attention.py 38.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import math
Will Berman's avatar
Will Berman committed
15
from dataclasses import dataclass
Kashif Rasul's avatar
Kashif Rasul committed
16
from typing import Optional
17
18

import torch
Patrick von Platen's avatar
Patrick von Platen committed
19
import torch.nn.functional as F
20
21
from torch import nn

Will Berman's avatar
Will Berman committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from ..configuration_utils import ConfigMixin, register_to_config
from ..modeling_utils import ModelMixin
from ..models.embeddings import ImagePositionalEmbeddings
from ..utils import BaseOutput
from ..utils.import_utils import is_xformers_available


@dataclass
class Transformer2DModelOutput(BaseOutput):
    """
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
            Hidden states conditioned on `encoder_hidden_states` input. If discrete, returns probability distributions
            for the unnoised latent pixels.
    """

    sample: torch.FloatTensor
39
40
41
42
43
44
45
46


if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None

47

Will Berman's avatar
Will Berman committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
class Transformer2DModel(ModelMixin, ConfigMixin):
    """
    Transformer model for image-like data. Takes either discrete (classes of vector embeddings) or continuous (actual
    embeddings) inputs.

    When input is continuous: First, project the input (aka embedding) and reshape to b, t, d. Then apply standard
    transformer action. Finally, reshape to image.

    When input is discrete: First, input (classes of latent pixels) is converted to embeddings and has positional
    embeddings applied, see `ImagePositionalEmbeddings`. Then apply standard transformer action. Finally, predict
    classes of unnoised image.

    Note that it is assumed one of the input classes is the masked latent pixel. The predicted classes of the unnoised
    image do not contain a prediction for the masked pixel as the unnoised image cannot be masked.

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
            Pass if the input is continuous. The number of channels in the input and output.
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The number of context dimensions to use.
        sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
            Note that this is fixed at training time as it is used for learning a number of position embeddings. See
            `ImagePositionalEmbeddings`.
        num_vector_embeds (`int`, *optional*):
            Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
            Includes the class for the masked latent pixel.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
            The number of diffusion steps used during training. Note that this is fixed at training time as it is used
            to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
            up to but not more than steps than `num_embeds_ada_norm`.
        attention_bias (`bool`, *optional*):
            Configure if the TransformerBlocks' attention should contain a bias parameter.
    """

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        sample_size: Optional[int] = None,
        num_vector_embeds: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
Suraj Patil's avatar
Suraj Patil committed
101
        use_linear_projection: bool = False,
102
        only_cross_attention: bool = False,
103
        upcast_attention: bool = False,
Will Berman's avatar
Will Berman committed
104
105
    ):
        super().__init__()
Suraj Patil's avatar
Suraj Patil committed
106
        self.use_linear_projection = use_linear_projection
Will Berman's avatar
Will Berman committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim

        # 1. Transformer2DModel can process both standard continous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
        # Define whether input is continuous or discrete depending on configuration
        self.is_input_continuous = in_channels is not None
        self.is_input_vectorized = num_vector_embeds is not None

        if self.is_input_continuous and self.is_input_vectorized:
            raise ValueError(
                f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
                " sure that either `in_channels` or `num_vector_embeds` is None."
            )
        elif not self.is_input_continuous and not self.is_input_vectorized:
            raise ValueError(
                f"Has to define either `in_channels`: {in_channels} or `num_vector_embeds`: {num_vector_embeds}. Make"
                " sure that either `in_channels` or `num_vector_embeds` is not None."
            )

        # 2. Define input layers
        if self.is_input_continuous:
            self.in_channels = in_channels

            self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
Suraj Patil's avatar
Suraj Patil committed
132
133
134
135
            if use_linear_projection:
                self.proj_in = nn.Linear(in_channels, inner_dim)
            else:
                self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
Will Berman's avatar
Will Berman committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        elif self.is_input_vectorized:
            assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
            assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"

            self.height = sample_size
            self.width = sample_size
            self.num_vector_embeds = num_vector_embeds
            self.num_latent_pixels = self.height * self.width

            self.latent_image_embedding = ImagePositionalEmbeddings(
                num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
            )

        # 3. Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                    attention_bias=attention_bias,
161
                    only_cross_attention=only_cross_attention,
162
                    upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
163
164
165
166
167
168
169
                )
                for d in range(num_layers)
            ]
        )

        # 4. Define output layers
        if self.is_input_continuous:
Suraj Patil's avatar
Suraj Patil committed
170
171
172
173
            if use_linear_projection:
                self.proj_out = nn.Linear(in_channels, inner_dim)
            else:
                self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
Will Berman's avatar
Will Berman committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        elif self.is_input_vectorized:
            self.norm_out = nn.LayerNorm(inner_dim)
            self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)

    def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
        """
        Args:
            hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
                When continous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
                hidden_states
            encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, context dim)`, *optional*):
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep ( `torch.long`, *optional*):
                Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.

