test_modeling_utils.py 39.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
16

patil-suraj's avatar
patil-suraj committed
17
import inspect
18
19
20
import tempfile
import unittest

21
import numpy as np
22
23
import torch

Patrick von Platen's avatar
Patrick von Platen committed
24
from diffusers import (
patil-suraj's avatar
patil-suraj committed
25
    AutoencoderKL,
Patrick von Platen's avatar
Patrick von Platen committed
26
27
    BDDMPipeline,
    DDIMPipeline,
28
    DDIMScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
29
    DDPMPipeline,
30
    DDPMScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
31
    GlidePipeline,
Patrick von Platen's avatar
Patrick von Platen committed
32
33
    GlideSuperResUNetModel,
    GlideTextToImageUNetModel,
Patrick von Platen's avatar
Patrick von Platen committed
34
    GradTTSPipeline,
35
    GradTTSScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
36
    LatentDiffusionPipeline,
patil-suraj's avatar
patil-suraj committed
37
    LatentDiffusionUncondPipeline,
Patrick von Platen's avatar
Patrick von Platen committed
38
    NCSNpp,
Patrick von Platen's avatar
Patrick von Platen committed
39
    PNDMPipeline,
40
    PNDMScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
41
42
    ScoreSdeVePipeline,
    ScoreSdeVeScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
43
44
    ScoreSdeVpPipeline,
    ScoreSdeVpScheduler,
45
    TemporalUNet,
patil-suraj's avatar
patil-suraj committed
46
    UNetGradTTSModel,
anton-l's avatar
anton-l committed
47
48
    UNetLDMModel,
    UNetModel,
patil-suraj's avatar
patil-suraj committed
49
    VQModel,
50
)
51
from diffusers.configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
52
from diffusers.pipeline_utils import DiffusionPipeline
53
from diffusers.pipelines.bddm.pipeline_bddm import DiffWave
Patrick von Platen's avatar
Patrick von Platen committed
54
from diffusers.testing_utils import floats_tensor, slow, torch_device
55
from diffusers.training_utils import EMAModel
56
57


Patrick von Platen's avatar
Patrick von Platen committed
58
torch.backends.cuda.matmul.allow_tf32 = False
59
60


61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
class ConfigTester(unittest.TestCase):
    def test_load_not_from_mixin(self):
        with self.assertRaises(ValueError):
            ConfigMixin.from_config("dummy_path")

    def test_save_load(self):
        class SampleObject(ConfigMixin):
            config_name = "config.json"

            def __init__(
                self,
                a=2,
                b=5,
                c=(2, 5),
                d="for diffusion",
                e=[1, 3],
            ):
78
                self.register_to_config(a=a, b=b, c=c, d=d, e=e)
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

        obj = SampleObject()
        config = obj.config

        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
            new_obj = SampleObject.from_config(tmpdirname)
            new_config = new_obj.config

Patrick von Platen's avatar
Patrick von Platen committed
94
95
96
97
        # unfreeze configs
        config = dict(config)
        new_config = dict(new_config)

98
99
100
101
102
        assert config.pop("c") == (2, 5)  # instantiated as tuple
        assert new_config.pop("c") == [2, 5]  # saved & loaded as list because of json
        assert config == new_config


patil-suraj's avatar
patil-suraj committed
103
class ModelTesterMixin:
104
    def test_from_pretrained_save_pretrained(self):
patil-suraj's avatar
patil-suraj committed
105
106
107
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
Patrick von Platen's avatar
Patrick von Platen committed
108
        model.to(torch_device)
patil-suraj's avatar
patil-suraj committed
109
        model.eval()
110
111
112

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
patil-suraj's avatar
patil-suraj committed
113
            new_model = self.model_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
114
            new_model.to(torch_device)
115

patil-suraj's avatar
patil-suraj committed
116
117
118
        with torch.no_grad():
            image = model(**inputs_dict)
            new_image = new_model(**inputs_dict)
119

patil-suraj's avatar
patil-suraj committed
120
        max_diff = (image - new_image).abs().sum().item()
Patrick von Platen's avatar
Patrick von Platen committed
121
        self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes")
122

patil-suraj's avatar
patil-suraj committed
123
    def test_determinism(self):
patil-suraj's avatar
patil-suraj committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            first = model(**inputs_dict)
            second = model(**inputs_dict)

        out_1 = first.cpu().numpy()
        out_2 = second.cpu().numpy()
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
138

patil-suraj's avatar
patil-suraj committed
139
    def test_output(self):
patil-suraj's avatar
patil-suraj committed
140
141
142
143
144
145
146
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)
147

patil-suraj's avatar
patil-suraj committed
148
149
150
        self.assertIsNotNone(output)
        expected_shape = inputs_dict["x"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
151

