loaders.py 122 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import copy
15
import os
16
import re
17
import warnings
18
from collections import defaultdict
19
20
from contextlib import nullcontext
from io import BytesIO
1lint's avatar
1lint committed
21
from pathlib import Path
22
from typing import Callable, Dict, List, Optional, Union
23

24
import requests
25
import safetensors
26
import torch
27
from huggingface_hub import hf_hub_download, model_info
Will Berman's avatar
Will Berman committed
28
from torch import nn
29

30
31
32
33
34
from .utils import (
    DIFFUSERS_CACHE,
    HF_HUB_OFFLINE,
    _get_model_file,
    deprecate,
35
36
    is_accelerate_available,
    is_omegaconf_available,
37
38
39
    is_transformers_available,
    logging,
)
40
from .utils.import_utils import BACKENDS_MAPPING
41
42


43
if is_transformers_available():
44
    from transformers import CLIPTextModel, CLIPTextModelWithProjection, PreTrainedModel, PreTrainedTokenizer
45

46
47
if is_accelerate_available():
    from accelerate import init_empty_weights
48
    from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
49
    from accelerate.utils import set_module_tensor_to_device
50
51
52

logger = logging.get_logger(__name__)

53
54
TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"
55
56

LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
57
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
58

59
60
61
TEXT_INVERSION_NAME = "learned_embeds.bin"
TEXT_INVERSION_NAME_SAFE = "learned_embeds.safetensors"

62
63
64
CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin"
CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors"

65

Will Berman's avatar
Will Berman committed
66
67
68
class PatchedLoraProjection(nn.Module):
    def __init__(self, regular_linear_layer, lora_scale=1, network_alpha=None, rank=4, dtype=None):
        super().__init__()
69
        from .models.lora import LoRALinearLayer
70

Will Berman's avatar
Will Berman committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        self.regular_linear_layer = regular_linear_layer

        device = self.regular_linear_layer.weight.device

        if dtype is None:
            dtype = self.regular_linear_layer.weight.dtype

        self.lora_linear_layer = LoRALinearLayer(
            self.regular_linear_layer.in_features,
            self.regular_linear_layer.out_features,
            network_alpha=network_alpha,
            device=device,
            dtype=dtype,
            rank=rank,
        )

        self.lora_scale = lora_scale

Patrick von Platen's avatar
Patrick von Platen committed
89
90
91
92
93
94
95
96
97
98
    # overwrite PyTorch's `state_dict` to be sure that only the 'regular_linear_layer' weights are saved
    # when saving the whole text encoder model and when LoRA is unloaded or fused
    def state_dict(self, *args, destination=None, prefix="", keep_vars=False):
        if self.lora_linear_layer is None:
            return self.regular_linear_layer.state_dict(
                *args, destination=destination, prefix=prefix, keep_vars=keep_vars
            )

        return super().state_dict(*args, destination=destination, prefix=prefix, keep_vars=keep_vars)

99
    def _fuse_lora(self, lora_scale=1.0):
Patrick von Platen's avatar
Patrick von Platen committed
100
101
102
103
104
105
106
107
108
109
110
111
        if self.lora_linear_layer is None:
            return

        dtype, device = self.regular_linear_layer.weight.data.dtype, self.regular_linear_layer.weight.data.device

        w_orig = self.regular_linear_layer.weight.data.float()
        w_up = self.lora_linear_layer.up.weight.data.float()
        w_down = self.lora_linear_layer.down.weight.data.float()

        if self.lora_linear_layer.network_alpha is not None:
            w_up = w_up * self.lora_linear_layer.network_alpha / self.lora_linear_layer.rank

112
        fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
Patrick von Platen's avatar
Patrick von Platen committed
113
114
115
116
117
118
119
120
        self.regular_linear_layer.weight.data = fused_weight.to(device=device, dtype=dtype)

        # we can drop the lora layer now
        self.lora_linear_layer = None

        # offload the up and down matrices to CPU to not blow the memory
        self.w_up = w_up.cpu()
        self.w_down = w_down.cpu()
121
        self.lora_scale = lora_scale
Patrick von Platen's avatar
Patrick von Platen committed
122
123
124
125
126
127
128
129

    def _unfuse_lora(self):
        if not (hasattr(self, "w_up") and hasattr(self, "w_down")):
            return

        fused_weight = self.regular_linear_layer.weight.data
        dtype, device = fused_weight.dtype, fused_weight.device