        Returns:
            [`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
            if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
            tensor.
        """
        # 1. Input
        if self.is_input_continuous:
            batch, channel, height, weight = hidden_states.shape
            residual = hidden_states
Suraj Patil's avatar
Suraj Patil committed
201

Will Berman's avatar
Will Berman committed
202
            hidden_states = self.norm(hidden_states)
Suraj Patil's avatar
Suraj Patil committed
203
204
205
206
207
208
209
210
            if not self.use_linear_projection:
                hidden_states = self.proj_in(hidden_states)
                inner_dim = hidden_states.shape[1]
                hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
            else:
                inner_dim = hidden_states.shape[1]
                hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
                hidden_states = self.proj_in(hidden_states)
Will Berman's avatar
Will Berman committed
211
212
213
214
215
216
217
218
219
        elif self.is_input_vectorized:
            hidden_states = self.latent_image_embedding(hidden_states)

        # 2. Blocks
        for block in self.transformer_blocks:
            hidden_states = block(hidden_states, context=encoder_hidden_states, timestep=timestep)

        # 3. Output
        if self.is_input_continuous:
Suraj Patil's avatar
Suraj Patil committed
220
            if not self.use_linear_projection:
221
222
223
                hidden_states = (
                    hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
                )
Suraj Patil's avatar
Suraj Patil committed
224
225
226
                hidden_states = self.proj_out(hidden_states)
            else:
                hidden_states = self.proj_out(hidden_states)
227
228
229
                hidden_states = (
                    hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
                )
Suraj Patil's avatar
Suraj Patil committed
230

Will Berman's avatar
Will Berman committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
            output = hidden_states + residual
        elif self.is_input_vectorized:
            hidden_states = self.norm_out(hidden_states)
            logits = self.out(hidden_states)
            # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
            logits = logits.permute(0, 2, 1)

            # log(p(x_0))
            output = F.log_softmax(logits.double(), dim=1).float()

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)


247
class AttentionBlock(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
248
249
250
251
    """
    An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
    to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
Kashif Rasul's avatar
Kashif Rasul committed
252
253
254
    Uses three q, k, v linear layers to compute attention.

    Parameters:
Will Berman's avatar
Will Berman committed
255
256
        channels (`int`): The number of channels in the input and output.
        num_head_channels (`int`, *optional*):
Kashif Rasul's avatar
Kashif Rasul committed
257
            The number of channels in each head. If None, then `num_heads` = 1.
Will Berman's avatar
Will Berman committed
258
259
260
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for group norm.
        rescale_output_factor (`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
        eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
Patrick von Platen's avatar
Patrick von Platen committed
261
262
263
264
    """

    def __init__(
        self,
Kashif Rasul's avatar
Kashif Rasul committed
265
266
        channels: int,
        num_head_channels: Optional[int] = None,
Will Berman's avatar
Will Berman committed
267
        norm_num_groups: int = 32,
Kashif Rasul's avatar
Kashif Rasul committed
268
269
        rescale_output_factor: float = 1.0,
        eps: float = 1e-5,
Patrick von Platen's avatar
Patrick von Platen committed
270
271
272
273
    ):
        super().__init__()
        self.channels = channels

Patrick von Platen's avatar
Patrick von Platen committed
274
        self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
Patrick von Platen's avatar
Patrick von Platen committed
275
        self.num_head_size = num_head_channels
Will Berman's avatar
Will Berman committed
276
        self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=norm_num_groups, eps=eps, affine=True)
Patrick von Platen's avatar
Patrick von Platen committed
277
278
279
280
281
282
283

        # define q,k,v as linear layers
        self.query = nn.Linear(channels, channels)
        self.key = nn.Linear(channels, channels)
        self.value = nn.Linear(channels, channels)

        self.rescale_output_factor = rescale_output_factor
Patrick von Platen's avatar
Patrick von Platen committed
284
        self.proj_attn = nn.Linear(channels, channels, 1)
Patrick von Platen's avatar
Patrick von Platen committed
285

