scheduling_pndm.py 21.3 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 Zhejiang University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

17
import math
18
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
19

20
import numpy as np
21
import torch
22

23
from ..configuration_utils import ConfigMixin, register_to_config
Kashif Rasul's avatar
Kashif Rasul committed
24
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
25
26


27
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
28
29
30
31
32
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
33
    """
Patrick von Platen's avatar
Patrick von Platen committed
34
35
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
36

37
38
39
40
41
42
43
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
44
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
45
46
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
47
48
49

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
50
    """
YiYi Xu's avatar
YiYi Xu committed
51
    if alpha_transform_type == "cosine":
52

YiYi Xu's avatar
YiYi Xu committed
53
54
55
56
57
58
59
60
61
62
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
        raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
63
64
65
66
67

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
68
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
69
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
Patrick von Platen committed
70
71
72


class PNDMScheduler(SchedulerMixin, ConfigMixin):
73
    """
74
75
    `PNDMScheduler` uses pseudo numerical methods for diffusion models such as the Runge-Kutta and linear multi-step
    method.
76

77
78
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
79
80

    Args:
81
82
83
84
85
86
87
88
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
89
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        skip_prk_steps (`bool`, defaults to `False`):
            Allows the scheduler to skip the Runge-Kutta steps defined in the original paper as being required before
            PLMS steps.
        set_alpha_to_one (`bool`, defaults to `False`):
            Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
            there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the alpha value at step 0.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process)
            or `v_prediction` (see section 2.4 of [Imagen Video](https://imagen.research.google/video/paper.pdf)
            paper).
        timestep_spacing (`str`, defaults to `"leading"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
            An offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
            Diffusion.
110
111
    """

Kashif Rasul's avatar
Kashif Rasul committed
112
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
113
    order = 1
114

115
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
116
117
    def __init__(
        self,
Partho's avatar
Partho committed
118
119
120
121
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
122
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
Partho's avatar
Partho committed
123
        skip_prk_steps: bool = False,
124
        set_alpha_to_one: bool = False,
125
        prediction_type: str = "epsilon",
126
        timestep_spacing: str = "leading",
127
        steps_offset: int = 0,
Patrick von Platen's avatar
Patrick von Platen committed
128
    ):
129
        if trained_betas is not None:
130
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
131
        elif beta_schedule == "linear":
132
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
133
134
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
135
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
Patrick von Platen's avatar
Patrick von Platen committed
136
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
137
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
138
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
139
140
141
142
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
143
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
Patrick von Platen's avatar
Patrick von Platen committed
144

145
        self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
146

147
148
149
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

Patrick von Platen's avatar
Patrick von Platen committed
150
151
        # For now we only support F-PNDM, i.e. the runge-kutta method
        # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
Patrick von Platen's avatar
Patrick von Platen committed
152
        # mainly at formula (9), (12), (13) and the Algorithm 2.
Patrick von Platen's avatar
Patrick von Platen committed
153
154
155
        self.pndm_order = 4

        # running values
Patrick von Platen's avatar
Patrick von Platen committed
156
        self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
157
        self.counter = 0
158
        self.cur_sample = None
Patrick von Platen's avatar
Patrick von Platen committed
159
160
        self.ets = []

161
162
        # setable values
        self.num_inference_steps = None
Patrick von Platen's avatar
Patrick von Platen committed
163
        self._timesteps = np.arange(0, num_train_timesteps)[::-1].copy()
164
165
        self.prk_timesteps = None
        self.plms_timesteps = None
Patrick von Platen's avatar
Patrick von Platen committed
166
        self.timesteps = None
167

168
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
169
        """
170
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
171
172
173

        Args:
            num_inference_steps (`int`):
174
175
176
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
177
        """
178

