attention.py 20.9 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import math
15
from typing import Callable, Optional
16
17

import torch
Patrick von Platen's avatar
Patrick von Platen committed
18
import torch.nn.functional as F
19
20
from torch import nn

Will Berman's avatar
Will Berman committed
21
from ..utils.import_utils import is_xformers_available
Patrick von Platen's avatar
Patrick von Platen committed
22
from .attention_processor import Attention
Kashif Rasul's avatar
Kashif Rasul committed
23
from .embeddings import CombinedTimestepLabelEmbeddings
24
25
26
27
28
29
30
31


if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None

32

33
class AttentionBlock(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
34
35
36
37
    """
    An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
    to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
Kashif Rasul's avatar
Kashif Rasul committed
38
39
40
    Uses three q, k, v linear layers to compute attention.

    Parameters:
Will Berman's avatar
Will Berman committed
41
42
        channels (`int`): The number of channels in the input and output.
        num_head_channels (`int`, *optional*):
Kashif Rasul's avatar
Kashif Rasul committed
43
            The number of channels in each head. If None, then `num_heads` = 1.
Will Berman's avatar
Will Berman committed
44
45
46
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for group norm.
        rescale_output_factor (`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
        eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
Patrick von Platen's avatar
Patrick von Platen committed
47
48
    """

Will Berman's avatar
Will Berman committed
49
50
    # IMPORTANT;TODO(Patrick, William) - this class will be deprecated soon. Do not use it anymore

Patrick von Platen's avatar
Patrick von Platen committed
51
52
    def __init__(
        self,
Kashif Rasul's avatar
Kashif Rasul committed
53
54
        channels: int,
        num_head_channels: Optional[int] = None,
Will Berman's avatar
Will Berman committed
55
        norm_num_groups: int = 32,
Kashif Rasul's avatar
Kashif Rasul committed
56
57
        rescale_output_factor: float = 1.0,
        eps: float = 1e-5,
Patrick von Platen's avatar
Patrick von Platen committed
58
59
60
61
    ):
        super().__init__()
        self.channels = channels

Patrick von Platen's avatar
Patrick von Platen committed
62
        self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
Will Berman's avatar
Will Berman committed
63
        self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=norm_num_groups, eps=eps, affine=True)
Patrick von Platen's avatar
Patrick von Platen committed
64
65
66
67
68
69
70

        # define q,k,v as linear layers
        self.query = nn.Linear(channels, channels)
        self.key = nn.Linear(channels, channels)
        self.value = nn.Linear(channels, channels)

        self.rescale_output_factor = rescale_output_factor
Alexander Pivovarov's avatar
Alexander Pivovarov committed
71
        self.proj_attn = nn.Linear(channels, channels, bias=True)
Patrick von Platen's avatar
Patrick von Platen committed
72

73
        self._use_memory_efficient_attention_xformers = False
74
        self._attention_op = None
75

76
    def reshape_heads_to_batch_dim(self, tensor, merge_head_and_batch=True):
77
78
79
        batch_size, seq_len, dim = tensor.shape
        head_size = self.num_heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
80
81
82
        tensor = tensor.permute(0, 2, 1, 3)
        if merge_head_and_batch:
            tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size)
83
84
        return tensor

85
    def reshape_batch_dim_to_heads(self, tensor, unmerge_head_and_batch=True):
86
        head_size = self.num_heads
87
88
89
90
91
92
93
94

        if unmerge_head_and_batch:
            batch_size, seq_len, dim = tensor.shape
            tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        else:
            batch_size, _, seq_len, dim = tensor.shape

        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size, seq_len, dim * head_size)
95
96
        return tensor

97
98
99
    def set_use_memory_efficient_attention_xformers(
        self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
    ):
100
101
102
        if use_memory_efficient_attention_xformers:
            if not is_xformers_available():
                raise ModuleNotFoundError(
Patrick von Platen's avatar
Patrick von Platen committed
103
104
105
106
                    (
                        "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                        " xformers"
                    ),
107
108
109
110
                    name="xformers",
                )
            elif not torch.cuda.is_available():
                raise ValueError(
Patrick von Platen's avatar
Patrick von Platen committed
111
112
                    "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
                    " only available for GPU "
113
                )
114
115
116
117
118
119
120
121
122
123
124
            else:
                try:
                    # Make sure we can run the memory efficient attention
                    _ = xformers.ops.memory_efficient_attention(
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                    )
                except Exception as e:
                    raise e
        self._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
125
        self._attention_op = attention_op
126