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        self._use_memory_efficient_attention_xformers = False

    def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
        if not is_xformers_available():
            raise ModuleNotFoundError(
                "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                " xformers",
                name="xformers",
            )
        elif not torch.cuda.is_available():
            raise ValueError(
                "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
                " available for GPU "
            )
        else:
            try:
                # Make sure we can run the memory efficient attention
                _ = xformers.ops.memory_efficient_attention(
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                )
            except Exception as e:
                raise e
            self._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers

Suraj Patil's avatar
Suraj Patil committed
312
313
314
315
316
317
318
319
320
321
322
323
324
    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.num_heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.num_heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor
Patrick von Platen's avatar
Patrick von Platen committed
325
326
327
328
329
330
331

    def forward(self, hidden_states):
        residual = hidden_states
        batch, channel, height, width = hidden_states.shape

        # norm
        hidden_states = self.group_norm(hidden_states)
332

Patrick von Platen's avatar
Patrick von Platen committed
333
334
335
336
337
338
339
        hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)

        # proj to q, k, v
        query_proj = self.query(hidden_states)
        key_proj = self.key(hidden_states)
        value_proj = self.value(hidden_states)

340
        scale = 1 / math.sqrt(self.channels / self.num_heads)
Patrick von Platen's avatar
Patrick von Platen committed
341

Suraj Patil's avatar
Suraj Patil committed
342
343
344
345
        query_proj = self.reshape_heads_to_batch_dim(query_proj)
        key_proj = self.reshape_heads_to_batch_dim(key_proj)
        value_proj = self.reshape_heads_to_batch_dim(value_proj)

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
        if self._use_memory_efficient_attention_xformers:
            # Memory efficient attention
            hidden_states = xformers.ops.memory_efficient_attention(query_proj, key_proj, value_proj, attn_bias=None)
            hidden_states = hidden_states.to(query_proj.dtype)
        else:
            attention_scores = torch.baddbmm(
                torch.empty(
                    query_proj.shape[0],
                    query_proj.shape[1],
                    key_proj.shape[1],
                    dtype=query_proj.dtype,
                    device=query_proj.device,
                ),
                query_proj,
                key_proj.transpose(-1, -2),
                beta=0,
                alpha=scale,
            )
            attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)
            hidden_states = torch.bmm(attention_probs, value_proj)
Patrick von Platen's avatar
Patrick von Platen committed
366

Suraj Patil's avatar
Suraj Patil committed
367
368
        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
369
370

        # compute next hidden_states
371
        hidden_states = self.proj_attn(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
372
373
374
375
376
377
        hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)

        # res connect and rescale
        hidden_states = (hidden_states + residual) / self.rescale_output_factor
        return hidden_states

Patrick von Platen's avatar
Patrick von Platen committed
378

Patrick von Platen's avatar
Patrick von Platen committed
379
class BasicTransformerBlock(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
380
381
382
383
    r"""
    A basic Transformer block.

    Parameters:
Will Berman's avatar
Will Berman committed
384
385
386
387
388
389
390
391
392
393
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The size of the context vector for cross attention.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
Kashif Rasul's avatar
Kashif Rasul committed
394
395
396
397
398
    """

    def __init__(
        self,
        dim: int,
Will Berman's avatar
Will Berman committed
399
400
        num_attention_heads: int,
        attention_head_dim: int,
Kashif Rasul's avatar
Kashif Rasul committed
401
        dropout=0.0,
Will Berman's avatar
Will Berman committed
402
403
404
405
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
406
        only_cross_attention: bool = False,
407
        upcast_attention: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
408
    ):
Patrick von Platen's avatar
Patrick von Platen committed
409
        super().__init__()
410
        self.only_cross_attention = only_cross_attention
411
412
413
        self.use_ada_layer_norm = num_embeds_ada_norm is not None

        # 1. Self-Attn
Patrick von Platen's avatar
Patrick von Platen committed
414
        self.attn1 = CrossAttention(
Will Berman's avatar
Will Berman committed
415
416
417
418
419
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
420
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
421
            upcast_attention=upcast_attention,
Patrick von Platen's avatar
Patrick von Platen committed
422
        )  # is a self-attention
Will Berman's avatar
Will Berman committed
423
424
        self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)