patil-suraj's avatar
patil-suraj committed
152
    def test_forward_signature(self):
patil-suraj's avatar
patil-suraj committed
153
154
155
156
157
158
159
160
161
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        signature = inspect.signature(model.forward)
        # signature.parameters is an OrderedDict => so arg_names order is deterministic
        arg_names = [*signature.parameters.keys()]

        expected_arg_names = ["x", "timesteps"]
        self.assertListEqual(arg_names[:2], expected_arg_names)
162

patil-suraj's avatar
patil-suraj committed
163
    def test_model_from_config(self):
patil-suraj's avatar
patil-suraj committed
164
165
166
167
168
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
169

patil-suraj's avatar
patil-suraj committed
170
171
172
173
174
175
176
        # test if the model can be loaded from the config
        # and has all the expected shape
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_config(tmpdirname)
            new_model = self.model_class.from_config(tmpdirname)
            new_model.to(torch_device)
            new_model.eval()
177

patil-suraj's avatar
patil-suraj committed
178
179
180
181
182
        # check if all paramters shape are the same
        for param_name in model.state_dict().keys():
            param_1 = model.state_dict()[param_name]
            param_2 = new_model.state_dict()[param_name]
            self.assertEqual(param_1.shape, param_2.shape)
183

patil-suraj's avatar
patil-suraj committed
184
185
186
        with torch.no_grad():
            output_1 = model(**inputs_dict)
            output_2 = new_model(**inputs_dict)
187

patil-suraj's avatar
patil-suraj committed
188
        self.assertEqual(output_1.shape, output_2.shape)
patil-suraj's avatar
patil-suraj committed
189
190

    def test_training(self):
patil-suraj's avatar
patil-suraj committed
191
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
192

patil-suraj's avatar
patil-suraj committed
193
194
195
196
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        output = model(**inputs_dict)
Patrick von Platen's avatar
Patrick von Platen committed
197
        noise = torch.randn((inputs_dict["x"].shape[0],) + self.output_shape).to(torch_device)
patil-suraj's avatar
patil-suraj committed
198
199
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
200

201
202
203
204
205
206
207
208
209
210
211
212
213
214
    def test_ema_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        ema_model = EMAModel(model, device=torch_device)

        output = model(**inputs_dict)
        noise = torch.randn((inputs_dict["x"].shape[0],) + self.output_shape).to(torch_device)
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
        ema_model.step(model)

patil-suraj's avatar
patil-suraj committed
215
216
217
218
219
220
221
222
223
224
225
226
227

class UnetModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNetModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

patil-suraj's avatar
patil-suraj committed
228
        return {"x": noise, "timesteps": time_step}
229

patil-suraj's avatar
patil-suraj committed
230
    @property
Patrick von Platen's avatar
Patrick von Platen committed
231
    def input_shape(self):
patil-suraj's avatar
patil-suraj committed
232
        return (3, 32, 32)
233

patil-suraj's avatar
patil-suraj committed
234
    @property
Patrick von Platen's avatar
Patrick von Platen committed
235
    def output_shape(self):
patil-suraj's avatar
patil-suraj committed
236
        return (3, 32, 32)
patil-suraj's avatar
patil-suraj committed
237
238
239
240
241
242
243
244
245
246
247

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 32,
            "ch_mult": (1, 2),
            "num_res_blocks": 2,
            "attn_resolutions": (16,),
            "resolution": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
248

patil-suraj's avatar
patil-suraj committed
249
    def test_from_pretrained_hub(self):
patil-suraj's avatar
patil-suraj committed
250
251
252
        model, loading_info = UNetModel.from_pretrained("fusing/ddpm_dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)
patil-suraj's avatar
patil-suraj committed
253

patil-suraj's avatar
patil-suraj committed
254
        model.to(torch_device)
patil-suraj's avatar
patil-suraj committed
255
256
257
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"
258

patil-suraj's avatar
patil-suraj committed
259
260
261
262
263
264
265
    def test_output_pretrained(self):
        model = UNetModel.from_pretrained("fusing/ddpm_dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)
266

patil-suraj's avatar
patil-suraj committed
267
268
        noise = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
        time_step = torch.tensor([10])
269

patil-suraj's avatar
patil-suraj committed
270
271
        with torch.no_grad():
            output = model(noise, time_step)
272

patil-suraj's avatar
patil-suraj committed
273
274
        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
275
        expected_output_slice = torch.tensor([0.2891, -0.1899, 0.2595, -0.6214, 0.0968, -0.2622, 0.4688, 0.1311, 0.0053])
patil-suraj's avatar
patil-suraj committed
276
        # fmt: on
Patrick von Platen's avatar
Patrick von Platen committed
277
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
patil-suraj's avatar
patil-suraj committed
278

