attention.py 41.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import math
Will Berman's avatar
Will Berman committed
15
from dataclasses import dataclass
Kashif Rasul's avatar
Kashif Rasul committed
16
from typing import Optional
17
18

import torch
Patrick von Platen's avatar
Patrick von Platen committed
19
import torch.nn.functional as F
20
21
from torch import nn

Will Berman's avatar
Will Berman committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from ..configuration_utils import ConfigMixin, register_to_config
from ..modeling_utils import ModelMixin
from ..models.embeddings import ImagePositionalEmbeddings
from ..utils import BaseOutput
from ..utils.import_utils import is_xformers_available


@dataclass
class Transformer2DModelOutput(BaseOutput):
    """
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
            Hidden states conditioned on `encoder_hidden_states` input. If discrete, returns probability distributions
            for the unnoised latent pixels.
    """

    sample: torch.FloatTensor
39
40
41
42
43
44
45
46


if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None

47

Will Berman's avatar
Will Berman committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
class Transformer2DModel(ModelMixin, ConfigMixin):
    """
    Transformer model for image-like data. Takes either discrete (classes of vector embeddings) or continuous (actual
    embeddings) inputs.

    When input is continuous: First, project the input (aka embedding) and reshape to b, t, d. Then apply standard
    transformer action. Finally, reshape to image.

    When input is discrete: First, input (classes of latent pixels) is converted to embeddings and has positional
    embeddings applied, see `ImagePositionalEmbeddings`. Then apply standard transformer action. Finally, predict
    classes of unnoised image.

    Note that it is assumed one of the input classes is the masked latent pixel. The predicted classes of the unnoised
    image do not contain a prediction for the masked pixel as the unnoised image cannot be masked.

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
            Pass if the input is continuous. The number of channels in the input and output.
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
Will Berman's avatar
Will Berman committed
69
70
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use.
Will Berman's avatar
Will Berman committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
        sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
            Note that this is fixed at training time as it is used for learning a number of position embeddings. See
            `ImagePositionalEmbeddings`.
        num_vector_embeds (`int`, *optional*):
            Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
            Includes the class for the masked latent pixel.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
            The number of diffusion steps used during training. Note that this is fixed at training time as it is used
            to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
            up to but not more than steps than `num_embeds_ada_norm`.
        attention_bias (`bool`, *optional*):
            Configure if the TransformerBlocks' attention should contain a bias parameter.
    """

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        sample_size: Optional[int] = None,
        num_vector_embeds: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
Suraj Patil's avatar
Suraj Patil committed
101
        use_linear_projection: bool = False,
102
        only_cross_attention: bool = False,
103
        upcast_attention: bool = False,
Will Berman's avatar
Will Berman committed
104
105
    ):
        super().__init__()
Suraj Patil's avatar
Suraj Patil committed
106
        self.use_linear_projection = use_linear_projection
Will Berman's avatar
Will Berman committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim

        # 1. Transformer2DModel can process both standard continous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
        # Define whether input is continuous or discrete depending on configuration
        self.is_input_continuous = in_channels is not None
        self.is_input_vectorized = num_vector_embeds is not None

        if self.is_input_continuous and self.is_input_vectorized:
            raise ValueError(
                f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
                " sure that either `in_channels` or `num_vector_embeds` is None."
            )
        elif not self.is_input_continuous and not self.is_input_vectorized:
            raise ValueError(
                f"Has to define either `in_channels`: {in_channels} or `num_vector_embeds`: {num_vector_embeds}. Make"
                " sure that either `in_channels` or `num_vector_embeds` is not None."
            )

        # 2. Define input layers
        if self.is_input_continuous:
            self.in_channels = in_channels

            self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
Suraj Patil's avatar
Suraj Patil committed
132
133
134
135
            if use_linear_projection:
                self.proj_in = nn.Linear(in_channels, inner_dim)
            else:
                self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
Will Berman's avatar
Will Berman committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        elif self.is_input_vectorized:
            assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
            assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"

            self.height = sample_size
            self.width = sample_size
            self.num_vector_embeds = num_vector_embeds
            self.num_latent_pixels = self.height * self.width

            self.latent_image_embedding = ImagePositionalEmbeddings(
                num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
            )