Patrick von Platen's avatar
Patrick von Platen committed
130
131
132
        w_up = self.w_up.to(device=device).float()
        w_down = self.w_down.to(device).float()

133
        unfused_weight = fused_weight.float() - (self.lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
Patrick von Platen's avatar
Patrick von Platen committed
134
135
136
137
138
        self.regular_linear_layer.weight.data = unfused_weight.to(device=device, dtype=dtype)

        self.w_up = None
        self.w_down = None

Will Berman's avatar
Will Berman committed
139
    def forward(self, input):
140
141
142
        # print(f"{self.__class__.__name__} has a lora_scale of {self.lora_scale}")
        if self.lora_scale is None:
            self.lora_scale = 1.0
Patrick von Platen's avatar
Patrick von Platen committed
143
144
        if self.lora_linear_layer is None:
            return self.regular_linear_layer(input)
145
        return self.regular_linear_layer(input) + (self.lora_scale * self.lora_linear_layer(input))
Will Berman's avatar
Will Berman committed
146
147
148
149
150


def text_encoder_attn_modules(text_encoder):
    attn_modules = []

151
    if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
Will Berman's avatar
Will Berman committed
152
153
154
155
156
157
158
159
160
161
        for i, layer in enumerate(text_encoder.text_model.encoder.layers):
            name = f"text_model.encoder.layers.{i}.self_attn"
            mod = layer.self_attn
            attn_modules.append((name, mod))
    else:
        raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}")

    return attn_modules


162
163
164
165
166
167
168
169
170
171
172
173
174
175
def text_encoder_mlp_modules(text_encoder):
    mlp_modules = []

    if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
        for i, layer in enumerate(text_encoder.text_model.encoder.layers):
            mlp_mod = layer.mlp
            name = f"text_model.encoder.layers.{i}.mlp"
            mlp_modules.append((name, mlp_mod))
    else:
        raise ValueError(f"do not know how to get mlp modules for: {text_encoder.__class__.__name__}")

    return mlp_modules


Will Berman's avatar
Will Berman committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
def text_encoder_lora_state_dict(text_encoder):
    state_dict = {}

    for name, module in text_encoder_attn_modules(text_encoder):
        for k, v in module.q_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v

        for k, v in module.k_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v

        for k, v in module.v_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v

        for k, v in module.out_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v

    return state_dict


195
196
197
198
class AttnProcsLayers(torch.nn.Module):
    def __init__(self, state_dict: Dict[str, torch.Tensor]):
        super().__init__()
        self.layers = torch.nn.ModuleList(state_dict.values())
199
        self.mapping = dict(enumerate(state_dict.keys()))
200
201
        self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}

202
203
        # .processor for unet, .self_attn for text encoder
        self.split_keys = [".processor", ".self_attn"]
204

205
206
207
208
209
210
211
212
213
214
215
        # we add a hook to state_dict() and load_state_dict() so that the
        # naming fits with `unet.attn_processors`
        def map_to(module, state_dict, *args, **kwargs):
            new_state_dict = {}
            for key, value in state_dict.items():
                num = int(key.split(".")[1])  # 0 is always "layers"
                new_key = key.replace(f"layers.{num}", module.mapping[num])
                new_state_dict[new_key] = value

            return new_state_dict

216
217
218
219
220
221
222
223
224
        def remap_key(key, state_dict):
            for k in self.split_keys:
                if k in key:
                    return key.split(k)[0] + k

            raise ValueError(
                f"There seems to be a problem with the state_dict: {set(state_dict.keys())}. {key} has to have one of {self.split_keys}."
            )

225
226
227
        def map_from(module, state_dict, *args, **kwargs):
            all_keys = list(state_dict.keys())
            for key in all_keys:
228
                replace_key = remap_key(key, state_dict)
229
230
231
232
233
234
235
236
237
                new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
                state_dict[new_key] = state_dict[key]
                del state_dict[key]

        self._register_state_dict_hook(map_to)
        self._register_load_state_dict_pre_hook(map_from, with_module=True)


class UNet2DConditionLoadersMixin:
238
239
240
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME

241
242
    def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
        r"""
Steven Liu's avatar
Steven Liu committed
243
        Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be
244
        defined in
Patrick von Platen's avatar
Patrick von Platen committed
245
        [`attention_processor.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py)
246
247
248
249
250
251
        and be a `torch.nn.Module` class.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

Steven Liu's avatar
Steven Liu committed
252
253
254
255
                    - A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a directory (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
256
257
258
259
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
260
261
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
262
263
264
265
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
266
267
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
268
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
269
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
270
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
271
272
273
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
274
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
275
276
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
277
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
278
279
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
280
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
281
                The subfolder location of a model file within a larger model repository on the Hub or locally.
282
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
283
284
285
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
286
287

        """
288
289
290
        from .models.attention_processor import (
            CustomDiffusionAttnProcessor,
        )
291
        from .models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer
292
293
294
295
296
297
298
299
300

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
301
        weight_name = kwargs.pop("weight_name", None)
302
        use_safetensors = kwargs.pop("use_safetensors", None)
303
304
        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
305
        network_alphas = kwargs.pop("network_alphas", None)
306
        is_network_alphas_none = network_alphas is None
307
308

        allow_pickle = False
309

310
        if use_safetensors is None:
311
            use_safetensors = True
312
            allow_pickle = True
313
314
315
316
317
318

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

319
        model_file = None
320
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
321
            # Let's first try to load .safetensors weights
322
            if (use_safetensors and weight_name is None) or (
323
324
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
325
326
327
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
328
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
329
330
331
332
333
334
335
336
337
338
339
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
340
341
342
                except IOError as e:
                    if not allow_pickle:
                        raise e
343
344
                    # try loading non-safetensors weights
                    pass
345
346
347
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
348
                    weights_name=weight_name or LORA_WEIGHT_NAME,
349
350
351
352
353
354
355
356
357
358
359
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
360
361
362
363
        else:
            state_dict = pretrained_model_name_or_path_or_dict

        # fill attn processors
364
        lora_layers_list = []
365

366
        is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys())
367
        is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())
368
369

        if is_lora:
370
371
            # correct keys
            state_dict, network_alphas = self.convert_state_dict_legacy_attn_format(state_dict, network_alphas)
372

373
            lora_grouped_dict = defaultdict(dict)
374
375
376
377
378
            mapped_network_alphas = {}

            all_keys = list(state_dict.keys())
            for key in all_keys:
                value = state_dict.pop(key)
379
380
381
                attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                lora_grouped_dict[attn_processor_key][sub_key] = value

382
383
                # Create another `mapped_network_alphas` dictionary so that we can properly map them.
                if network_alphas is not None:
384
385
                    network_alphas_ = copy.deepcopy(network_alphas)
                    for k in network_alphas_:
386
                        if k.replace(".alpha", "") in key:
387
388
389
390
391
392
393
                            mapped_network_alphas.update({attn_processor_key: network_alphas.pop(k)})

            if not is_network_alphas_none:
                if len(network_alphas) > 0:
                    raise ValueError(
                        f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
                    )
394
395
396

            if len(state_dict) > 0:
                raise ValueError(
397
                    f"The `state_dict` has to be empty at this point but has the following keys \n\n {', '.join(state_dict.keys())}"
398
399
                )

400
            for key, value_dict in lora_grouped_dict.items():
Will Berman's avatar
Will Berman committed
401
402
403
404
                attn_processor = self
                for sub_key in key.split("."):
                    attn_processor = getattr(attn_processor, sub_key)

405
406
                # Process non-attention layers, which don't have to_{k,v,q,out_proj}_lora layers
                # or add_{k,v,q,out_proj}_proj_lora layers.
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
                rank = value_dict["lora.down.weight"].shape[0]

                if isinstance(attn_processor, LoRACompatibleConv):
                    in_features = attn_processor.in_channels
                    out_features = attn_processor.out_channels
                    kernel_size = attn_processor.kernel_size

                    lora = LoRAConv2dLayer(
                        in_features=in_features,
                        out_features=out_features,
                        rank=rank,
                        kernel_size=kernel_size,
                        stride=attn_processor.stride,
                        padding=attn_processor.padding,
                        network_alpha=mapped_network_alphas.get(key),
                    )
                elif isinstance(attn_processor, LoRACompatibleLinear):
                    lora = LoRALinearLayer(
                        attn_processor.in_features,
                        attn_processor.out_features,
                        rank,
                        mapped_network_alphas.get(key),
                    )
Will Berman's avatar
Will Berman committed
430
                else:
431
                    raise ValueError(f"Module {key} is not a LoRACompatibleConv or LoRACompatibleLinear module.")
Will Berman's avatar
Will Berman committed
432

