan Lambert committed
166
167

        #  equation 6: sample noise for the diffusion term of
168
        noise = self.randn_like(sample, generator=generator)
169
        prev_sample_mean = sample - drift  # subtract because `dt` is a small negative timestep
Nathan Lambert's avatar
Nathan Lambert committed
170
        # TODO is the variable diffusion the correct scaling term for the noise?
171
        prev_sample = prev_sample_mean + diffusion[:, None, None, None] * noise  # add impact of diffusion field g
172

173
174
175
176
        if not return_dict:
            return (prev_sample, prev_sample_mean)

        return SdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean)
177
178
179
180
181

    def step_correct(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        sample: Union[torch.FloatTensor, np.ndarray],
182
        generator: Optional[torch.Generator] = None,
183
        return_dict: bool = True,
184
        **kwargs,
185
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
186
        """
187
188
        Correct the predicted sample based on the output model_output of the network. This is often run repeatedly
        after making the prediction for the previous timestep.
Nathan Lambert's avatar
Nathan Lambert committed
189
        """
190
191
        if "seed" in kwargs and kwargs["seed"] is not None:
            self.set_seed(kwargs["seed"])
192

193
194
195
196
197
        if self.timesteps is None:
            raise ValueError(
                "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
            )

Nathan Lambert's avatar
Nathan Lambert committed
198
199
        # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
        # sample noise for correction
200
        noise = self.randn_like(sample, generator=generator)
201

202
203
        # compute step size from the model_output, the noise, and the snr
        grad_norm = self.norm(model_output)
Nathan Lambert's avatar
Nathan Lambert committed
204
        noise_norm = self.norm(noise)
Patrick von Platen's avatar
Patrick von Platen committed
205
        step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
206
207
        step_size = step_size * torch.ones(sample.shape[0]).to(sample.device)
        # self.repeat_scalar(step_size, sample.shape[0])
208

209
210
211
        # compute corrected sample: model_output term and noise term
        prev_sample_mean = sample + step_size[:, None, None, None] * model_output
        prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5)[:, None, None, None] * noise
212

213
214
215
216
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Nathan Lambert's avatar
Nathan Lambert committed
217
218
219

    def __len__(self):
        return self.config.num_train_timesteps