179
        self.num_inference_steps = num_inference_steps
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            self._timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps).round().astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            self._timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()
            self._timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            self._timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio))[::-1].astype(
                np.int64
            )
            self._timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
203
204
205
206
207

        if self.config.skip_prk_steps:
            # for some models like stable diffusion the prk steps can/should be skipped to
            # produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation
            # is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51
208
            self.prk_timesteps = np.array([])
209
210
211
            self.plms_timesteps = np.concatenate([self._timesteps[:-1], self._timesteps[-2:-1], self._timesteps[-1:]])[
                ::-1
            ].copy()
212
213
214
215
        else:
            prk_timesteps = np.array(self._timesteps[-self.pndm_order :]).repeat(2) + np.tile(
                np.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order
            )
216
217
218
219
            self.prk_timesteps = (prk_timesteps[:-1].repeat(2)[1:-1])[::-1].copy()
            self.plms_timesteps = self._timesteps[:-3][
                ::-1
            ].copy()  # we copy to avoid having negative strides which are not supported by torch.from_numpy
Patrick von Platen's avatar
Patrick von Platen committed
220

221
222
        timesteps = np.concatenate([self.prk_timesteps, self.plms_timesteps]).astype(np.int64)
        self.timesteps = torch.from_numpy(timesteps).to(device)
Patrick von Platen's avatar
Patrick von Platen committed
223

224
        self.ets = []
Patrick von Platen's avatar
Patrick von Platen committed
225
        self.counter = 0
226
        self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
227

Patrick von Platen's avatar
Patrick von Platen committed
228
229
    def step(
        self,
230
        model_output: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
231
        timestep: int,
232
        sample: torch.FloatTensor,
233
234
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
235
        """
236
237
238
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
        process from the learned model outputs (most often the predicted noise), and calls [`~PNDMScheduler.step_prk`]
        or [`~PNDMScheduler.step_plms`] depending on the internal variable `counter`.
239
240

        Args:
241
242
243
244
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
245
            sample (`torch.FloatTensor`):
246
247
248
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
249

250
        Returns:
251
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
252
253
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
254
255

        """
256
        if self.counter < len(self.prk_timesteps) and not self.config.skip_prk_steps:
257
            return self.step_prk(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
Patrick von Platen's avatar
Patrick von Platen committed
258
        else:
259
            return self.step_plms(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
Patrick von Platen's avatar
Patrick von Platen committed
260

261
262
    def step_prk(
        self,
263
        model_output: torch.FloatTensor,
264
        timestep: int,
265
        sample: torch.FloatTensor,
266
267
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
268
        """
269
270
271
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the Runge-Kutta method. It performs four forward passes to approximate the solution to the differential
        equation.
272
273

        Args:
274
275
276
277
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
278
            sample (`torch.FloatTensor`):
279
280
281
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple.
282
283

        Returns:
284
285
286
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
287

Nathan Lambert's avatar
Nathan Lambert committed
288
        """
289
290
291
292
293
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
294
        diff_to_prev = 0 if self.counter % 2 else self.config.num_train_timesteps // self.num_inference_steps // 2
295
        prev_timestep = timestep - diff_to_prev
Patrick von Platen's avatar
Patrick von Platen committed
296
        timestep = self.prk_timesteps[self.counter // 4 * 4]
Patrick von Platen's avatar
Patrick von Platen committed
297

Patrick von Platen's avatar
Patrick von Platen committed
298
        if self.counter % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
299
300
            self.cur_model_output += 1 / 6 * model_output
            self.ets.append(model_output)
301
            self.cur_sample = sample
Patrick von Platen's avatar
Patrick von Platen committed
302
        elif (self.counter - 1) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
303
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
304
        elif (self.counter - 2) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
305
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
306
        elif (self.counter - 3) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
307
308
            model_output = self.cur_model_output + 1 / 6 * model_output
            self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
309

Patrick von Platen's avatar
Patrick von Platen committed
310
311
312
        # cur_sample should not be `None`
        cur_sample = self.cur_sample if self.cur_sample is not None else sample

Patrick von Platen's avatar
Patrick von Platen committed
313
314
315
        prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output)
        self.counter += 1

316
317
318
319
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Patrick von Platen's avatar
Patrick von Platen committed
320

321
322
    def step_plms(
        self,
323
        model_output: torch.FloatTensor,
324
        timestep: int,
325
        sample: torch.FloatTensor,
326
327
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
328
        """
329
330
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the linear multistep method. It performs one forward pass multiple times to approximate the solution.
331
332