        # 3. Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                    attention_bias=attention_bias,
161
                    only_cross_attention=only_cross_attention,
162
                    upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
163
164
165
166
167
168
169
                )
                for d in range(num_layers)
            ]
        )

        # 4. Define output layers
        if self.is_input_continuous:
Suraj Patil's avatar
Suraj Patil committed
170
171
172
173
            if use_linear_projection:
                self.proj_out = nn.Linear(in_channels, inner_dim)
            else:
                self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
Will Berman's avatar
Will Berman committed
174
175
176
177
178
179
180
181
182
183
        elif self.is_input_vectorized:
            self.norm_out = nn.LayerNorm(inner_dim)
            self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)

    def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
        """
        Args:
            hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
                When continous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
                hidden_states
Will Berman's avatar
Will Berman committed
184
            encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
Will Berman's avatar
Will Berman committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep ( `torch.long`, *optional*):
                Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.

        Returns:
            [`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
            if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
            tensor.
        """
        # 1. Input
        if self.is_input_continuous:
            batch, channel, height, weight = hidden_states.shape
            residual = hidden_states
Suraj Patil's avatar
Suraj Patil committed
201

Will Berman's avatar
Will Berman committed
202
            hidden_states = self.norm(hidden_states)
Suraj Patil's avatar
Suraj Patil committed
203
204
205
206
207
208
209
210
            if not self.use_linear_projection:
                hidden_states = self.proj_in(hidden_states)
                inner_dim = hidden_states.shape[1]
                hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
            else:
                inner_dim = hidden_states.shape[1]
                hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
                hidden_states = self.proj_in(hidden_states)
Will Berman's avatar
Will Berman committed
211
212
213
214
215
        elif self.is_input_vectorized:
            hidden_states = self.latent_image_embedding(hidden_states)

        # 2. Blocks
        for block in self.transformer_blocks:
Will Berman's avatar
Will Berman committed
216
            hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep)
Will Berman's avatar
Will Berman committed
217
218
219

        # 3. Output
        if self.is_input_continuous:
Suraj Patil's avatar
Suraj Patil committed
220
            if not self.use_linear_projection:
221
222
223
                hidden_states = (
                    hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
                )
Suraj Patil's avatar
Suraj Patil committed
224
225
226
                hidden_states = self.proj_out(hidden_states)
            else:
                hidden_states = self.proj_out(hidden_states)
227
228
229
                hidden_states = (
                    hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
                )
Suraj Patil's avatar
Suraj Patil committed
230

Will Berman's avatar
Will Berman committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
            output = hidden_states + residual
        elif self.is_input_vectorized:
            hidden_states = self.norm_out(hidden_states)
            logits = self.out(hidden_states)
            # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
            logits = logits.permute(0, 2, 1)

            # log(p(x_0))
            output = F.log_softmax(logits.double(), dim=1).float()

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)


247
class AttentionBlock(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
248
249
250
251
    """
    An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
    to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
Kashif Rasul's avatar
Kashif Rasul committed
252
253
254
    Uses three q, k, v linear layers to compute attention.

    Parameters:
Will Berman's avatar
Will Berman committed
255
256
        channels (`int`): The number of channels in the input and output.
        num_head_channels (`int`, *optional*):
Kashif Rasul's avatar
Kashif Rasul committed
257
            The number of channels in each head. If None, then `num_heads` = 1.
Will Berman's avatar
Will Berman committed
258
259
260
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for group norm.
        rescale_output_factor (`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
        eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
Patrick von Platen's avatar
Patrick von Platen committed
261
262
    """

Will Berman's avatar
Will Berman committed
263
264
    # IMPORTANT;TODO(Patrick, William) - this class will be deprecated soon. Do not use it anymore

Patrick von Platen's avatar
Patrick von Platen committed
265
266
    def __init__(
        self,
Kashif Rasul's avatar
Kashif Rasul committed
267
268
        channels: int,
        num_head_channels: Optional[int] = None,
Will Berman's avatar
Will Berman committed
269
        norm_num_groups: int = 32,
Kashif Rasul's avatar
Kashif Rasul committed
270
271
        rescale_output_factor: float = 1.0,
        eps: float = 1e-5,
Patrick von Platen's avatar
Patrick von Platen committed
272
273
274
275
    ):
        super().__init__()
        self.channels = channels