425
426
427
428
429
430
431
432
433
        # 2. Cross-Attn
        if cross_attention_dim is not None:
            self.attn2 = CrossAttention(
                query_dim=dim,
                cross_attention_dim=cross_attention_dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
434
                upcast_attention=upcast_attention,
435
            )  # is self-attn if context is none
Will Berman's avatar
Will Berman committed
436
        else:
437
438
439
440
441
442
443
444
445
446
            self.attn2 = None

        self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)

        if cross_attention_dim is not None:
            self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
        else:
            self.norm2 = None

        # 3. Feed-forward
Patrick von Platen's avatar
Patrick von Platen committed
447
448
        self.norm3 = nn.LayerNorm(dim)

449
    def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
        if not is_xformers_available():
            print("Here is how to install it")
            raise ModuleNotFoundError(
                "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                " xformers",
                name="xformers",
            )
        elif not torch.cuda.is_available():
            raise ValueError(
                "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
                " available for GPU "
            )
        else:
            try:
                # Make sure we can run the memory efficient attention
                _ = xformers.ops.memory_efficient_attention(
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                )
            except Exception as e:
                raise e
            self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
            self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers

Will Berman's avatar
Will Berman committed
475
476
477
478
479
    def forward(self, hidden_states, context=None, timestep=None):
        # 1. Self-Attention
        norm_hidden_states = (
            self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
        )
480
481
482
483
484

        if self.only_cross_attention:
            hidden_states = self.attn1(norm_hidden_states, context) + hidden_states
        else:
            hidden_states = self.attn1(norm_hidden_states) + hidden_states
Will Berman's avatar
Will Berman committed
485

486
487
488
489
490
491
        if self.attn2 is not None:
            # 2. Cross-Attention
            norm_hidden_states = (
                self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
            )
            hidden_states = self.attn2(norm_hidden_states, context=context) + hidden_states
Will Berman's avatar
Will Berman committed
492
493

        # 3. Feed-forward
494
        hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
Will Berman's avatar
Will Berman committed
495

496
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
497
498
499


class CrossAttention(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
500
501
502
503
    r"""
    A cross attention layer.

    Parameters:
Will Berman's avatar
Will Berman committed
504
505
        query_dim (`int`): The number of channels in the query.
        cross_attention_dim (`int`, *optional*):
Kashif Rasul's avatar
Kashif Rasul committed
506
            The number of channels in the context. If not given, defaults to `query_dim`.
Will Berman's avatar
Will Berman committed
507
508
509
510
511
        heads (`int`,  *optional*, defaults to 8): The number of heads to use for multi-head attention.
        dim_head (`int`,  *optional*, defaults to 64): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        bias (`bool`, *optional*, defaults to False):
            Set to `True` for the query, key, and value linear layers to contain a bias parameter.
Kashif Rasul's avatar
Kashif Rasul committed
512
513
514
    """

    def __init__(
Will Berman's avatar
Will Berman committed
515
516
517
518
519
520
521
        self,
        query_dim: int,
        cross_attention_dim: Optional[int] = None,
        heads: int = 8,
        dim_head: int = 64,
        dropout: float = 0.0,
        bias=False,
522
        upcast_attention: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
523
    ):
Patrick von Platen's avatar
Patrick von Platen committed
524
525
        super().__init__()
        inner_dim = dim_head * heads
Will Berman's avatar
Will Berman committed
526
        cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
527
        self.upcast_attention = upcast_attention
Patrick von Platen's avatar
Patrick von Platen committed
528
529
530

        self.scale = dim_head**-0.5
        self.heads = heads
531
532
533
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
534
        self.sliceable_head_dim = heads
535
        self._slice_size = None
536
        self._use_memory_efficient_attention_xformers = False
Patrick von Platen's avatar
Patrick von Platen committed
537

Will Berman's avatar
Will Berman committed
538
539
540
        self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
        self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
        self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
Patrick von Platen's avatar
Patrick von Platen committed
541

542
543
544
        self.to_out = nn.ModuleList([])
        self.to_out.append(nn.Linear(inner_dim, query_dim))
        self.to_out.append(nn.Dropout(dropout))
Patrick von Platen's avatar
Patrick von Platen committed
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559

    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

560
561
562
563
564
565
    def set_attention_slice(self, slice_size):
        if slice_size is not None and slice_size > self.sliceable_head_dim:
            raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")

        self._slice_size = slice_size

566
    def forward(self, hidden_states, context=None, mask=None):
567
        batch_size, sequence_length, _ = hidden_states.shape
Patrick von Platen's avatar
Patrick von Platen committed
568