Patrick von Platen's avatar
Patrick von Platen committed
127
128
129
130
131
132
    def forward(self, hidden_states):
        residual = hidden_states
        batch, channel, height, width = hidden_states.shape

        # norm
        hidden_states = self.group_norm(hidden_states)
133

Patrick von Platen's avatar
Patrick von Platen committed
134
135
136
137
138
139
140
        hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)

        # proj to q, k, v
        query_proj = self.query(hidden_states)
        key_proj = self.key(hidden_states)
        value_proj = self.value(hidden_states)

141
        scale = 1 / math.sqrt(self.channels / self.num_heads)
Patrick von Platen's avatar
Patrick von Platen committed
142

143
144
145
146
147
148
149
        use_torch_2_0_attn = (
            hasattr(F, "scaled_dot_product_attention") and not self._use_memory_efficient_attention_xformers
        )

        query_proj = self.reshape_heads_to_batch_dim(query_proj, merge_head_and_batch=not use_torch_2_0_attn)
        key_proj = self.reshape_heads_to_batch_dim(key_proj, merge_head_and_batch=not use_torch_2_0_attn)
        value_proj = self.reshape_heads_to_batch_dim(value_proj, merge_head_and_batch=not use_torch_2_0_attn)
Suraj Patil's avatar
Suraj Patil committed
150

151
152
        if self._use_memory_efficient_attention_xformers:
            # Memory efficient attention
153
            hidden_states = xformers.ops.memory_efficient_attention(
154
155
156
157
158
159
160
161
                query_proj, key_proj, value_proj, attn_bias=None, op=self._attention_op, scale=scale
            )
            hidden_states = hidden_states.to(query_proj.dtype)
        elif use_torch_2_0_attn:
            # the output of sdp = (batch, num_heads, seq_len, head_dim)
            # TODO: add support for attn.scale when we move to Torch 2.1
            hidden_states = F.scaled_dot_product_attention(
                query_proj, key_proj, value_proj, dropout_p=0.0, is_causal=False
162
            )
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
            hidden_states = hidden_states.to(query_proj.dtype)
        else:
            attention_scores = torch.baddbmm(
                torch.empty(
                    query_proj.shape[0],
                    query_proj.shape[1],
                    key_proj.shape[1],
                    dtype=query_proj.dtype,
                    device=query_proj.device,
                ),
                query_proj,
                key_proj.transpose(-1, -2),
                beta=0,
                alpha=scale,
            )
            attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)
            hidden_states = torch.bmm(attention_probs, value_proj)
Patrick von Platen's avatar
Patrick von Platen committed
180

Suraj Patil's avatar
Suraj Patil committed
181
        # reshape hidden_states
182
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states, unmerge_head_and_batch=not use_torch_2_0_attn)
Patrick von Platen's avatar
Patrick von Platen committed
183
184

        # compute next hidden_states
185
        hidden_states = self.proj_attn(hidden_states)
Will Berman's avatar
Will Berman committed
186

Patrick von Platen's avatar
Patrick von Platen committed
187
188
189
190
191
192
        hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)

        # res connect and rescale
        hidden_states = (hidden_states + residual) / self.rescale_output_factor
        return hidden_states

Patrick von Platen's avatar
Patrick von Platen committed
193

Patrick von Platen's avatar
Patrick von Platen committed
194
class BasicTransformerBlock(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
195
196
197
198
    r"""
    A basic Transformer block.

    Parameters:
Will Berman's avatar
Will Berman committed
199
200
201
202
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Will Berman's avatar
Will Berman committed
203
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
204
205
206
207
        only_cross_attention (`bool`, *optional*):
            Whether to use only cross-attention layers. In this case two cross attention layers are used.
        double_self_attention (`bool`, *optional*):
            Whether to use two self-attention layers. In this case no cross attention layers are used.
Will Berman's avatar
Will Berman committed
208
209
210
211
212
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
Kashif Rasul's avatar
Kashif Rasul committed
213
214
215
216
217
    """

    def __init__(
        self,
        dim: int,
Will Berman's avatar
Will Berman committed
218
219
        num_attention_heads: int,
        attention_head_dim: int,
Kashif Rasul's avatar
Kashif Rasul committed
220
        dropout=0.0,
Will Berman's avatar
Will Berman committed
221
222
223
224
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
225
        only_cross_attention: bool = False,
226
        double_self_attention: bool = False,
227
        upcast_attention: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
228
229
230
        norm_elementwise_affine: bool = True,
        norm_type: str = "layer_norm",
        final_dropout: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
231
    ):
Patrick von Platen's avatar
Patrick von Platen committed
232
        super().__init__()
233
        self.only_cross_attention = only_cross_attention
Kashif Rasul's avatar
Kashif Rasul committed
234
235
236
237
238
239
240
241
242

        self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
        self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"

        if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
            raise ValueError(
                f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
                f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
            )
243