Patrick von Platen's avatar
Patrick von Platen committed
276
        self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
Patrick von Platen's avatar
Patrick von Platen committed
277
        self.num_head_size = num_head_channels
Will Berman's avatar
Will Berman committed
278
        self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=norm_num_groups, eps=eps, affine=True)
Patrick von Platen's avatar
Patrick von Platen committed
279
280
281
282
283
284
285

        # define q,k,v as linear layers
        self.query = nn.Linear(channels, channels)
        self.key = nn.Linear(channels, channels)
        self.value = nn.Linear(channels, channels)

        self.rescale_output_factor = rescale_output_factor
Patrick von Platen's avatar
Patrick von Platen committed
286
        self.proj_attn = nn.Linear(channels, channels, 1)
Patrick von Platen's avatar
Patrick von Platen committed
287

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
        self._use_memory_efficient_attention_xformers = False

    def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
        if not is_xformers_available():
            raise ModuleNotFoundError(
                "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                " xformers",
                name="xformers",
            )
        elif not torch.cuda.is_available():
            raise ValueError(
                "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
                " available for GPU "
            )
        else:
            try:
                # Make sure we can run the memory efficient attention
                _ = xformers.ops.memory_efficient_attention(
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                )
            except Exception as e:
                raise e
            self._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers

Suraj Patil's avatar
Suraj Patil committed
314
315
316
317
318
319
320
321
322
323
324
325
326
    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.num_heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.num_heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor
Patrick von Platen's avatar
Patrick von Platen committed
327
328
329
330
331
332
333

    def forward(self, hidden_states):
        residual = hidden_states
        batch, channel, height, width = hidden_states.shape

        # norm
        hidden_states = self.group_norm(hidden_states)
334

Patrick von Platen's avatar
Patrick von Platen committed
335
336
337
338
339
340
341
        hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)

        # proj to q, k, v
        query_proj = self.query(hidden_states)
        key_proj = self.key(hidden_states)
        value_proj = self.value(hidden_states)

342
        scale = 1 / math.sqrt(self.channels / self.num_heads)
Patrick von Platen's avatar
Patrick von Platen committed
343

Suraj Patil's avatar
Suraj Patil committed
344
345
346
347
        query_proj = self.reshape_heads_to_batch_dim(query_proj)
        key_proj = self.reshape_heads_to_batch_dim(key_proj)
        value_proj = self.reshape_heads_to_batch_dim(value_proj)

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
        if self._use_memory_efficient_attention_xformers:
            # Memory efficient attention
            hidden_states = xformers.ops.memory_efficient_attention(query_proj, key_proj, value_proj, attn_bias=None)
            hidden_states = hidden_states.to(query_proj.dtype)
        else:
            attention_scores = torch.baddbmm(
                torch.empty(
                    query_proj.shape[0],
                    query_proj.shape[1],
                    key_proj.shape[1],
                    dtype=query_proj.dtype,
                    device=query_proj.device,
                ),
                query_proj,
                key_proj.transpose(-1, -2),
                beta=0,
                alpha=scale,
            )
            attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)
            hidden_states = torch.bmm(attention_probs, value_proj)
Patrick von Platen's avatar
Patrick von Platen committed
368

Suraj Patil's avatar
Suraj Patil committed
369
370
        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
371
372

        # compute next hidden_states
373
        hidden_states = self.proj_attn(hidden_states)
Will Berman's avatar
Will Berman committed
374

Patrick von Platen's avatar
Patrick von Platen committed
375
376
377
378
379
380
        hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)

        # res connect and rescale
        hidden_states = (hidden_states + residual) / self.rescale_output_factor
        return hidden_states

Patrick von Platen's avatar
Patrick von Platen committed
381

Patrick von Platen's avatar
Patrick von Platen committed
382
class BasicTransformerBlock(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
383
384
385
386
    r"""
    A basic Transformer block.

