scheduling_ddim.py 16.9 KB
Newer Older
1
# Copyright 2022 Stanford University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16
17

# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion

Patrick von Platen's avatar
Patrick von Platen committed
18
import math
19
from dataclasses import dataclass
20
from typing import Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
21

Patrick von Platen's avatar
Patrick von Platen committed
22
import numpy as np
23
import torch
Patrick von Platen's avatar
Patrick von Platen committed
24

25
from ..configuration_utils import ConfigMixin, register_to_config
26
from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, BaseOutput, deprecate
27
28
29
30
from .scheduling_utils import SchedulerMixin


@dataclass
31
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
class DDIMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
47
48


49
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor:
50
    """
Patrick von Platen's avatar
Patrick von Platen committed
51
52
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
53

54
55
56
57
58
59
60
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
61
                     prevent singularities.
62
63
64

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
65
    """
66

67
    def alpha_bar(time_step):
68
69
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

70
71
72
73
74
    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
75
    return torch.tensor(betas)
Patrick von Platen's avatar
Patrick von Platen committed
76
77


Patrick von Platen's avatar
Patrick von Platen committed
78
class DDIMScheduler(SchedulerMixin, ConfigMixin):
79
80
81
82
    """
    Denoising diffusion implicit models is a scheduler that extends the denoising procedure introduced in denoising
    diffusion probabilistic models (DDPMs) with non-Markovian guidance.

83
84
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
85
86
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
87

88
89
90
91
92
93
94
95
96
    For more details, see the original paper: https://arxiv.org/abs/2010.02502

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
97
98
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
99
100
101
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.
        set_alpha_to_one (`bool`, default `True`):
102
103
104
105
106
107
108
            each diffusion step uses the value of alphas product at that step and at the previous one. For the final
            step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the value of alpha at step 0.
        steps_offset (`int`, default `0`):
            an offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
            stable diffusion.
109
110
111
        prediction_type (`str`, default `epsilon`):
            indicates whether the model predicts the noise (epsilon), or the samples. One of `epsilon`, `sample`.
            `v-prediction` is not supported for this scheduler.
112
113
114

    """

115
    _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
116

117
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
118
119
    def __init__(
        self,
120
121
122
123
124
125
126
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        clip_sample: bool = True,
        set_alpha_to_one: bool = True,
127
        steps_offset: int = 0,
Suraj Patil's avatar
Suraj Patil committed
128
        prediction_type: str = "epsilon",
129
        **kwargs,
Patrick von Platen's avatar
Patrick von Platen committed
130
    ):
131
132
133
134
135
136
137
138
        message = (
            "Please make sure to instantiate your scheduler with `prediction_type` instead. E.g. `scheduler ="
            " DDIMScheduler.from_pretrained(<model_id>, prediction_type='epsilon')`."
        )
        predict_epsilon = deprecate("predict_epsilon", "0.10.0", message, take_from=kwargs)
        if predict_epsilon is not None:
            self.register_to_config(prediction_type="epsilon" if predict_epsilon else "sample")

139
        if trained_betas is not None:
140
            self.betas = torch.from_numpy(trained_betas)
141
        elif beta_schedule == "linear":
142
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
143
144
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
145
146
147
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
Patrick von Platen's avatar
Patrick von Platen committed
148
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
149
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
150
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
151
152
153
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

154
        self.alphas = 1.0 - self.betas
155
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
156
157
158

        # At every step in ddim, we are looking into the previous alphas_cumprod
        # For the final step, there is no previous alphas_cumprod because we are already at 0
159
        # `set_alpha_to_one` decides whether we set this parameter simply to one or
160
        # whether we use the final alpha of the "non-previous" one.
161
        self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
Patrick von Platen's avatar
Patrick von Platen committed
162

163
164
165
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

166
        # setable values
167
        self.num_inference_steps = None
168
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
Patrick von Platen's avatar
Patrick von Platen committed
169

170
171
172
173
174
175
176
177
178
179
180
181
182
183
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

184
185
    def _get_variance(self, timestep, prev_timestep):
        alpha_prod_t = self.alphas_cumprod[timestep]
186
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
187
188
189
190
191
192
193
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