279

Patrick von Platen's avatar
Patrick von Platen committed
280
281
class GlideSuperResUNetTests(ModelTesterMixin, unittest.TestCase):
    model_class = GlideSuperResUNetModel
patil-suraj's avatar
patil-suraj committed
282
283
284
285
286
287
288
289
290
291
292
293
294

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 6
        sizes = (32, 32)
        low_res_size = (4, 4)

        noise = torch.randn((batch_size, num_channels // 2) + sizes).to(torch_device)
        low_res = torch.randn((batch_size, 3) + low_res_size).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

        return {"x": noise, "timesteps": time_step, "low_res": low_res}
295

patil-suraj's avatar
patil-suraj committed
296
    @property
Patrick von Platen's avatar
Patrick von Platen committed
297
    def input_shape(self):
patil-suraj's avatar
patil-suraj committed
298
        return (3, 32, 32)
299

patil-suraj's avatar
patil-suraj committed
300
    @property
Patrick von Platen's avatar
Patrick von Platen committed
301
    def output_shape(self):
patil-suraj's avatar
patil-suraj committed
302
        return (6, 32, 32)
303

patil-suraj's avatar
patil-suraj committed
304
305
306
    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "attention_resolutions": (2,),
307
            "channel_mult": (1, 2),
patil-suraj's avatar
patil-suraj committed
308
309
310
311
312
313
314
315
            "in_channels": 6,
            "out_channels": 6,
            "model_channels": 32,
            "num_head_channels": 8,
            "num_heads_upsample": 1,
            "num_res_blocks": 2,
            "resblock_updown": True,
            "resolution": 32,
316
            "use_scale_shift_norm": True,
patil-suraj's avatar
patil-suraj committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_output(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

        output, _ = torch.split(output, 3, dim=1)
331

patil-suraj's avatar
patil-suraj committed
332
333
334
        self.assertIsNotNone(output)
        expected_shape = inputs_dict["x"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
335

patil-suraj's avatar
patil-suraj committed
336
    def test_from_pretrained_hub(self):
Patrick von Platen's avatar
Patrick von Platen committed
337
        model, loading_info = GlideSuperResUNetModel.from_pretrained(
338
339
            "fusing/glide-super-res-dummy", output_loading_info=True
        )
patil-suraj's avatar
patil-suraj committed
340
341
342
343
344
345
346
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"
347

patil-suraj's avatar
patil-suraj committed
348
    def test_output_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
349
        model = GlideSuperResUNetModel.from_pretrained("fusing/glide-super-res-dummy")
patil-suraj's avatar
patil-suraj committed
350
351
352
353

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)
354

355
        noise = torch.randn(1, 3, 64, 64)
patil-suraj's avatar
patil-suraj committed
356
357
        low_res = torch.randn(1, 3, 4, 4)
        time_step = torch.tensor([42] * noise.shape[0])
358

patil-suraj's avatar
patil-suraj committed
359
360
        with torch.no_grad():
            output = model(noise, time_step, low_res)
361

patil-suraj's avatar
patil-suraj committed
362
363
364
        output, _ = torch.split(output, 3, dim=1)
        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
365
        expected_output_slice = torch.tensor([-22.8782, -23.2652, -15.3966, -22.8034, -23.3159, -15.5640, -15.3970, -15.4614, - 10.4370])
patil-suraj's avatar
patil-suraj committed
366
367
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
patil-suraj's avatar
patil-suraj committed
368

anton-l's avatar
anton-l committed
369

Patrick von Platen's avatar
Patrick von Platen committed
370
371
class GlideTextToImageUNetModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = GlideTextToImageUNetModel
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)
        transformer_dim = 32
        seq_len = 16

        noise = torch.randn((batch_size, num_channels) + sizes).to(torch_device)
        emb = torch.randn((batch_size, seq_len, transformer_dim)).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

        return {"x": noise, "timesteps": time_step, "transformer_out": emb}

    @property
Patrick von Platen's avatar
Patrick von Platen committed
388
    def input_shape(self):
389
390
391
        return (3, 32, 32)

    @property
Patrick von Platen's avatar
Patrick von Platen committed
392
    def output_shape(self):
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
        return (6, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "attention_resolutions": (2,),
            "channel_mult": (1, 2),
            "in_channels": 3,
            "out_channels": 6,
            "model_channels": 32,
            "num_head_channels": 8,
            "num_heads_upsample": 1,
            "num_res_blocks": 2,
            "resblock_updown": True,
            "resolution": 32,
            "use_scale_shift_norm": True,
            "transformer_dim": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_output(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

        output, _ = torch.split(output, 3, dim=1)