        Args:
333
334
335
336
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
337
            sample (`torch.FloatTensor`):
338
339
340
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple.
341
342

        Returns:
343
344
345
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
346

Nathan Lambert's avatar
Nathan Lambert committed
347
        """
348
349
350
351
352
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

353
        if not self.config.skip_prk_steps and len(self.ets) < 3:
Patrick von Platen's avatar
Patrick von Platen committed
354
355
356
357
358
359
360
            raise ValueError(
                f"{self.__class__} can only be run AFTER scheduler has been run "
                "in 'prk' mode for at least 12 iterations "
                "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py "
                "for more information."
            )

361
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
362

363
        if self.counter != 1:
364
            self.ets = self.ets[-3:]
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
            self.ets.append(model_output)
        else:
            prev_timestep = timestep
            timestep = timestep + self.config.num_train_timesteps // self.num_inference_steps

        if len(self.ets) == 1 and self.counter == 0:
            model_output = model_output
            self.cur_sample = sample
        elif len(self.ets) == 1 and self.counter == 1:
            model_output = (model_output + self.ets[-1]) / 2
            sample = self.cur_sample
            self.cur_sample = None
        elif len(self.ets) == 2:
            model_output = (3 * self.ets[-1] - self.ets[-2]) / 2
        elif len(self.ets) == 3:
            model_output = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
        else:
            model_output = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
Patrick von Platen's avatar
Patrick von Platen committed
383

Patrick von Platen's avatar
Patrick von Platen committed
384
385
386
        prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output)
        self.counter += 1

387
388
389
390
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Patrick von Platen's avatar
Patrick von Platen committed
391

392
393
394
395
396
397
    def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
398
399
            sample (`torch.FloatTensor`):
                The input sample.
400
401

        Returns:
402
403
            `torch.FloatTensor`:
                A scaled input sample.
404
405
406
        """
        return sample

407
    def _get_prev_sample(self, sample, timestep, prev_timestep, model_output):
Patrick von Platen's avatar
Patrick von Platen committed
408
409
410
411
412
413
414
415
416
417
        # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf
        # this function computes x_(t−δ) using the formula of (9)
        # Note that x_t needs to be added to both sides of the equation

        # Notation (<variable name> -> <name in paper>
        # alpha_prod_t -> α_t
        # alpha_prod_t_prev -> α_(t−δ)
        # beta_prod_t -> (1 - α_t)
        # beta_prod_t_prev -> (1 - α_(t−δ))
        # sample -> x_t
Patrick von Platen's avatar
Patrick von Platen committed
418
        # model_output -> e_θ(x_t, t)
Patrick von Platen's avatar
Patrick von Platen committed
419
        # prev_sample -> x_(t−δ)
420
421
        alpha_prod_t = self.alphas_cumprod[timestep]
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
422
423
424
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

425
426
427
428
429
430
431
        if self.config.prediction_type == "v_prediction":
            model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
        elif self.config.prediction_type != "epsilon":
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `v_prediction`"
            )

Patrick von Platen's avatar
Patrick von Platen committed
432
433
434
435
436
437
438
        # corresponds to (α_(t−δ) - α_t) divided by
        # denominator of x_t in formula (9) and plus 1
        # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) =
        # sqrt(α_(t−δ)) / sqrt(α_t))
        sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5)

        # corresponds to denominator of e_θ(x_t, t) in formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
439
        model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + (
Patrick von Platen's avatar
Patrick von Platen committed
440
441
442
443
            alpha_prod_t * beta_prod_t * alpha_prod_t_prev
        ) ** (0.5)

        # full formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
444
445
446
        prev_sample = (
            sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff
        )
Patrick von Platen's avatar
Patrick von Platen committed
447
448

        return prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
449

450
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
Partho's avatar
Partho committed
451
452
    def add_noise(
        self,
453
454
455
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
456
    ) -> torch.FloatTensor:
457
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
458
        alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
459
        timesteps = timesteps.to(original_samples.device)
460

461
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
462
463
464
465
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

466
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
467
468
469
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
470
471
472
473

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

Patrick von Platen's avatar
Patrick von Platen committed
474
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
475
        return self.config.num_train_timesteps