    Parameters:
Will Berman's avatar
Will Berman committed
387
388
389
390
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Will Berman's avatar
Will Berman committed
391
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
Will Berman's avatar
Will Berman committed
392
393
394
395
396
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
Kashif Rasul's avatar
Kashif Rasul committed
397
398
399
400
401
    """

    def __init__(
        self,
        dim: int,
Will Berman's avatar
Will Berman committed
402
403
        num_attention_heads: int,
        attention_head_dim: int,
Kashif Rasul's avatar
Kashif Rasul committed
404
        dropout=0.0,
Will Berman's avatar
Will Berman committed
405
406
407
408
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
409
        only_cross_attention: bool = False,
410
        upcast_attention: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
411
    ):
Patrick von Platen's avatar
Patrick von Platen committed
412
        super().__init__()
413
        self.only_cross_attention = only_cross_attention
414
415
416
        self.use_ada_layer_norm = num_embeds_ada_norm is not None

        # 1. Self-Attn
Patrick von Platen's avatar
Patrick von Platen committed
417
        self.attn1 = CrossAttention(
Will Berman's avatar
Will Berman committed
418
419
420
421
422
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
423
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
424
            upcast_attention=upcast_attention,
Patrick von Platen's avatar
Patrick von Platen committed
425
        )  # is a self-attention
Will Berman's avatar
Will Berman committed
426
427
        self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)

428
429
430
431
432
433
434
435
436
        # 2. Cross-Attn
        if cross_attention_dim is not None:
            self.attn2 = CrossAttention(
                query_dim=dim,
                cross_attention_dim=cross_attention_dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
437
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
438
            )  # is self-attn if encoder_hidden_states is none
Will Berman's avatar
Will Berman committed
439
        else:
440
441
442
443
444
445
446
447
448
449
            self.attn2 = None

        self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)

        if cross_attention_dim is not None:
            self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
        else:
            self.norm2 = None

        # 3. Feed-forward
Patrick von Platen's avatar
Patrick von Platen committed
450
451
        self.norm3 = nn.LayerNorm(dim)

452
    def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
        if not is_xformers_available():
            print("Here is how to install it")
            raise ModuleNotFoundError(
                "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                " xformers",
                name="xformers",
            )
        elif not torch.cuda.is_available():
            raise ValueError(
                "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
                " available for GPU "
            )
        else:
            try:
                # Make sure we can run the memory efficient attention
                _ = xformers.ops.memory_efficient_attention(
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                )
            except Exception as e:
                raise e
            self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
            self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers

Will Berman's avatar
Will Berman committed
478
    def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None):
Will Berman's avatar
Will Berman committed
479
480
481
482
        # 1. Self-Attention
        norm_hidden_states = (
            self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
        )
483
484

        if self.only_cross_attention:
Will Berman's avatar
Will Berman committed
485
486
487
            hidden_states = (
                self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
            )
488
        else:
Will Berman's avatar
Will Berman committed
489
            hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states
Will Berman's avatar
Will Berman committed
490

491
492
493
494
495
        if self.attn2 is not None:
            # 2. Cross-Attention
            norm_hidden_states = (
                self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
            )
Will Berman's avatar
Will Berman committed
496
497
498
499
500
501
            hidden_states = (
                self.attn2(
                    norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
                )
                + hidden_states
            )
Will Berman's avatar
Will Berman committed
502
503

        # 3. Feed-forward
504
        hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
Will Berman's avatar
Will Berman committed
505

506
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
507
508
509


class CrossAttention(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
510
511
512
513
    r"""
    A cross attention layer.

    Parameters:
Will Berman's avatar
Will Berman committed
514
515
        query_dim (`int`): The number of channels in the query.
        cross_attention_dim (`int`, *optional*):
Will Berman's avatar
Will Berman committed
516
            The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
Will Berman's avatar
Will Berman committed
517
518
519
520
521
        heads (`int`,  *optional*, defaults to 8): The number of heads to use for multi-head attention.
        dim_head (`int`,  *optional*, defaults to 64): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        bias (`bool`, *optional*, defaults to False):
            Set to `True` for the query, key, and value linear layers to contain a bias parameter.
Kashif Rasul's avatar
Kashif Rasul committed
522
523
524
    """

    def __init__(
Will Berman's avatar
Will Berman committed
525
526
527
528
529
530
531
        self,
        query_dim: int,
        cross_attention_dim: Optional[int] = None,
        heads: int = 8,
        dim_head: int = 64,
        dropout: float = 0.0,
        bias=False,
532
        upcast_attention: bool = False,
Will Berman's avatar
Will Berman committed
533
534
535
        upcast_softmax: bool = False,
        added_kv_proj_dim: Optional[int] = None,
        norm_num_groups: Optional[int] = None,
Kashif Rasul's avatar
Kashif Rasul committed
536
    ):
Patrick von Platen's avatar
Patrick von Platen committed
537
538
        super().__init__()
        inner_dim = dim_head * heads
Will Berman's avatar
Will Berman committed
539
        cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
540
        self.upcast_attention = upcast_attention
Will Berman's avatar
Will Berman committed
541
        self.upcast_softmax = upcast_softmax
Patrick von Platen's avatar
Patrick von Platen committed
542
543