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["x"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

    def test_from_pretrained_hub(self):
Patrick von Platen's avatar
Patrick von Platen committed
429
        model, loading_info = GlideTextToImageUNetModel.from_pretrained(
430
431
432
433
434
435
436
437
438
439
440
            "fusing/unet-glide-text2im-dummy", output_loading_info=True
        )
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
441
        model = GlideTextToImageUNetModel.from_pretrained("fusing/unet-glide-text2im-dummy")
442
443
444
445
446
447
448
449
450
451
452

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn((1, model.config.in_channels, model.config.resolution, model.config.resolution)).to(
            torch_device
        )
        emb = torch.randn((1, 16, model.config.transformer_dim)).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

Patrick von Platen's avatar
Patrick von Platen committed
453
        model.to(torch_device)
454
455
456
457
        with torch.no_grad():
            output = model(noise, time_step, emb)

        output, _ = torch.split(output, 3, dim=1)
Patrick von Platen's avatar
Patrick von Platen committed
458
        output_slice = output[0, -1, -3:, -3:].cpu().flatten()
459
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
460
        expected_output_slice = torch.tensor([2.7766, -10.3558, -14.9149, -0.9376, -14.9175, -17.7679, -5.5565, -12.9521, -12.9845])
461
462
463
464
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))


patil-suraj's avatar
patil-suraj committed
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNetLDMModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 4
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

        return {"x": noise, "timesteps": time_step}

    @property
Patrick von Platen's avatar
Patrick von Platen committed
480
    def input_shape(self):
patil-suraj's avatar
patil-suraj committed
481
482
483
        return (4, 32, 32)

    @property
Patrick von Platen's avatar
Patrick von Platen committed
484
    def output_shape(self):
patil-suraj's avatar
patil-suraj committed
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
        return (4, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "image_size": 32,
            "in_channels": 4,
            "out_channels": 4,
            "model_channels": 32,
            "num_res_blocks": 2,
            "attention_resolutions": (16,),
            "channel_mult": (1, 2),
            "num_heads": 2,
            "conv_resample": True,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
anton-l's avatar
anton-l committed
501

patil-suraj's avatar
patil-suraj committed
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
    def test_from_pretrained_hub(self):
        model, loading_info = UNetLDMModel.from_pretrained("fusing/unet-ldm-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = UNetLDMModel.from_pretrained("fusing/unet-ldm-dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
        time_step = torch.tensor([10] * noise.shape[0])

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800])
        # fmt: on

        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

Patrick von Platen's avatar
Patrick von Platen committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
    def test_output_pretrained_spatial_transformer(self):
        model = UNetLDMModel.from_pretrained("fusing/unet-ldm-dummy-spatial")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
        context = torch.ones((1, 16, 64), dtype=torch.float32)
        time_step = torch.tensor([10] * noise.shape[0])

        with torch.no_grad():
            output = model(noise, time_step, context=context)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([61.3445, 56.9005, 29.4339, 59.5497, 60.7375, 34.1719, 48.1951, 42.6569, 25.0890])
        # fmt: on

        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

patil-suraj's avatar
patil-suraj committed
555

patil-suraj's avatar
patil-suraj committed
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
class UNetGradTTSModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNetGradTTSModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_features = 32
        seq_len = 16

        noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device)
        condition = floats_tensor((batch_size, num_features, seq_len)).to(torch_device)
        mask = floats_tensor((batch_size, 1, seq_len)).to(torch_device)
        time_step = torch.tensor([10] * batch_size).to(torch_device)

        return {"x": noise, "timesteps": time_step, "mu": condition, "mask": mask}

    @property
Patrick von Platen's avatar
Patrick von Platen committed
573
    def input_shape(self):
patil-suraj's avatar
patil-suraj committed
574
575
576
        return (4, 32, 16)

    @property
Patrick von Platen's avatar
Patrick von Platen committed
577
    def output_shape(self):
patil-suraj's avatar
patil-suraj committed
578
579
580
581
582
583
584
585
586
587
588
589
590
        return (4, 32, 16)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "dim": 64,
            "groups": 4,
            "dim_mults": (1, 2),
            "n_feats": 32,
            "pe_scale": 1000,
            "n_spks": 1,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
anton-l's avatar
anton-l committed
591

patil-suraj's avatar
patil-suraj committed
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
    def test_from_pretrained_hub(self):
        model, loading_info = UNetGradTTSModel.from_pretrained("fusing/unet-grad-tts-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = UNetGradTTSModel.from_pretrained("fusing/unet-grad-tts-dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)
anton-l's avatar
anton-l committed
609

