scheduling_ddim.py 18.1 KB
Newer Older
1
# Copyright 2022 Stanford University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16
17

# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion

Patrick von Platen's avatar
Patrick von Platen committed
18
import math
19
from dataclasses import dataclass
20
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
21

Patrick von Platen's avatar
Patrick von Platen committed
22
import numpy as np
23
import torch
Patrick von Platen's avatar
Patrick von Platen committed
24

25
from ..configuration_utils import ConfigMixin, register_to_config
26
from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, BaseOutput, deprecate
27
28
29
30
from .scheduling_utils import SchedulerMixin


@dataclass
31
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
class DDIMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
47
48


49
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor:
50
    """
Patrick von Platen's avatar
Patrick von Platen committed
51
52
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
53

54
55
56
57
58
59
60
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
61
                     prevent singularities.
62
63
64

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
65
    """
66

67
    def alpha_bar(time_step):
68
69
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

70
71
72
73
74
    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
75
    return torch.tensor(betas)
Patrick von Platen's avatar
Patrick von Platen committed
76
77


Patrick von Platen's avatar
Patrick von Platen committed
78
class DDIMScheduler(SchedulerMixin, ConfigMixin):
79
80
81
82
    """
    Denoising diffusion implicit models is a scheduler that extends the denoising procedure introduced in denoising
    diffusion probabilistic models (DDPMs) with non-Markovian guidance.

83
84
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
85
86
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
87

88
89
90
91
92
93
94
95
96
    For more details, see the original paper: https://arxiv.org/abs/2010.02502

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
97
98
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
99
100
101
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.
        set_alpha_to_one (`bool`, default `True`):
102
103
104
105
106
107
108
            each diffusion step uses the value of alphas product at that step and at the previous one. For the final
            step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the value of alpha at step 0.
        steps_offset (`int`, default `0`):
            an offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
            stable diffusion.
109
110
111
112
        prediction_type (`str`, default `epsilon`, optional):
            prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
            process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
            https://imagen.research.google/video/paper.pdf)
113
114
    """

115
    _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
116
    _deprecated_kwargs = ["predict_epsilon"]
117
    order = 1
118

119
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
120
121
    def __init__(
        self,
122
123
124
125
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
126
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
127
128
        clip_sample: bool = True,
        set_alpha_to_one: bool = True,
129
        steps_offset: int = 0,
Suraj Patil's avatar
Suraj Patil committed
130
        prediction_type: str = "epsilon",
131
        **kwargs,
Patrick von Platen's avatar
Patrick von Platen committed
132
    ):
133
134
135
136
        message = (
            "Please make sure to instantiate your scheduler with `prediction_type` instead. E.g. `scheduler ="
            " DDIMScheduler.from_pretrained(<model_id>, prediction_type='epsilon')`."
        )
137
        predict_epsilon = deprecate("predict_epsilon", "0.11.0", message, take_from=kwargs)
138
139
140
        if predict_epsilon is not None:
            self.register_to_config(prediction_type="epsilon" if predict_epsilon else "sample")

141
        if trained_betas is not None:
142
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
143
        elif beta_schedule == "linear":
144
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
145
146
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
147
148
149
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
Patrick von Platen's avatar
Patrick von Platen committed
150
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
151
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
152
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
153
154
155
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

156
        self.alphas = 1.0 - self.betas
157
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
158
159
160

        # At every step in ddim, we are looking into the previous alphas_cumprod
        # For the final step, there is no previous alphas_cumprod because we are already at 0
161
        # `set_alpha_to_one` decides whether we set this parameter simply to one or
162
        # whether we use the final alpha of the "non-previous" one.
163
        self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
Patrick von Platen's avatar
Patrick von Platen committed
164

165
166
167
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

168
        # setable values
169
        self.num_inference_steps = None
170
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
Patrick von Platen's avatar
Patrick von Platen committed
171

172
173
174
175
176
177
178
179
180
181
182
183
184
185
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

186
187
    def _get_variance(self, timestep, prev_timestep):
        alpha_prod_t = self.alphas_cumprod[timestep]
188
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
189
190
191
192
193
194
195
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