        self.scale = dim_head**-0.5
Will Berman's avatar
Will Berman committed
544

Patrick von Platen's avatar
Patrick von Platen committed
545
        self.heads = heads
546
547
548
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
549
        self.sliceable_head_dim = heads
550
        self._slice_size = None
551
        self._use_memory_efficient_attention_xformers = False
Will Berman's avatar
Will Berman committed
552
553
554
555
556
557
        self.added_kv_proj_dim = added_kv_proj_dim

        if norm_num_groups is not None:
            self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True)
        else:
            self.group_norm = None
Patrick von Platen's avatar
Patrick von Platen committed
558

Will Berman's avatar
Will Berman committed
559
560
561
        self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
        self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
        self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
Patrick von Platen's avatar
Patrick von Platen committed
562

Will Berman's avatar
Will Berman committed
563
564
565
566
        if self.added_kv_proj_dim is not None:
            self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
            self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)

567
568
569
        self.to_out = nn.ModuleList([])
        self.to_out.append(nn.Linear(inner_dim, query_dim))
        self.to_out.append(nn.Dropout(dropout))
Patrick von Platen's avatar
Patrick von Platen committed
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584

    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

585
586
587
588
589
590
    def set_attention_slice(self, slice_size):
        if slice_size is not None and slice_size > self.sliceable_head_dim:
            raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")

        self._slice_size = slice_size

Will Berman's avatar
Will Berman committed
591
    def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
592
        batch_size, sequence_length, _ = hidden_states.shape
Patrick von Platen's avatar
Patrick von Platen committed
593

Will Berman's avatar
Will Berman committed
594
        encoder_hidden_states = encoder_hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
595

Will Berman's avatar
Will Berman committed
596
597
        if self.group_norm is not None:
            hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
598

Will Berman's avatar
Will Berman committed
599
600
        query = self.to_q(hidden_states)
        dim = query.shape[-1]
601
        query = self.reshape_heads_to_batch_dim(query)
Patrick von Platen's avatar
Patrick von Platen committed
602

Will Berman's avatar
Will Berman committed
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
        if self.added_kv_proj_dim is not None:
            key = self.to_k(hidden_states)
            value = self.to_v(hidden_states)
            encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states)

            key = self.reshape_heads_to_batch_dim(key)
            value = self.reshape_heads_to_batch_dim(value)
            encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj)
            encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj)

            key = torch.concat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.concat([encoder_hidden_states_value_proj, value], dim=1)
        else:
            encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
            key = self.to_k(encoder_hidden_states)
            value = self.to_v(encoder_hidden_states)

            key = self.reshape_heads_to_batch_dim(key)
            value = self.reshape_heads_to_batch_dim(value)
Patrick von Platen's avatar
Patrick von Platen committed
623

624
625
626
627
628
629
        if attention_mask is not None:
            if attention_mask.shape[-1] != query.shape[1]:
                target_length = query.shape[1]
                attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
                attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)

Patrick von Platen's avatar
Patrick von Platen committed
630
        # attention, what we cannot get enough of
631
        if self._use_memory_efficient_attention_xformers:
Will Berman's avatar
Will Berman committed
632
            hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
633
634
            # Some versions of xformers return output in fp32, cast it back to the dtype of the input
            hidden_states = hidden_states.to(query.dtype)
635
        else:
636
            if self._slice_size is None or query.shape[0] // self._slice_size == 1:
Will Berman's avatar
Will Berman committed
637
                hidden_states = self._attention(query, key, value, attention_mask)
638
            else:
639
                hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
640

641
642
        # linear proj
        hidden_states = self.to_out[0](hidden_states)
Will Berman's avatar
Will Berman committed
643

644
645
646
        # dropout
        hidden_states = self.to_out[1](hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
647

Will Berman's avatar
Will Berman committed
648
    def _attention(self, query, key, value, attention_mask=None):
649
650
651
652
        if self.upcast_attention:
            query = query.float()
            key = key.float()