patil-suraj's avatar
patil-suraj committed
610
611
612
613
614
615
616
617
618
619
620
621
        num_features = model.config.n_feats
        seq_len = 16
        noise = torch.randn((1, num_features, seq_len))
        condition = torch.randn((1, num_features, seq_len))
        mask = torch.randn((1, 1, seq_len))
        time_step = torch.tensor([10])

        with torch.no_grad():
            output = model(noise, time_step, condition, mask)

        output_slice = output[0, -3:, -3:].flatten()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
622
        expected_output_slice = torch.tensor([-0.0690, -0.0531, 0.0633, -0.0660, -0.0541, 0.0650, -0.0656, -0.0555, 0.0617])
patil-suraj's avatar
patil-suraj committed
623
624
        # fmt: on

Patrick von Platen's avatar
up  
Patrick von Platen committed
625
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-3))
626
627
628
629
630


class TemporalUNetModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = TemporalUNet

Patrick von Platen's avatar
Patrick von Platen committed
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
    @property
    def dummy_input(self):
        batch_size = 4
        num_features = 14
        seq_len = 16

        noise = floats_tensor((batch_size, seq_len, num_features)).to(torch_device)
        time_step = torch.tensor([10] * batch_size).to(torch_device)

        return {"x": noise, "timesteps": time_step}

    @property
    def input_shape(self):
        return (4, 16, 14)

    @property
    def output_shape(self):
        return (4, 16, 14)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "training_horizon": 128,
            "dim": 32,
            "dim_mults": [1, 4, 8],
            "predict_epsilon": False,
            "clip_denoised": True,
            "transition_dim": 14,
            "cond_dim": 3,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
    def test_from_pretrained_hub(self):
        model, loading_info = TemporalUNet.from_pretrained(
            "fusing/ddpm-unet-rl-hopper-hor128", output_loading_info=True
        )
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = TemporalUNet.from_pretrained("fusing/ddpm-unet-rl-hopper-hor128")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        num_features = model.transition_dim
        seq_len = 16
        noise = torch.randn((1, seq_len, num_features))
        time_step = torch.full((num_features,), 0)

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -3:, -3:].flatten()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
693
        expected_output_slice = torch.tensor([-0.2714, 0.1042, -0.0794, -0.2820, 0.0803, -0.0811, -0.2345, 0.0580, -0.0584])
694
695
        # fmt: on

Patrick von Platen's avatar
up  
Patrick von Platen committed
696
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-3))
patil-suraj's avatar
patil-suraj committed
697
698


699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
class NCSNppModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = NCSNpp

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [10]).to(torch_device)

        return {"x": noise, "timesteps": time_step}

    @property
Patrick von Platen's avatar
Patrick von Platen committed
714
    def input_shape(self):
715
716
717
        return (3, 32, 32)

    @property
Patrick von Platen's avatar
Patrick von Platen committed
718
    def output_shape(self):
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "image_size": 32,
            "ch_mult": [1, 2, 2, 2],
            "nf": 32,
            "fir": True,
            "progressive": "output_skip",
            "progressive_combine": "sum",
            "progressive_input": "input_skip",
            "scale_by_sigma": True,
            "skip_rescale": True,
            "embedding_type": "fourier",
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_from_pretrained_hub(self):
        model, loading_info = NCSNpp.from_pretrained("fusing/cifar10-ncsnpp-ve", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained_ve_small(self):
        model = NCSNpp.from_pretrained("fusing/ncsnpp-cifar10-ve-dummy")
        model.eval()
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

Patrick von Platen's avatar
Patrick von Platen committed
760
761
        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)
762
763
764
765
766
767

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
768
        expected_output_slice = torch.tensor([0.1315, 0.0741, 0.0393, 0.0455, 0.0556, 0.0180, -0.0832, -0.0644, -0.0856])
769
770
        # fmt: on

Patrick von Platen's avatar
Patrick von Platen committed
771
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
772
773
774
775
776
777
778
779
780
781
782
783
784
785

    def test_output_pretrained_ve_large(self):
        model = NCSNpp.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy")
        model.eval()
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

Patrick von Platen's avatar
Patrick von Platen committed
786
787
        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)
788
789
790
791
792
793

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
794
        expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256])
795
796
        # fmt: on

Patrick von Platen's avatar
Patrick von Platen committed
797
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
798
799

    def test_output_pretrained_vp(self):
Patrick von Platen's avatar
Patrick von Platen committed
800
        model = NCSNpp.from_pretrained("fusing/cifar10-ddpmpp-vp")
801
802
803
804
805
806
807
808
809
810
811
        model.eval()
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