569
570
571
572
        query = self.to_q(hidden_states)
        context = context if context is not None else hidden_states
        key = self.to_k(context)
        value = self.to_v(context)
Patrick von Platen's avatar
Patrick von Platen committed
573

574
575
        dim = query.shape[-1]

576
577
578
        query = self.reshape_heads_to_batch_dim(query)
        key = self.reshape_heads_to_batch_dim(key)
        value = self.reshape_heads_to_batch_dim(value)
Patrick von Platen's avatar
Patrick von Platen committed
579

580
        # TODO(PVP) - mask is currently never used. Remember to re-implement when used
Patrick von Platen's avatar
Patrick von Platen committed
581
582

        # attention, what we cannot get enough of
583
584
        if self._use_memory_efficient_attention_xformers:
            hidden_states = self._memory_efficient_attention_xformers(query, key, value)
585
586
            # Some versions of xformers return output in fp32, cast it back to the dtype of the input
            hidden_states = hidden_states.to(query.dtype)
587
        else:
588
589
590
591
            if self._slice_size is None or query.shape[0] // self._slice_size == 1:
                hidden_states = self._attention(query, key, value)
            else:
                hidden_states = self._sliced_attention(query, key, value, sequence_length, dim)
592

593
594
595
596
597
        # linear proj
        hidden_states = self.to_out[0](hidden_states)
        # dropout
        hidden_states = self.to_out[1](hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
598

599
    def _attention(self, query, key, value):
600
601
602
603
        if self.upcast_attention:
            query = query.float()
            key = key.float()

604
605
606
607
608
609
610
        attention_scores = torch.baddbmm(
            torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
            query,
            key.transpose(-1, -2),
            beta=0,
            alpha=self.scale,
        )
611
        attention_probs = attention_scores.softmax(dim=-1)
612

613
614
615
616
        # cast back to the original dtype
        attention_probs = attention_probs.to(value.dtype)

        # compute attention output
617
        hidden_states = torch.bmm(attention_probs, value)
618

619
620
621
622
623
        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states

    def _sliced_attention(self, query, key, value, sequence_length, dim):
624
625
626
627
628
629
630
631
        batch_size_attention = query.shape[0]
        hidden_states = torch.zeros(
            (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
        )
        slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
        for i in range(hidden_states.shape[0] // slice_size):
            start_idx = i * slice_size
            end_idx = (i + 1) * slice_size
632
633
634
635
636
637
638
639

            query_slice = query[start_idx:end_idx]
            key_slice = key[start_idx:end_idx]

            if self.upcast_attention:
                query_slice = query_slice.float()
                key_slice = key_slice.float()

640
            attn_slice = torch.baddbmm(
641
642
643
                torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device),
                query_slice,
                key_slice.transpose(-1, -2),
644
645
646
                beta=0,
                alpha=self.scale,
            )
647
            attn_slice = attn_slice.softmax(dim=-1)
648
649
650

            # cast back to the original dtype
            attn_slice = attn_slice.to(value.dtype)
651
            attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
652
653
654
655
656
657

            hidden_states[start_idx:end_idx] = attn_slice

        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states
658
659

    def _memory_efficient_attention_xformers(self, query, key, value):
660
661
662
        query = query.contiguous()
        key = key.contiguous()
        value = value.contiguous()
663
664
665
        hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=None)
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
666
667
668


class FeedForward(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
669
670
671
672
    r"""
    A feed-forward layer.

    Parameters:
Will Berman's avatar
Will Berman committed
673
674
675
676
677
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
Kashif Rasul's avatar
Kashif Rasul committed
678
679
680
    """

    def __init__(
Will Berman's avatar
Will Berman committed
681
682
683
684
685
686
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
Kashif Rasul's avatar
Kashif Rasul committed
687
    ):
Patrick von Platen's avatar
Patrick von Platen committed
688
689
        super().__init__()
        inner_dim = int(dim * mult)
690
        dim_out = dim_out if dim_out is not None else dim
Patrick von Platen's avatar
Patrick von Platen committed
691

692
693
694
695
        if activation_fn == "gelu":
            act_fn = GELU(dim, inner_dim)
        elif activation_fn == "geglu":
            act_fn = GEGLU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
696
        elif activation_fn == "geglu-approximate":
697
            act_fn = ApproximateGELU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
698
699

        self.net = nn.ModuleList([])
700
        # project in
701
        self.net.append(act_fn)
702
703
704
705
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
        self.net.append(nn.Linear(inner_dim, dim_out))
Patrick von Platen's avatar
Patrick von Platen committed
706

707
    def forward(self, hidden_states):
708
709
710
        for module in self.net:
            hidden_states = module(hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
711

Patrick von Platen's avatar
Patrick von Platen committed
712

713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
class GELU(nn.Module):
    r"""
    GELU activation function
    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)

    def gelu(self, gate):
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

    def forward(self, hidden_states):
        hidden_states = self.proj(hidden_states)
        hidden_states = self.gelu(hidden_states)
        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
734
735
# feedforward
class GEGLU(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
736
737
738
739
    r"""
    A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.