194
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
195
196
197
198
199
200
201
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
202
        self.num_inference_steps = num_inference_steps
203
204
205
        step_ratio = self.config.num_train_timesteps // self.num_inference_steps
        # creates integer timesteps by multiplying by ratio
        # casting to int to avoid issues when num_inference_step is power of 3
206
        timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
207
        self.timesteps = torch.from_numpy(timesteps).to(device)
208
        self.timesteps += self.config.steps_offset
209
210
211

    def step(
        self,
212
        model_output: torch.FloatTensor,
213
        timestep: int,
214
        sample: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
215
216
        eta: float = 0.0,
        use_clipped_model_output: bool = False,
217
        generator=None,
218
        variance_noise: Optional[torch.FloatTensor] = None,
219
        return_dict: bool = True,
220
    ) -> Union[DDIMSchedulerOutput, Tuple]:
221
222
223
224
225
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
226
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
227
            timestep (`int`): current discrete timestep in the diffusion chain.
228
            sample (`torch.FloatTensor`):
229
230
                current instance of sample being created by diffusion process.
            eta (`float`): weight of noise for added noise in diffusion step.
231
232
233
234
            use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped
                predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when
                `self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would
                coincide with the one provided as input and `use_clipped_model_output` will have not effect.
235
            generator: random number generator.
236
237
238
            variance_noise (`torch.FloatTensor`): instead of generating noise for the variance using `generator`, we
                can directly provide the noise for the variance itself. This is useful for methods such as
                CycleDiffusion. (https://arxiv.org/abs/2210.05559)
239
            return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class
240
241

        Returns:
242
243
            [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
244
            returning a tuple, the first element is the sample tensor.
245
246

        """
247
248
249
250
251
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
252
253
254
255
256
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
257
        # - pred_original_sample -> f_theta(x_t, t) or x_0
Patrick von Platen's avatar
Patrick von Platen committed
258
259
        # - std_dev_t -> sigma_t
        # - eta -> η
260
        # - pred_sample_direction -> "direction pointing to x_t"
261
        # - pred_prev_sample -> "x_t-1"
Patrick von Platen's avatar
Patrick von Platen committed
262

263
        # 1. get previous step value (=t-1)
Nathan Lambert's avatar
Nathan Lambert committed
264
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
265
266

        # 2. compute alphas, betas
267
        alpha_prod_t = self.alphas_cumprod[timestep]
268
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
269

Patrick von Platen's avatar
Patrick von Platen committed
270
271
        beta_prod_t = 1 - alpha_prod_t

272
        # 3. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
273
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
274
        if self.config.prediction_type == "epsilon":
Suraj Patil's avatar
Suraj Patil committed
275
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
276
        elif self.config.prediction_type == "sample":
Suraj Patil's avatar
Suraj Patil committed
277
            pred_original_sample = model_output
278
        elif self.config.prediction_type == "v_prediction":
Suraj Patil's avatar
Suraj Patil committed
279
280
281
282
283
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
            # predict V
            model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
        else:
            raise ValueError(
284
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
Suraj Patil's avatar
Suraj Patil committed
285
286
                " `v_prediction`"
            )
Patrick von Platen's avatar
Patrick von Platen committed
287
288

        # 4. Clip "predicted x_0"
289
        if self.config.clip_sample:
290
            pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
291
292
293

        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
294
        variance = self._get_variance(timestep, prev_timestep)
Patrick von Platen's avatar
Patrick von Platen committed
295
        std_dev_t = eta * variance ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
296

Patrick von Platen's avatar
Patrick von Platen committed
297
298
299
        if use_clipped_model_output:
            # the model_output is always re-derived from the clipped x_0 in Glide
            model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
anton-l's avatar
anton-l committed
300

Patrick von Platen's avatar
Patrick von Platen committed
301
        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
302
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output
Patrick von Platen's avatar
Patrick von Platen committed
303
304

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
305
306
307
        prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

        if eta > 0:
308
            # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
Patrick von Platen's avatar
Patrick von Platen committed
309
            device = model_output.device
310
311
312
313
314
315
316
            if variance_noise is not None and generator is not None:
                raise ValueError(
                    "Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
                    " `variance_noise` stays `None`."
                )

            if variance_noise is None:
317
318
319
320
321
322
323
324
                if device.type == "mps":
                    # randn does not work reproducibly on mps
                    variance_noise = torch.randn(model_output.shape, dtype=model_output.dtype, generator=generator)
                    variance_noise = variance_noise.to(device)
                else:
                    variance_noise = torch.randn(
                        model_output.shape, generator=generator, device=device, dtype=model_output.dtype
                    )
325
            variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * variance_noise
326
327

            prev_sample = prev_sample + variance
Patrick von Platen's avatar
Patrick von Platen committed
328

329
330
331
        if not return_dict:
            return (prev_sample,)

332
        return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
333

334
335
    def add_noise(
        self,
336
337
338
339
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
340
341
342
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)
343

344
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
345
346
347
348
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

349
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
350
351
352
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
353
354
355
356

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

Patrick von Platen's avatar
Patrick von Platen committed
357
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
358
        return self.config.num_train_timesteps