Patrick von Platen's avatar
Patrick von Platen committed
812
        noise = torch.randn((batch_size, num_channels) + sizes).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
813
        time_step = torch.tensor(batch_size * [9.0]).to(torch_device)
814
815
816
817
818
819

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
820
        expected_output_slice = torch.tensor([0.3303, -0.2275, -2.8872, -0.1309, -1.2861, 3.4567, -1.0083, 2.5325, -1.3866])
821
822
        # fmt: on

Patrick von Platen's avatar
Patrick von Platen committed
823
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
824
825


patil-suraj's avatar
patil-suraj committed
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
class VQModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = VQModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

        return {"x": image}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 64,
            "out_ch": 3,
            "num_res_blocks": 1,
            "attn_resolutions": [],
            "in_channels": 3,
            "resolution": 32,
            "z_channels": 3,
            "n_embed": 256,
            "embed_dim": 3,
            "sane_index_shape": False,
            "ch_mult": (1,),
            "dropout": 0.0,
            "double_z": False,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_training(self):
        pass

    def test_from_pretrained_hub(self):
        model, loading_info = VQModel.from_pretrained("fusing/vqgan-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = VQModel.from_pretrained("fusing/vqgan-dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        image = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
        with torch.no_grad():
            output = model(image)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
Patrick von Platen's avatar
up  
Patrick von Platen committed
896
        expected_output_slice = torch.tensor([-1.1321, 0.1056, 0.3505, -0.6461, -0.2014, 0.0419, -0.5763, -0.8462, -0.4218])
patil-suraj's avatar
patil-suraj committed
897
        # fmt: on
Patrick von Platen's avatar
up  
Patrick von Platen committed
898
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
patil-suraj's avatar
patil-suraj committed
899
900


patil-suraj's avatar
patil-suraj committed
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
class AutoEncoderKLTests(ModelTesterMixin, unittest.TestCase):
    model_class = AutoencoderKL

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

        return {"x": image}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 64,
            "ch_mult": (1,),
            "embed_dim": 4,
            "in_channels": 3,
            "num_res_blocks": 1,
            "out_ch": 3,
            "resolution": 32,
            "z_channels": 4,
patil-suraj's avatar
patil-suraj committed
932
            "attn_resolutions": [],
patil-suraj's avatar
patil-suraj committed
933
934
935
936
937
938
939
940
941
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_training(self):
        pass
patil-suraj's avatar
patil-suraj committed
942

patil-suraj's avatar
patil-suraj committed
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
    def test_from_pretrained_hub(self):
        model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        image = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
        with torch.no_grad():
            output = model(image, sample_posterior=True)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
Patrick von Platen's avatar
up  
Patrick von Platen committed
967
        expected_output_slice = torch.tensor([-0.0814, -0.0229, -0.1320, -0.4123, -0.0366, -0.3473, 0.0438, -0.1662, 0.1750])
patil-suraj's avatar
patil-suraj committed
968
        # fmt: on
Patrick von Platen's avatar
up  
Patrick von Platen committed
969
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
patil-suraj's avatar
patil-suraj committed
970
971


972
973
974
975
class PipelineTesterMixin(unittest.TestCase):
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
Patrick von Platen's avatar
Patrick von Platen committed
976
        schedular = DDPMScheduler(timesteps=10)
977

Patrick von Platen's avatar
Patrick von Platen committed
978
        ddpm = DDPMPipeline(model, schedular)
979
980
981

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
982
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
983
984

        generator = torch.manual_seed(0)
985

patil-suraj's avatar
patil-suraj committed
986
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
987
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
988
        new_image = new_ddpm(generator=generator)
989
990
991
992
993
994
995

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
996
        ddpm = DDPMPipeline.from_pretrained(model_path)
997
998
999
1000
1001
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)

        ddpm.noise_scheduler.num_timesteps = 10
        ddpm_from_hub.noise_scheduler.num_timesteps = 10

Patrick von Platen's avatar
Patrick von Platen committed
1002
        generator = torch.manual_seed(0)
1003

patil-suraj's avatar
patil-suraj committed
1004
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
1005
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
1006
        new_image = ddpm_from_hub(generator=generator)
1007
1008

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
1009
1010
1011
1012
1013

    @slow
    def test_ddpm_cifar10(self):
        model_id = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
1014
        unet = UNetModel.from_pretrained(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
1015
        noise_scheduler = DDPMScheduler.from_config(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
1016
        noise_scheduler = noise_scheduler.set_format("pt")
Patrick von Platen's avatar
Patrick von Platen committed
1017