433
434
435
                value_dict = {k.replace("lora.", ""): v for k, v in value_dict.items()}
                lora.load_state_dict(value_dict)
                lora_layers_list.append((attn_processor, lora))
436

437
        elif is_custom_diffusion:
438
            attn_processors = {}
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
            custom_diffusion_grouped_dict = defaultdict(dict)
            for key, value in state_dict.items():
                if len(value) == 0:
                    custom_diffusion_grouped_dict[key] = {}
                else:
                    if "to_out" in key:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                    else:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
                    custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value

            for key, value_dict in custom_diffusion_grouped_dict.items():
                if len(value_dict) == 0:
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
                    )
                else:
                    cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
                    hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
                    train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=True,
                        train_q_out=train_q_out,
                        hidden_size=hidden_size,
                        cross_attention_dim=cross_attention_dim,
                    )
                    attn_processors[key].load_state_dict(value_dict)
466
467

            self.set_attn_processor(attn_processors)
468
        else:
469
470
471
            raise ValueError(
                f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training."
            )
472
473

        # set correct dtype & device
474
        lora_layers_list = [(t, l.to(device=self.device, dtype=self.dtype)) for t, l in lora_layers_list]
475

476
477
        # set lora layers
        for target_module, lora_layer in lora_layers_list:
478
            target_module.set_lora_layer(lora_layer)
479

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    def convert_state_dict_legacy_attn_format(self, state_dict, network_alphas):
        is_new_lora_format = all(
            key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys()
        )
        if is_new_lora_format:
            # Strip the `"unet"` prefix.
            is_text_encoder_present = any(key.startswith(self.text_encoder_name) for key in state_dict.keys())
            if is_text_encoder_present:
                warn_message = "The state_dict contains LoRA params corresponding to the text encoder which are not being used here. To use both UNet and text encoder related LoRA params, use [`pipe.load_lora_weights()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights)."
                logger.warn(warn_message)
            unet_keys = [k for k in state_dict.keys() if k.startswith(self.unet_name)]
            state_dict = {k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}

        # change processor format to 'pure' LoRACompatibleLinear format
        if any("processor" in k.split(".") for k in state_dict.keys()):

            def format_to_lora_compatible(key):
                if "processor" not in key.split("."):
                    return key
                return key.replace(".processor", "").replace("to_out_lora", "to_out.0.lora").replace("_lora", ".lora")

            state_dict = {format_to_lora_compatible(k): v for k, v in state_dict.items()}

            if network_alphas is not None:
                network_alphas = {format_to_lora_compatible(k): v for k, v in network_alphas.items()}
        return state_dict, network_alphas

507
508
509
510
    def save_attn_procs(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
511
        weight_name: str = None,
512
        save_function: Callable = None,
513
514
        safe_serialization: bool = True,
        **kwargs,
515
516
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
517
        Save an attention processor to a directory so that it can be reloaded using the
518
        [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method.
519
520
521

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
522
                Directory to save an attention processor to. Will be created if it doesn't exist.
523
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
524
525
526
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
527
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
528
529
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
530
                `DIFFUSERS_SAVE_MODE`.
531
532
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
533
        """
534
535
536
537
538
        from .models.attention_processor import (
            CustomDiffusionAttnProcessor,
            CustomDiffusionXFormersAttnProcessor,
        )

539
540
541
542
543
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
544
545
546
547
548
549
550
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save
551
552
553

        os.makedirs(save_directory, exist_ok=True)

