scheduling_sde_ve.py 6.49 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2022 Google Brain and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
15
16
17
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch

# TODO(Patrick, Anton, Suraj) - make scheduler framework indepedent and clean-up a bit
18
19
20
21
22
23
24
25

import numpy as np
import torch

from ..configuration_utils import ConfigMixin
from .scheduling_utils import SchedulerMixin


Patrick von Platen's avatar
Patrick von Platen committed
26
class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
Nathan Lambert's avatar
Nathan Lambert committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
    """
    The variance exploding stochastic differential equation (SDE) scheduler.

    :param snr: coefficient weighting the step from the score sample (from the network) to the random noise. :param
    sigma_min: initial noise scale for sigma sequence in sampling procedure. The minimum sigma should mirror the
            distribution of the data.
    :param sigma_max: :param sampling_eps: the end value of sampling, where timesteps decrease progessively from 1 to
    epsilon. :param correct_steps: number of correction steps performed on a produced sample. :param tensor_format:
    "np" or "pt" for the expected format of samples passed to the Scheduler.
    """

    def __init__(
        self,
        num_train_timesteps=2000,
        snr=0.15,
        sigma_min=0.01,
        sigma_max=1348,
        sampling_eps=1e-5,
        correct_steps=1,
        tensor_format="pt",
    ):
48
49
        super().__init__()
        self.register_to_config(
Nathan Lambert's avatar
Nathan Lambert committed
50
            num_train_timesteps=num_train_timesteps,
51
52
53
54
            snr=snr,
            sigma_min=sigma_min,
            sigma_max=sigma_max,
            sampling_eps=sampling_eps,
Nathan Lambert's avatar
Nathan Lambert committed
55
            correct_steps=correct_steps,
56
57
        )

Patrick von Platen's avatar
Patrick von Platen committed
58
59
60
61
        self.sigmas = None
        self.discrete_sigmas = None
        self.timesteps = None

Nathan Lambert's avatar
Nathan Lambert committed
62
63
64
        # TODO - update step to be torch-independant
        self.set_format(tensor_format=tensor_format)

Patrick von Platen's avatar
Patrick von Platen committed
65
    def set_timesteps(self, num_inference_steps):
Nathan Lambert's avatar
Nathan Lambert committed
66
67
68
69
70
71
72
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            self.timesteps = np.linspace(1, self.config.sampling_eps, num_inference_steps)
        elif tensor_format == "pt":
            self.timesteps = torch.linspace(1, self.config.sampling_eps, num_inference_steps)
        else:
            raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")
Patrick von Platen's avatar
Patrick von Platen committed
73
74
75
76
77

    def set_sigmas(self, num_inference_steps):
        if self.timesteps is None:
            self.set_timesteps(num_inference_steps)

Nathan Lambert's avatar
Nathan Lambert committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            self.discrete_sigmas = np.exp(
                np.linspace(np.log(self.config.sigma_min), np.log(self.config.sigma_max), num_inference_steps)
            )
            self.sigmas = np.array(
                [self.config.sigma_min * (self.config.sigma_max / self.sigma_min) ** t for t in self.timesteps]
            )
        elif tensor_format == "pt":
            self.discrete_sigmas = torch.exp(
                torch.linspace(np.log(self.config.sigma_min), np.log(self.config.sigma_max), num_inference_steps)
            )
            self.sigmas = torch.tensor(
                [self.config.sigma_min * (self.config.sigma_max / self.sigma_min) ** t for t in self.timesteps]
            )
        else:
            raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

    def get_adjacent_sigma(self, timesteps, t):
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            return np.where(timesteps == 0, np.zeros_like(t), self.discrete_sigmas[timesteps - 1])
        elif tensor_format == "pt":
            return torch.where(
                timesteps == 0, torch.zeros_like(t), self.discrete_sigmas[timesteps - 1].to(timesteps.device)
            )

        raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

    def step_pred(self, score, x, t):
        """
        Predict the sample at the previous timestep by reversing the SDE.
        """
Patrick von Platen's avatar
Patrick von Platen committed
111
        # TODO(Patrick) better comments + non-PyTorch
Patrick von Platen's avatar
Patrick von Platen committed
112
113
        t = self.repeat_scalar(t, x.shape[0]).to(x.device)
        timesteps = self.long((t * (len(self.timesteps) - 1))).to(x.device)
Nathan Lambert's avatar
Nathan Lambert committed
114

Patrick von Platen's avatar
Patrick von Platen committed
115
        sigma = self.discrete_sigmas[timesteps].to(x.device)
Nathan Lambert's avatar
Nathan Lambert committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        adjacent_sigma = self.get_adjacent_sigma(timesteps, t)
        drift = self.zeros_like(x)
        diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5

        # equation 6 in the paper: the score modeled by the network is grad_x log pt(x)
        # also equation 47 shows the analog from SDE models to ancestral sampling methods
        drift = drift - diffusion[:, None, None, None] ** 2 * score

        #  equation 6: sample noise for the diffusion term of
        noise = self.randn_like(x)
        x_mean = x - drift  # subtract because `dt` is a small negative timestep
        # TODO is the variable diffusion the correct scaling term for the noise?
        x = x_mean + diffusion[:, None, None, None] * noise  # add impact of diffusion field g
        return x, x_mean
130

Nathan Lambert's avatar
Nathan Lambert committed
131
132
133
134
135
136
    def step_correct(self, score, x):
        """
        Correct the predicted sample based on the output score of the network. This is often run repeatedly after
        making the prediction for the previous timestep.
        """
        # TODO(Patrick) non-PyTorch
137

Nathan Lambert's avatar
Nathan Lambert committed
138
139
140
        # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
        # sample noise for correction
        noise = self.randn_like(x)
141

Nathan Lambert's avatar
Nathan Lambert committed
142
143
144
        # compute step size from the score, the noise, and the snr
        grad_norm = self.norm(score)
        noise_norm = self.norm(noise)
Patrick von Platen's avatar
Patrick von Platen committed
145
        step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
Nathan Lambert's avatar
Nathan Lambert committed
146
        step_size = self.repeat_scalar(step_size, x.shape[0])  # * self.ones(x.shape[0], device=x.device)
147

Nathan Lambert's avatar
Nathan Lambert committed
148
149
150
        # compute corrected sample: score term and noise term
        x_mean = x + step_size[:, None, None, None] * score
        x = x_mean + ((step_size * 2) ** 0.5)[:, None, None, None] * noise
151
152

        return x
Nathan Lambert's avatar
Nathan Lambert committed
153
154
155

    def __len__(self):
        return self.config.num_train_timesteps