653
654
655
656
657
658
659
        attention_scores = torch.baddbmm(
            torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
            query,
            key.transpose(-1, -2),
            beta=0,
            alpha=self.scale,
        )
Will Berman's avatar
Will Berman committed
660
661
662
663
664
665
666

        if attention_mask is not None:
            attention_scores = attention_scores + attention_mask

        if self.upcast_softmax:
            attention_scores = attention_scores.float()

667
        attention_probs = attention_scores.softmax(dim=-1)
668

669
670
671
672
        # cast back to the original dtype
        attention_probs = attention_probs.to(value.dtype)

        # compute attention output
673
        hidden_states = torch.bmm(attention_probs, value)
674

675
676
677
678
        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states

679
    def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask):
680
681
682
683
684
685
686
687
        batch_size_attention = query.shape[0]
        hidden_states = torch.zeros(
            (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
        )
        slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
        for i in range(hidden_states.shape[0] // slice_size):
            start_idx = i * slice_size
            end_idx = (i + 1) * slice_size
688
689
690
691
692
693
694
695

            query_slice = query[start_idx:end_idx]
            key_slice = key[start_idx:end_idx]

            if self.upcast_attention:
                query_slice = query_slice.float()
                key_slice = key_slice.float()

696
            attn_slice = torch.baddbmm(
697
698
699
                torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device),
                query_slice,
                key_slice.transpose(-1, -2),
700
701
702
                beta=0,
                alpha=self.scale,
            )
703
704
705
706
707
708
709

            if attention_mask is not None:
                attn_slice = attn_slice + attention_mask[start_idx:end_idx]

            if self.upcast_softmax:
                attn_slice = attn_slice.float()

710
            attn_slice = attn_slice.softmax(dim=-1)
711
712
713

            # cast back to the original dtype
            attn_slice = attn_slice.to(value.dtype)
714
            attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
715
716
717
718
719
720

            hidden_states[start_idx:end_idx] = attn_slice

        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states
721

Will Berman's avatar
Will Berman committed
722
723
    def _memory_efficient_attention_xformers(self, query, key, value, attention_mask):
        # TODO attention_mask
724
725
726
        query = query.contiguous()
        key = key.contiguous()
        value = value.contiguous()
727
        hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
728
729
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
730
731
732


class FeedForward(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
733
734
735
736
    r"""
    A feed-forward layer.

    Parameters:
Will Berman's avatar
Will Berman committed
737
738
739
740
741
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
Kashif Rasul's avatar
Kashif Rasul committed
742
743
744
    """

    def __init__(
Will Berman's avatar
Will Berman committed
745
746
747
748
749
750
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
Kashif Rasul's avatar
Kashif Rasul committed
751
    ):
Patrick von Platen's avatar
Patrick von Platen committed
752
753
        super().__init__()
        inner_dim = int(dim * mult)
754
        dim_out = dim_out if dim_out is not None else dim
Patrick von Platen's avatar
Patrick von Platen committed
755

756
757
758
759
        if activation_fn == "gelu":
            act_fn = GELU(dim, inner_dim)
        elif activation_fn == "geglu":
            act_fn = GEGLU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
760
        elif activation_fn == "geglu-approximate":
761
            act_fn = ApproximateGELU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
762
763

        self.net = nn.ModuleList([])
764
        # project in
765
        self.net.append(act_fn)
766
767
768
769
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
        self.net.append(nn.Linear(inner_dim, dim_out))
Patrick von Platen's avatar
Patrick von Platen committed
770

771
    def forward(self, hidden_states):
772
773
774
        for module in self.net:
            hidden_states = module(hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
775

Patrick von Platen's avatar
Patrick von Platen committed
776

777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
class GELU(nn.Module):
    r"""
    GELU activation function
    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)

    def gelu(self, gate):
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

    def forward(self, hidden_states):
        hidden_states = self.proj(hidden_states)
        hidden_states = self.gelu(hidden_states)
        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
798
799
# feedforward
class GEGLU(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
800
801
802
803
    r"""
    A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.