Patrick von Platen's avatar
Patrick von Platen committed
1018
        ddpm = DDPMPipeline(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
1019
1020

        generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1021
1022
1023
1024
1025
        image = ddpm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
Patrick von Platen's avatar
Patrick von Platen committed
1026
1027
1028
        expected_slice = torch.tensor(
            [-0.5712, -0.6215, -0.5953, -0.5438, -0.4775, -0.4539, -0.5172, -0.4872, -0.5105]
        )
Patrick von Platen's avatar
Patrick von Platen committed
1029
1030
1031
1032
1033
1034
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        model_id = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
1035
        unet = UNetModel.from_pretrained(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
1036
        noise_scheduler = DDIMScheduler(tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
1037

Patrick von Platen's avatar
Patrick von Platen committed
1038
        ddim = DDIMPipeline(unet=unet, noise_scheduler=noise_scheduler)
1039
1040

        generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1041
1042
1043
1044
1045
        image = ddim(generator=generator, eta=0.0)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
Patrick von Platen's avatar
Patrick von Platen committed
1046
        expected_slice = torch.tensor(
1047
            [-0.6553, -0.6765, -0.6799, -0.6749, -0.7006, -0.6974, -0.6991, -0.7116, -0.7094]
Patrick von Platen's avatar
Patrick von Platen committed
1048
        )
Patrick von Platen's avatar
Patrick von Platen committed
1049
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
patil-suraj's avatar
patil-suraj committed
1050

Patrick von Platen's avatar
Patrick von Platen committed
1051
1052
1053
1054
1055
1056
1057
    @slow
    def test_pndm_cifar10(self):
        model_id = "fusing/ddpm-cifar10"

        unet = UNetModel.from_pretrained(model_id)
        noise_scheduler = PNDMScheduler(tensor_format="pt")

Patrick von Platen's avatar
Patrick von Platen committed
1058
        pndm = PNDMPipeline(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
1059
        generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1060
1061
1062
1063
1064
1065
        image = pndm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor(
Patrick von Platen's avatar
Patrick von Platen committed
1066
            [-0.6872, -0.7071, -0.7188, -0.7057, -0.7515, -0.7191, -0.7377, -0.7565, -0.7500]
Patrick von Platen's avatar
Patrick von Platen committed
1067
1068
1069
        )
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

patil-suraj's avatar
patil-suraj committed
1070
    @slow
patil-suraj's avatar
patil-suraj committed
1071
    @unittest.skip("Skipping for now as it takes too long")
patil-suraj's avatar
patil-suraj committed
1072
1073
    def test_ldm_text2img(self):
        model_id = "fusing/latent-diffusion-text2im-large"
Patrick von Platen's avatar
Patrick von Platen committed
1074
        ldm = LatentDiffusionPipeline.from_pretrained(model_id)
patil-suraj's avatar
patil-suraj committed
1075
1076
1077
1078
1079
1080
1081
1082
1083

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, num_inference_steps=20)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 256, 256)
        expected_slice = torch.tensor([0.7295, 0.7358, 0.7256, 0.7435, 0.7095, 0.6884, 0.7325, 0.6921, 0.6458])
Patrick von Platen's avatar
update  
Patrick von Platen committed
1084
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
1085

patil-suraj's avatar
patil-suraj committed
1086
1087
1088
1089
1090
1091
1092
    @slow
    def test_ldm_text2img_fast(self):
        model_id = "fusing/latent-diffusion-text2im-large"
        ldm = LatentDiffusionPipeline.from_pretrained(model_id)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
1093
        image = ldm([prompt], generator=generator, num_inference_steps=1)
patil-suraj's avatar
patil-suraj committed
1094
1095
1096
1097

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 256, 256)
patil-suraj's avatar
patil-suraj committed
1098
        expected_slice = torch.tensor([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344])
patil-suraj's avatar
patil-suraj committed
1099
1100
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

anton-l's avatar
anton-l committed
1101
1102
1103
    @slow
    def test_glide_text2img(self):
        model_id = "fusing/glide-base"
Patrick von Platen's avatar
Patrick von Platen committed
1104
        glide = GlidePipeline.from_pretrained(model_id)
anton-l's avatar
anton-l committed
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115

        prompt = "a pencil sketch of a corgi"
        generator = torch.manual_seed(0)
        image = glide(prompt, generator=generator, num_inference_steps_upscale=20)

        image_slice = image[0, :3, :3, -1].cpu()

        assert image.shape == (1, 256, 256, 3)
        expected_slice = torch.tensor([0.7119, 0.7073, 0.6460, 0.7780, 0.7423, 0.6926, 0.7378, 0.7189, 0.7784])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