244
        # Define 3 blocks. Each block has its own normalization layer.
245
        # 1. Self-Attn
246
247
248
249
250
251
        if self.use_ada_layer_norm:
            self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
        elif self.use_ada_layer_norm_zero:
            self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
        else:
            self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
Patrick von Platen's avatar
Patrick von Platen committed
252
        self.attn1 = Attention(
Will Berman's avatar
Will Berman committed
253
254
255
256
257
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
258
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
259
            upcast_attention=upcast_attention,
260
261
        )

262
        # 2. Cross-Attn
263
        if cross_attention_dim is not None or double_self_attention:
264
265
266
267
268
269
270
271
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
            self.norm2 = (
                AdaLayerNorm(dim, num_embeds_ada_norm)
                if self.use_ada_layer_norm
                else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
            )
Patrick von Platen's avatar
Patrick von Platen committed
272
            self.attn2 = Attention(
273
                query_dim=dim,
274
                cross_attention_dim=cross_attention_dim if not double_self_attention else None,
275
276
277
278
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
279
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
280
            )  # is self-attn if encoder_hidden_states is none
281
282
        else:
            self.norm2 = None
283
            self.attn2 = None
284
285

        # 3. Feed-forward
Kashif Rasul's avatar
Kashif Rasul committed
286
        self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
287
        self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
Patrick von Platen's avatar
Patrick von Platen committed
288

289
290
291
    def forward(
        self,
        hidden_states,
292
        attention_mask=None,
293
        encoder_hidden_states=None,
294
        encoder_attention_mask=None,
295
296
        timestep=None,
        cross_attention_kwargs=None,
Kashif Rasul's avatar
Kashif Rasul committed
297
        class_labels=None,
298
    ):
299
300
        # Notice that normalization is always applied before the real computation in the following blocks.
        # 1. Self-Attention
Kashif Rasul's avatar
Kashif Rasul committed
301
302
303
304
305
306
307
308
309
        if self.use_ada_layer_norm:
            norm_hidden_states = self.norm1(hidden_states, timestep)
        elif self.use_ada_layer_norm_zero:
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
            )
        else:
            norm_hidden_states = self.norm1(hidden_states)

310
311
312
313
314
315
316
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )
Kashif Rasul's avatar
Kashif Rasul committed
317
318
        if self.use_ada_layer_norm_zero:
            attn_output = gate_msa.unsqueeze(1) * attn_output
319
        hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
320

321
        # 2. Cross-Attention
322
323
324
325
        if self.attn2 is not None:
            norm_hidden_states = (
                self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
            )
326
327
            # TODO (Birch-San): Here we should prepare the encoder_attention mask correctly
            # prepare attention mask here
Kashif Rasul's avatar
Kashif Rasul committed
328

329
330
331
            attn_output = self.attn2(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states,
332
                attention_mask=encoder_attention_mask,
333
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
334
            )
335
            hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
336
337

        # 3. Feed-forward
Kashif Rasul's avatar
Kashif Rasul committed
338
339
340
341
342
343
344
345
346
347
348
        norm_hidden_states = self.norm3(hidden_states)

        if self.use_ada_layer_norm_zero:
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

        ff_output = self.ff(norm_hidden_states)

        if self.use_ada_layer_norm_zero:
            ff_output = gate_mlp.unsqueeze(1) * ff_output

        hidden_states = ff_output + hidden_states
Will Berman's avatar
Will Berman committed
349

350
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
351
352
353


class FeedForward(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
354
355
356
357
    r"""
    A feed-forward layer.

    Parameters:
Will Berman's avatar
Will Berman committed
358
359
360
361
362
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
Kashif Rasul's avatar
Kashif Rasul committed
363
        final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
Kashif Rasul's avatar
Kashif Rasul committed
364
365
366
    """

    def __init__(
Will Berman's avatar
Will Berman committed
367
368
369
370
371
372
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
Kashif Rasul's avatar
Kashif Rasul committed
373
        final_dropout: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
374
    ):
Patrick von Platen's avatar
Patrick von Platen committed
375
376
        super().__init__()
        inner_dim = int(dim * mult)
377
        dim_out = dim_out if dim_out is not None else dim
Patrick von Platen's avatar
Patrick von Platen committed
378