    Parameters:
Will Berman's avatar
Will Berman committed
804
805
        dim_in (`int`): The number of channels in the input.
        dim_out (`int`): The number of channels in the output.
Kashif Rasul's avatar
Kashif Rasul committed
806
807
808
    """

    def __init__(self, dim_in: int, dim_out: int):
Patrick von Platen's avatar
Patrick von Platen committed
809
810
811
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

812
813
814
815
816
817
    def gelu(self, gate):
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

818
819
    def forward(self, hidden_states):
        hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
820
        return hidden_states * self.gelu(gate)
Will Berman's avatar
Will Berman committed
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855


class ApproximateGELU(nn.Module):
    """
    The approximate form of Gaussian Error Linear Unit (GELU)

    For more details, see section 2: https://arxiv.org/abs/1606.08415
    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)

    def forward(self, x):
        x = self.proj(x)
        return x * torch.sigmoid(1.702 * x)


class AdaLayerNorm(nn.Module):
    """
    Norm layer modified to incorporate timestep embeddings.
    """

    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()
        self.emb = nn.Embedding(num_embeddings, embedding_dim)
        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)

    def forward(self, x, timestep):
        emb = self.linear(self.silu(self.emb(timestep)))
        scale, shift = torch.chunk(emb, 2)
        x = self.norm(x) * (1 + scale) + shift
        return x
856
857
858
859
860
861
862
863
864
865
866
867
868


class DualTransformer2DModel(nn.Module):
    """
    Dual transformer wrapper that combines two `Transformer2DModel`s for mixed inference.

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
            Pass if the input is continuous. The number of channels in the input and output.
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
Will Berman's avatar
Will Berman committed
869
        cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use.
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
        sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
            Note that this is fixed at training time as it is used for learning a number of position embeddings. See
            `ImagePositionalEmbeddings`.
        num_vector_embeds (`int`, *optional*):
            Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
            Includes the class for the masked latent pixel.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
            The number of diffusion steps used during training. Note that this is fixed at training time as it is used
            to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
            up to but not more than steps than `num_embeds_ada_norm`.
        attention_bias (`bool`, *optional*):
            Configure if the TransformerBlocks' attention should contain a bias parameter.
    """

    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        sample_size: Optional[int] = None,
        num_vector_embeds: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
    ):
        super().__init__()
        self.transformers = nn.ModuleList(
            [
                Transformer2DModel(
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    in_channels=in_channels,
                    num_layers=num_layers,
                    dropout=dropout,
                    norm_num_groups=norm_num_groups,
                    cross_attention_dim=cross_attention_dim,
                    attention_bias=attention_bias,
                    sample_size=sample_size,
                    num_vector_embeds=num_vector_embeds,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                )
                for _ in range(2)
            ]
        )

        # Variables that can be set by a pipeline:

        # The ratio of transformer1 to transformer2's output states to be combined during inference
        self.mix_ratio = 0.5

        # The shape of `encoder_hidden_states` is expected to be
        # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
        self.condition_lengths = [77, 257]

        # Which transformer to use to encode which condition.
        # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
        self.transformer_index_for_condition = [1, 0]

Will Berman's avatar
Will Berman committed
934
935
936
    def forward(
        self, hidden_states, encoder_hidden_states, timestep=None, attention_mask=None, return_dict: bool = True
    ):
937
938
939
940
941
        """
        Args:
            hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
                When continuous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
                hidden_states
Will Berman's avatar
Will Berman committed
942
            encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
943
944
945
946
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep ( `torch.long`, *optional*):
                Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
Will Berman's avatar
Will Berman committed
947
948
            attention_mask (`torch.FloatTensor`, *optional*):
                Optional attention mask to be applied in CrossAttention
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.

        Returns:
            [`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
            if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
            tensor.
        """
        input_states = hidden_states

        encoded_states = []
        tokens_start = 0
        for i in range(2):
            # for each of the two transformers, pass the corresponding condition tokens
            condition_state = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
            transformer_index = self.transformer_index_for_condition[i]
Will Berman's avatar
Will Berman committed
965
966
967
968
969
970
971
            encoded_state = self.transformers[transformer_index](
                input_states,
                encoder_hidden_states=condition_state,
                timestep=timestep,
                attention_mask=attention_mask,
                return_dict=False,
            )[0]
972
973
974
975
976
977
978
979
980
981
            encoded_states.append(encoded_state - input_states)
            tokens_start += self.condition_lengths[i]

        output_states = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
        output_states = output_states + input_states

        if not return_dict:
            return (output_states,)

        return Transformer2DModelOutput(sample=output_states)