scheduling_sde_ve.py 7.67 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2022 Google Brain and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
15
16
17
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch

# TODO(Patrick, Anton, Suraj) - make scheduler framework indepedent and clean-up a bit
18
19
import pdb
from typing import Union
20
21
22
23
24
25
26
27

import numpy as np
import torch

from ..configuration_utils import ConfigMixin
from .scheduling_utils import SchedulerMixin


Patrick von Platen's avatar
Patrick von Platen committed
28
class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
Nathan Lambert's avatar
Nathan Lambert committed
29
30
31
    """
    The variance exploding stochastic differential equation (SDE) scheduler.

32
33
    :param snr: coefficient weighting the step from the model_output sample (from the network) to the random noise.
    :param sigma_min: initial noise scale for sigma sequence in sampling procedure. The minimum sigma should mirror the
Nathan Lambert's avatar
Nathan Lambert committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
            distribution of the data.
    :param sigma_max: :param sampling_eps: the end value of sampling, where timesteps decrease progessively from 1 to
    epsilon. :param correct_steps: number of correction steps performed on a produced sample. :param tensor_format:
    "np" or "pt" for the expected format of samples passed to the Scheduler.
    """

    def __init__(
        self,
        num_train_timesteps=2000,
        snr=0.15,
        sigma_min=0.01,
        sigma_max=1348,
        sampling_eps=1e-5,
        correct_steps=1,
        tensor_format="pt",
    ):
50
51
        super().__init__()
        self.register_to_config(
Nathan Lambert's avatar
Nathan Lambert committed
52
            num_train_timesteps=num_train_timesteps,
53
54
55
56
            snr=snr,
            sigma_min=sigma_min,
            sigma_max=sigma_max,
            sampling_eps=sampling_eps,
Nathan Lambert's avatar
Nathan Lambert committed
57
            correct_steps=correct_steps,
58
        )
59
60
61
62
63
        # self.sigmas = None
        # self.discrete_sigmas = None
        #
        # # setable values
        # self.num_inference_steps = None
Patrick von Platen's avatar
Patrick von Platen committed
64
65
        self.timesteps = None

66
67
68
        self.set_sigmas(self.num_train_timesteps)

        self.tensor_format = tensor_format
Nathan Lambert's avatar
Nathan Lambert committed
69
70
        self.set_format(tensor_format=tensor_format)

Patrick von Platen's avatar
Patrick von Platen committed
71
    def set_timesteps(self, num_inference_steps):
Nathan Lambert's avatar
Nathan Lambert committed
72
73
74
75
76
77
78
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            self.timesteps = np.linspace(1, self.config.sampling_eps, num_inference_steps)
        elif tensor_format == "pt":
            self.timesteps = torch.linspace(1, self.config.sampling_eps, num_inference_steps)
        else:
            raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")
Patrick von Platen's avatar
Patrick von Platen committed
79
80
81
82
83

    def set_sigmas(self, num_inference_steps):
        if self.timesteps is None:
            self.set_timesteps(num_inference_steps)

Nathan Lambert's avatar
Nathan Lambert committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            self.discrete_sigmas = np.exp(
                np.linspace(np.log(self.config.sigma_min), np.log(self.config.sigma_max), num_inference_steps)
            )
            self.sigmas = np.array(
                [self.config.sigma_min * (self.config.sigma_max / self.sigma_min) ** t for t in self.timesteps]
            )
        elif tensor_format == "pt":
            self.discrete_sigmas = torch.exp(
                torch.linspace(np.log(self.config.sigma_min), np.log(self.config.sigma_max), num_inference_steps)
            )
            self.sigmas = torch.tensor(
                [self.config.sigma_min * (self.config.sigma_max / self.sigma_min) ** t for t in self.timesteps]
            )
        else:
            raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

    def get_adjacent_sigma(self, timesteps, t):
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            return np.where(timesteps == 0, np.zeros_like(t), self.discrete_sigmas[timesteps - 1])
        elif tensor_format == "pt":
            return torch.where(
                timesteps == 0, torch.zeros_like(t), self.discrete_sigmas[timesteps - 1].to(timesteps.device)
            )

        raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    def set_seed(self, seed):
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            np.random.seed(seed)
        elif tensor_format == "pt":
            torch.manual_seed(seed)
        else:
            raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

    def step_pred(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
        seed=None,
    ):
Nathan Lambert's avatar
Nathan Lambert committed
129
130
131
        """
        Predict the sample at the previous timestep by reversing the SDE.
        """
132
133
134
135
136
137
138
139
        if seed is not None:
            self.set_seed(seed)
        # TODO(Patrick) non-PyTorch

        timestep = timestep * torch.ones(
            sample.shape[0], device=sample.device
        )  # torch.repeat_interleave(timestep, sample.shape[0])
        timesteps = (timestep * (len(self.timesteps) - 1)).long()
Nathan Lambert's avatar
Nathan Lambert committed
140

141
142
143
        sigma = self.discrete_sigmas[timesteps].to(sample.device)
        adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep)
        drift = self.zeros_like(sample)
Nathan Lambert's avatar
Nathan Lambert committed
144
145
        diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5

146
        # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
Nathan Lambert's avatar
Nathan Lambert committed
147
        # also equation 47 shows the analog from SDE models to ancestral sampling methods
148
        drift = drift - diffusion[:, None, None, None] ** 2 * model_output
Nathan Lambert's avatar
Nathan Lambert committed
149
150

        #  equation 6: sample noise for the diffusion term of
151
152
        noise = self.randn_like(sample)
        prev_sample_mean = sample - drift  # subtract because `dt` is a small negative timestep
Nathan Lambert's avatar
Nathan Lambert committed
153
        # TODO is the variable diffusion the correct scaling term for the noise?
154
        prev_sample = prev_sample_mean + diffusion[:, None, None, None] * noise  # add impact of diffusion field g
155

156
157
158
159
160
161
162
163
        return {"prev_sample": prev_sample, "prev_sample_mean": prev_sample_mean}

    def step_correct(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        sample: Union[torch.FloatTensor, np.ndarray],
        seed=None,
    ):
Nathan Lambert's avatar
Nathan Lambert committed
164
        """
165
166
        Correct the predicted sample based on the output model_output of the network. This is often run repeatedly
        after making the prediction for the previous timestep.
Nathan Lambert's avatar
Nathan Lambert committed
167
        """
168
169
        if seed is not None:
            self.set_seed(seed)
170

Nathan Lambert's avatar
Nathan Lambert committed
171
172
        # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
        # sample noise for correction
173
        noise = self.randn_like(sample)
174

175
176
        # compute step size from the model_output, the noise, and the snr
        grad_norm = self.norm(model_output)
Nathan Lambert's avatar
Nathan Lambert committed
177
        noise_norm = self.norm(noise)
Patrick von Platen's avatar
Patrick von Platen committed
178
        step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
179
180
        step_size = step_size * torch.ones(sample.shape[0]).to(sample.device)
        # self.repeat_scalar(step_size, sample.shape[0])
181

182
183
184
        # compute corrected sample: model_output term and noise term
        prev_sample_mean = sample + step_size[:, None, None, None] * model_output
        prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5)[:, None, None, None] * noise
185

186
        return {"prev_sample": prev_sample}
Nathan Lambert's avatar
Nathan Lambert committed
187
188
189

    def __len__(self):
        return self.config.num_train_timesteps