    Parameters:
Will Berman's avatar
Will Berman committed
740
741
        dim_in (`int`): The number of channels in the input.
        dim_out (`int`): The number of channels in the output.
Kashif Rasul's avatar
Kashif Rasul committed
742
743
744
    """

    def __init__(self, dim_in: int, dim_out: int):
Patrick von Platen's avatar
Patrick von Platen committed
745
746
747
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

748
749
750
751
752
753
    def gelu(self, gate):
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

754
755
    def forward(self, hidden_states):
        hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
756
        return hidden_states * self.gelu(gate)
Will Berman's avatar
Will Berman committed
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791


class ApproximateGELU(nn.Module):
    """
    The approximate form of Gaussian Error Linear Unit (GELU)

    For more details, see section 2: https://arxiv.org/abs/1606.08415
    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)

    def forward(self, x):
        x = self.proj(x)
        return x * torch.sigmoid(1.702 * x)


class AdaLayerNorm(nn.Module):
    """
    Norm layer modified to incorporate timestep embeddings.
    """

    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()
        self.emb = nn.Embedding(num_embeddings, embedding_dim)
        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)

    def forward(self, x, timestep):
        emb = self.linear(self.silu(self.emb(timestep)))
        scale, shift = torch.chunk(emb, 2)
        x = self.norm(x) * (1 + scale) + shift
        return x
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909


class DualTransformer2DModel(nn.Module):
    """
    Dual transformer wrapper that combines two `Transformer2DModel`s for mixed inference.

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
            Pass if the input is continuous. The number of channels in the input and output.
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The number of context dimensions to use.
        sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
            Note that this is fixed at training time as it is used for learning a number of position embeddings. See
            `ImagePositionalEmbeddings`.
        num_vector_embeds (`int`, *optional*):
            Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
            Includes the class for the masked latent pixel.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
            The number of diffusion steps used during training. Note that this is fixed at training time as it is used
            to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
            up to but not more than steps than `num_embeds_ada_norm`.
        attention_bias (`bool`, *optional*):
            Configure if the TransformerBlocks' attention should contain a bias parameter.
    """

    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        sample_size: Optional[int] = None,
        num_vector_embeds: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
    ):
        super().__init__()
        self.transformers = nn.ModuleList(
            [
                Transformer2DModel(
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    in_channels=in_channels,
                    num_layers=num_layers,
                    dropout=dropout,
                    norm_num_groups=norm_num_groups,
                    cross_attention_dim=cross_attention_dim,
                    attention_bias=attention_bias,
                    sample_size=sample_size,
                    num_vector_embeds=num_vector_embeds,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                )
                for _ in range(2)
            ]
        )

        # Variables that can be set by a pipeline:

        # The ratio of transformer1 to transformer2's output states to be combined during inference
        self.mix_ratio = 0.5

        # The shape of `encoder_hidden_states` is expected to be
        # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
        self.condition_lengths = [77, 257]

        # Which transformer to use to encode which condition.
        # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
        self.transformer_index_for_condition = [1, 0]

    def forward(self, hidden_states, encoder_hidden_states, timestep=None, return_dict: bool = True):
        """
        Args:
            hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
                When continuous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
                hidden_states
            encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, context dim)`, *optional*):
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep ( `torch.long`, *optional*):
                Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.

        Returns:
            [`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
            if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
            tensor.
        """
        input_states = hidden_states

        encoded_states = []
        tokens_start = 0
        for i in range(2):
            # for each of the two transformers, pass the corresponding condition tokens
            condition_state = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
            transformer_index = self.transformer_index_for_condition[i]
            encoded_state = self.transformers[transformer_index](input_states, condition_state, timestep, return_dict)[
                0
            ]
            encoded_states.append(encoded_state - input_states)
            tokens_start += self.condition_lengths[i]

        output_states = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
        output_states = output_states + input_states

        if not return_dict:
            return (output_states,)

        return Transformer2DModelOutput(sample=output_states)