scheduling_ddpm.py 13.7 KB
Newer Older
Ryan Russell's avatar
Ryan Russell committed
1
# Copyright 2022 UC Berkeley Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
18
from dataclasses import dataclass
19
from typing import Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
import numpy as np
22
import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23

24
from ..configuration_utils import ConfigMixin, register_to_config
Anton Lozhkov's avatar
Anton Lozhkov committed
25
from ..utils import BaseOutput
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from .scheduling_utils import SchedulerMixin


@dataclass
class DDPMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46
47
48


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
49
50
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
51

52
53
54
55
56
57
58
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
59
                     prevent singularities.
60
61
62

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
63
    """
64

65
66
67
68
69
70
71
72
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
73
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
74
75


Patrick von Platen's avatar
Patrick von Platen committed
76
class DDPMScheduler(SchedulerMixin, ConfigMixin):
77
78
79
80
    """
    Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
    Langevin dynamics sampling.

81
82
83
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
84
    [`~ConfigMixin.from_config`] functions.
85

86
87
88
89
90
91
92
93
94
    For more details, see the original paper: https://arxiv.org/abs/2006.11239

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
95
96
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
97
98
99
100
101
102
103
104
        variance_type (`str`):
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.

    """

105
106
107
108
109
110
    _compatible_classes = [
        "DDIMScheduler",
        "PNDMScheduler",
        "LMSDiscreteScheduler",
        "EulerDiscreteScheduler",
        "EulerAncestralDiscreteScheduler",
111
        "DPMSolverMultistepScheduler",
112
113
    ]

114
    @register_to_config
Patrick von Platen's avatar
improve  
Patrick von Platen committed
115
116
    def __init__(
        self,
Partho's avatar
Partho committed
117
118
119
120
121
122
123
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
124
    ):
125
        if trained_betas is not None:
126
            self.betas = torch.from_numpy(trained_betas)
127
        elif beta_schedule == "linear":
128
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
129
130
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
131
132
133
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
anton-l's avatar
anton-l committed
134
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
135
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
136
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Nathan Lambert's avatar
Nathan Lambert committed
137
138
139
140
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = torch.linspace(-6, 6, num_train_timesteps)
            self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
Patrick von Platen's avatar
improve  
Patrick von Platen committed
141
142
143
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
144
        self.alphas = 1.0 - self.betas
145
146
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)
Patrick von Platen's avatar
Patrick von Platen committed
147

148
149
150
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

151
152
        # setable values
        self.num_inference_steps = None
153
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
Patrick von Platen's avatar
Patrick von Platen committed
154

155
156
        self.variance_type = variance_type

157
158
159
160
161
162
163
164
165
166
167
168
169
170
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

171
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
172
173
174
175
176
177
178
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
Patrick von Platen's avatar
Patrick von Platen committed
179
        num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps)
180
        self.num_inference_steps = num_inference_steps
181
        timesteps = np.arange(
182
            0, self.config.num_train_timesteps, self.config.num_train_timesteps // self.num_inference_steps
183
184
        )[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps).to(device)
185

186
    def _get_variance(self, t, predicted_variance=None, variance_type=None):
187
188
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
189

Kashif Rasul's avatar
Kashif Rasul committed
190
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
191
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
192
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
193
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t]
Patrick von Platen's avatar
Patrick von Platen committed
194

195
196
197
        if variance_type is None:
            variance_type = self.config.variance_type

198
        # hacks - were probably added for training stability
199
        if variance_type == "fixed_small":
200
            variance = torch.clamp(variance, min=1e-20)
201
        # for rl-diffuser https://arxiv.org/abs/2205.09991
202
        elif variance_type == "fixed_small_log":
203
            variance = torch.log(torch.clamp(variance, min=1e-20))
204
        elif variance_type == "fixed_large":
205
            variance = self.betas[t]
206
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
207
            # Glide max_log
208
            variance = torch.log(self.betas[t])
209
210
211
212
213
214
215
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
            min_log = variance
            max_log = self.betas[t]
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log
Patrick von Platen's avatar
Patrick von Platen committed
216
217
218

        return variance

219
220
    def step(
        self,
221
        model_output: torch.FloatTensor,
222
        timestep: int,
223
        sample: torch.FloatTensor,
224
        predict_epsilon=True,
Patrick von Platen's avatar
Patrick von Platen committed
225
        generator=None,
226
        return_dict: bool = True,
227
    ) -> Union[DDPMSchedulerOutput, Tuple]:
228
229
230
231
232
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
233
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
234
            timestep (`int`): current discrete timestep in the diffusion chain.
235
            sample (`torch.FloatTensor`):
236
237
238
239
                current instance of sample being created by diffusion process.
            predict_epsilon (`bool`):
                optional flag to use when model predicts the samples directly instead of the noise, epsilon.
            generator: random number generator.
240
            return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class
241
242

        Returns:
243
244
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
245
            returning a tuple, the first element is the sample tensor.
246
247

        """
248
        t = timestep
249

250
251
252
253
254
        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

Patrick von Platen's avatar
Patrick von Platen committed
255
        # 1. compute alphas, betas
256
257
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
258
259
260
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

261
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
262
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
263
        if predict_epsilon:
Patrick von Platen's avatar
Patrick von Platen committed
264
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
265
        else:
Patrick von Platen's avatar
Patrick von Platen committed
266
            pred_original_sample = model_output
Patrick von Platen's avatar
Patrick von Platen committed
267
268

        # 3. Clip "predicted x_0"
269
        if self.config.clip_sample:
270
            pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
271

272
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
273
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
274
275
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
        current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
276

277
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
278
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
279
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
280

Patrick von Platen's avatar
Patrick von Platen committed
281
282
283
        # 6. Add noise
        variance = 0
        if t > 0:
284
285
286
            noise = torch.randn(
                model_output.size(), dtype=model_output.dtype, layout=model_output.layout, generator=generator
            ).to(model_output.device)
287
            variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * noise
Patrick von Platen's avatar
Patrick von Platen committed
288
289
290

        pred_prev_sample = pred_prev_sample + variance

291
292
293
        if not return_dict:
            return (pred_prev_sample,)

294
        return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
295

Partho's avatar
Partho committed
296
297
    def add_noise(
        self,
298
299
300
301
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
302
303
304
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)
305

anton-l's avatar
anton-l committed
306
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
307
308
309
310
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

anton-l's avatar
anton-l committed
311
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
312
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
313
314
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
315
316

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
317
        return noisy_samples
anton-l's avatar
anton-l committed
318

Patrick von Platen's avatar
improve  
Patrick von Platen committed
319
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
320
        return self.config.num_train_timesteps