379
380
        if activation_fn == "gelu":
            act_fn = GELU(dim, inner_dim)
Kashif Rasul's avatar
Kashif Rasul committed
381
382
        if activation_fn == "gelu-approximate":
            act_fn = GELU(dim, inner_dim, approximate="tanh")
383
384
        elif activation_fn == "geglu":
            act_fn = GEGLU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
385
        elif activation_fn == "geglu-approximate":
386
            act_fn = ApproximateGELU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
387
388

        self.net = nn.ModuleList([])
389
        # project in
390
        self.net.append(act_fn)
391
392
393
394
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
        self.net.append(nn.Linear(inner_dim, dim_out))
Kashif Rasul's avatar
Kashif Rasul committed
395
396
397
        # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
        if final_dropout:
            self.net.append(nn.Dropout(dropout))
Patrick von Platen's avatar
Patrick von Platen committed
398

399
    def forward(self, hidden_states):
400
401
402
        for module in self.net:
            hidden_states = module(hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
403

Patrick von Platen's avatar
Patrick von Platen committed
404

405
406
class GELU(nn.Module):
    r"""
Kashif Rasul's avatar
Kashif Rasul committed
407
    GELU activation function with tanh approximation support with `approximate="tanh"`.
408
409
    """

Kashif Rasul's avatar
Kashif Rasul committed
410
    def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"):
411
412
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)
Kashif Rasul's avatar
Kashif Rasul committed
413
        self.approximate = approximate
414
415
416

    def gelu(self, gate):
        if gate.device.type != "mps":
Kashif Rasul's avatar
Kashif Rasul committed
417
            return F.gelu(gate, approximate=self.approximate)
418
        # mps: gelu is not implemented for float16
Kashif Rasul's avatar
Kashif Rasul committed
419
        return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype)
420
421
422
423
424
425
426

    def forward(self, hidden_states):
        hidden_states = self.proj(hidden_states)
        hidden_states = self.gelu(hidden_states)
        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
427
class GEGLU(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
428
429
430
431
    r"""
    A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.

    Parameters:
Will Berman's avatar
Will Berman committed
432
433
        dim_in (`int`): The number of channels in the input.
        dim_out (`int`): The number of channels in the output.
Kashif Rasul's avatar
Kashif Rasul committed
434
435
436
    """

    def __init__(self, dim_in: int, dim_out: int):
Patrick von Platen's avatar
Patrick von Platen committed
437
438
439
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

440
441
442
443
444
445
    def gelu(self, gate):
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

446
447
    def forward(self, hidden_states):
        hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
448
        return hidden_states * self.gelu(gate)
Will Berman's avatar
Will Berman committed
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483


class ApproximateGELU(nn.Module):
    """
    The approximate form of Gaussian Error Linear Unit (GELU)

    For more details, see section 2: https://arxiv.org/abs/1606.08415
    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)

    def forward(self, x):
        x = self.proj(x)
        return x * torch.sigmoid(1.702 * x)


class AdaLayerNorm(nn.Module):
    """
    Norm layer modified to incorporate timestep embeddings.
    """

    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()
        self.emb = nn.Embedding(num_embeddings, embedding_dim)
        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)

    def forward(self, x, timestep):
        emb = self.linear(self.silu(self.emb(timestep)))
        scale, shift = torch.chunk(emb, 2)
        x = self.norm(x) * (1 + scale) + shift
        return x
Kashif Rasul's avatar
Kashif Rasul committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504


class AdaLayerNormZero(nn.Module):
    """
    Norm layer adaptive layer norm zero (adaLN-Zero).
    """

    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()

        self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)

        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)

    def forward(self, x, timestep, class_labels, hidden_dtype=None):
        emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)))
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1)
        x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
        return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539


class AdaGroupNorm(nn.Module):
    """
    GroupNorm layer modified to incorporate timestep embeddings.
    """

    def __init__(
        self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5
    ):
        super().__init__()
        self.num_groups = num_groups
        self.eps = eps
        self.act = None
        if act_fn == "swish":
            self.act = lambda x: F.silu(x)
        elif act_fn == "mish":
            self.act = nn.Mish()
        elif act_fn == "silu":
            self.act = nn.SiLU()
        elif act_fn == "gelu":
            self.act = nn.GELU()

        self.linear = nn.Linear(embedding_dim, out_dim * 2)

    def forward(self, x, emb):
        if self.act:
            emb = self.act(emb)
        emb = self.linear(emb)
        emb = emb[:, :, None, None]
        scale, shift = emb.chunk(2, dim=1)

        x = F.group_norm(x, self.num_groups, eps=self.eps)
        x = x * (1 + scale) + shift
        return x