Patrick von Platen's avatar
Patrick von Platen committed
1116
1117
1118
    @slow
    def test_grad_tts(self):
        model_id = "fusing/grad-tts-libri-tts"
Patrick von Platen's avatar
Patrick von Platen committed
1119
        grad_tts = GradTTSPipeline.from_pretrained(model_id)
1120
1121
        noise_scheduler = GradTTSScheduler()
        grad_tts.noise_scheduler = noise_scheduler
Patrick von Platen's avatar
Patrick von Platen committed
1122
1123

        text = "Hello world, I missed you so much."
Patrick von Platen's avatar
Patrick von Platen committed
1124
        generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1125
1126

        # generate mel spectograms using text
Patrick von Platen's avatar
Patrick von Platen committed
1127
        mel_spec = grad_tts(text, generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
1128

Patrick von Platen's avatar
Patrick von Platen committed
1129
1130
        assert mel_spec.shape == (1, 80, 143)
        expected_slice = torch.tensor(
Patrick von Platen's avatar
Patrick von Platen committed
1131
            [-6.7584, -6.8347, -6.3293, -6.6437, -6.7233, -6.4684, -6.1187, -6.3172, -6.6890]
Patrick von Platen's avatar
Patrick von Platen committed
1132
        )
Patrick von Platen's avatar
Patrick von Platen committed
1133
        assert (mel_spec[0, :3, :3].cpu().flatten() - expected_slice).abs().max() < 1e-2
Patrick von Platen's avatar
Patrick von Platen committed
1134

Patrick von Platen's avatar
Patrick von Platen committed
1135
1136
1137
1138
1139
1140
1141
    @slow
    def test_score_sde_ve_pipeline(self):
        model = NCSNpp.from_pretrained("fusing/ffhq_ncsnpp")
        scheduler = ScoreSdeVeScheduler.from_config("fusing/ffhq_ncsnpp")

        sde_ve = ScoreSdeVePipeline(model=model, scheduler=scheduler)

1142
        torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1143
1144
        image = sde_ve(num_inference_steps=2)

1145
1146
        expected_image_sum = 3382849024.0
        expected_image_mean = 1075.3788
Patrick von Platen's avatar
Patrick von Platen committed
1147
1148
1149
1150

        assert (image.abs().sum() - expected_image_sum).abs().cpu().item() < 1e-2
        assert (image.abs().mean() - expected_image_mean).abs().cpu().item() < 1e-4

Patrick von Platen's avatar
Patrick von Platen committed
1151
1152
    @slow
    def test_score_sde_vp_pipeline(self):
Patrick von Platen's avatar
Patrick von Platen committed
1153
1154
        model = NCSNpp.from_pretrained("fusing/cifar10-ddpmpp-vp")
        scheduler = ScoreSdeVpScheduler.from_config("fusing/cifar10-ddpmpp-vp")
Patrick von Platen's avatar
Patrick von Platen committed
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

        sde_vp = ScoreSdeVpPipeline(model=model, scheduler=scheduler)

        torch.manual_seed(0)
        image = sde_vp(num_inference_steps=10)

        expected_image_sum = 4183.2012
        expected_image_mean = 1.3617

        assert (image.abs().sum() - expected_image_sum).abs().cpu().item() < 1e-2
        assert (image.abs().mean() - expected_image_mean).abs().cpu().item() < 1e-4

patil-suraj's avatar
patil-suraj committed
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
    @slow
    def test_ldm_uncond(self):
        ldm = LatentDiffusionUncondPipeline.from_pretrained("fusing/latent-diffusion-celeba-256")

        generator = torch.manual_seed(0)
        image = ldm(generator=generator, num_inference_steps=5)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 256, 256)
patil-suraj's avatar
patil-suraj committed
1177
1178
1179
        expected_slice = torch.tensor(
            [-0.1202, -0.1005, -0.0635, -0.0520, -0.1282, -0.0838, -0.0981, -0.1318, -0.1106]
        )
patil-suraj's avatar
patil-suraj committed
1180
1181
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

1182
1183
1184
1185
    def test_module_from_pipeline(self):
        model = DiffWave(num_res_layers=4)
        noise_scheduler = DDPMScheduler(timesteps=12)

Patrick von Platen's avatar
Patrick von Platen committed
1186
        bddm = BDDMPipeline(model, noise_scheduler)
1187
1188

        # check if the library name for the diffwave moduel is set to pipeline module
1189
        self.assertTrue(bddm.config["diffwave"][0] == "bddm")
1190
1191
1192
1193

        # check if we can save and load the pipeline
        with tempfile.TemporaryDirectory() as tmpdirname:
            bddm.save_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
1194
            _ = BDDMPipeline.from_pretrained(tmpdirname)
1195
            # check if the same works using the DifusionPipeline class
1196
1197
1198
            bddm = DiffusionPipeline.from_pretrained(tmpdirname)

        self.assertTrue(bddm.config["diffwave"][0] == "bddm")