196
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
197
198
199
200
201
202
203
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
204
        self.num_inference_steps = num_inference_steps
205
206
207
        step_ratio = self.config.num_train_timesteps // self.num_inference_steps
        # creates integer timesteps by multiplying by ratio
        # casting to int to avoid issues when num_inference_step is power of 3
208
        timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
209
        self.timesteps = torch.from_numpy(timesteps).to(device)
210
        self.timesteps += self.config.steps_offset
211
212
213

    def step(
        self,
214
        model_output: torch.FloatTensor,
215
        timestep: int,
216
        sample: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
217
218
        eta: float = 0.0,
        use_clipped_model_output: bool = False,
219
        generator=None,
220
        variance_noise: Optional[torch.FloatTensor] = None,
221
        return_dict: bool = True,
222
    ) -> Union[DDIMSchedulerOutput, Tuple]:
223
224
225
226
227
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
228
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
229
            timestep (`int`): current discrete timestep in the diffusion chain.
230
            sample (`torch.FloatTensor`):
231
232
                current instance of sample being created by diffusion process.
            eta (`float`): weight of noise for added noise in diffusion step.
233
234
235
236
            use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped
                predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when
                `self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would
                coincide with the one provided as input and `use_clipped_model_output` will have not effect.
237
            generator: random number generator.
238
239
240
            variance_noise (`torch.FloatTensor`): instead of generating noise for the variance using `generator`, we
                can directly provide the noise for the variance itself. This is useful for methods such as
                CycleDiffusion. (https://arxiv.org/abs/2210.05559)
241
            return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class
242
243

        Returns:
244
245
            [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
246
            returning a tuple, the first element is the sample tensor.
247
248

        """
249
250
251
252
253
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
254
255
256
257
258
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
259
        # - pred_original_sample -> f_theta(x_t, t) or x_0
Patrick von Platen's avatar
Patrick von Platen committed
260
261
        # - std_dev_t -> sigma_t
        # - eta -> η
262
        # - pred_sample_direction -> "direction pointing to x_t"
263
        # - pred_prev_sample -> "x_t-1"
Patrick von Platen's avatar
Patrick von Platen committed
264

265
        # 1. get previous step value (=t-1)
Nathan Lambert's avatar
Nathan Lambert committed
266
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
267
268

        # 2. compute alphas, betas
269
        alpha_prod_t = self.alphas_cumprod[timestep]
270
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
271

Patrick von Platen's avatar
Patrick von Platen committed
272
273
        beta_prod_t = 1 - alpha_prod_t

274
        # 3. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
275
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
276
        if self.config.prediction_type == "epsilon":
Suraj Patil's avatar
Suraj Patil committed
277
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
278
        elif self.config.prediction_type == "sample":
Suraj Patil's avatar
Suraj Patil committed
279
            pred_original_sample = model_output
280
        elif self.config.prediction_type == "v_prediction":
Suraj Patil's avatar
Suraj Patil committed
281
282
283
284
285
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
            # predict V
            model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
        else:
            raise ValueError(
286
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
Suraj Patil's avatar
Suraj Patil committed
287
288
                " `v_prediction`"
            )
Patrick von Platen's avatar
Patrick von Platen committed
289
290

        # 4. Clip "predicted x_0"
291
        if self.config.clip_sample:
292
            pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
293
294
295

        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
296
        variance = self._get_variance(timestep, prev_timestep)
Patrick von Platen's avatar
Patrick von Platen committed
297
        std_dev_t = eta * variance ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
298

Patrick von Platen's avatar
Patrick von Platen committed
299
300
301
        if use_clipped_model_output:
            # the model_output is always re-derived from the clipped x_0 in Glide
            model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
anton-l's avatar
anton-l committed
302

Patrick von Platen's avatar
Patrick von Platen committed
303
        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
304
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output
Patrick von Platen's avatar
Patrick von Platen committed
305
306

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
307
308
309
        prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

        if eta > 0:
310
            # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
Patrick von Platen's avatar
Patrick von Platen committed
311
            device = model_output.device
312
313
314
315
316
317
318
            if variance_noise is not None and generator is not None:
                raise ValueError(
                    "Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
                    " `variance_noise` stays `None`."
                )

            if variance_noise is None:
319
320
321
322
323
324
325
326
                if device.type == "mps":
                    # randn does not work reproducibly on mps
                    variance_noise = torch.randn(model_output.shape, dtype=model_output.dtype, generator=generator)
                    variance_noise = variance_noise.to(device)
                else:
                    variance_noise = torch.randn(
                        model_output.shape, generator=generator, device=device, dtype=model_output.dtype
                    )
327
            variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * variance_noise
328
329

            prev_sample = prev_sample + variance
Patrick von Platen's avatar
Patrick von Platen committed
330

331
332
333
        if not return_dict:
            return (prev_sample,)

334
        return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
335

336
337
    def add_noise(
        self,
338
339
340
341
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
342
343
344
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)
345

346
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
347
348
349
350
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

351
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
352
353
354
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
355
356
357
358

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
    def get_velocity(
        self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
    ) -> torch.FloatTensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
        self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
        timesteps = timesteps.to(sample.device)

        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

Patrick von Platen's avatar
Patrick von Platen committed
379
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
380
        return self.config.num_train_timesteps