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
        is_custom_diffusion = any(
            isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor))
            for (_, x) in self.attn_processors.items()
        )
        if is_custom_diffusion:
            model_to_save = AttnProcsLayers(
                {
                    y: x
                    for (y, x) in self.attn_processors.items()
                    if isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor))
                }
            )
            state_dict = model_to_save.state_dict()
            for name, attn in self.attn_processors.items():
                if len(attn.state_dict()) == 0:
                    state_dict[name] = {}
        else:
            model_to_save = AttnProcsLayers(self.attn_processors)
            state_dict = model_to_save.state_dict()
573

574
        if weight_name is None:
575
            if safe_serialization:
576
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE
577
            else:
578
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME
579

580
        # Save the model
581
582
        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
583

584
585
    def fuse_lora(self, lora_scale=1.0):
        self.lora_scale = lora_scale
Patrick von Platen's avatar
Patrick von Platen committed
586
587
588
589
        self.apply(self._fuse_lora_apply)

    def _fuse_lora_apply(self, module):
        if hasattr(module, "_fuse_lora"):
590
            module._fuse_lora(self.lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
591
592
593
594
595
596
597
598

    def unfuse_lora(self):
        self.apply(self._unfuse_lora_apply)

    def _unfuse_lora_apply(self, module):
        if hasattr(module, "_unfuse_lora"):
            module._unfuse_lora()

599
600
601

class TextualInversionLoaderMixin:
    r"""
Steven Liu's avatar
Steven Liu committed
602
    Load textual inversion tokens and embeddings to the tokenizer and text encoder.
603
604
    """

605
    def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"):
606
        r"""
Steven Liu's avatar
Steven Liu committed
607
608
609
        Processes prompts that include a special token corresponding to a multi-vector textual inversion embedding to
        be replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or if the textual inversion token is a single vector, the input prompt is returned.
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

        Parameters:
            prompt (`str` or list of `str`):
                The prompt or prompts to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str` or list of `str`: The converted prompt
        """
        if not isinstance(prompt, List):
            prompts = [prompt]
        else:
            prompts = prompt

        prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts]

        if not isinstance(prompt, List):
            return prompts[0]

        return prompts

632
    def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"):
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
        r"""
        Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds
        to a multi-vector textual inversion embedding, this function will process the prompt so that the special token
        is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or a textual inversion token that is a single vector, the input prompt is simply returned.

        Parameters:
            prompt (`str`):
                The prompt to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str`: The converted prompt
        """
        tokens = tokenizer.tokenize(prompt)
649
650
        unique_tokens = set(tokens)
        for token in unique_tokens:
651
652
653
654
            if token in tokenizer.added_tokens_encoder:
                replacement = token
                i = 1
                while f"{token}_{i}" in tokenizer.added_tokens_encoder:
655
                    replacement += f" {token}_{i}"
656
657
658
659
660
661
662
                    i += 1

                prompt = prompt.replace(token, replacement)

        return prompt

    def load_textual_inversion(
663
        self,
664
        pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]],
665
        token: Optional[Union[str, List[str]]] = None,
666
667
        tokenizer: Optional[PreTrainedTokenizer] = None,
        text_encoder: Optional[PreTrainedModel] = None,
668
        **kwargs,
669
670
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
671
672
        Load textual inversion embeddings into the text encoder of [`StableDiffusionPipeline`] (both 🤗 Diffusers and
        Automatic1111 formats are supported).
673
674

        Parameters:
675
            pretrained_model_name_or_path (`str` or `os.PathLike` or `List[str or os.PathLike]` or `Dict` or `List[Dict]`):
Steven Liu's avatar
Steven Liu committed
676
                Can be either one of the following or a list of them:
677

Steven Liu's avatar
Steven Liu committed
678
679
680
681
682
                    - A string, the *model id* (for example `sd-concepts-library/low-poly-hd-logos-icons`) of a
                      pretrained model hosted on the Hub.
                    - A path to a *directory* (for example `./my_text_inversion_directory/`) containing the textual
                      inversion weights.
                    - A path to a *file* (for example `./my_text_inversions.pt`) containing textual inversion weights.
683
684
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
685
686
687
688

            token (`str` or `List[str]`, *optional*):
                Override the token to use for the textual inversion weights. If `pretrained_model_name_or_path` is a
                list, then `token` must also be a list of equal length.
689
690
691
692
693
            text_encoder ([`~transformers.CLIPTextModel`], *optional*):
                Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
                If not specified, function will take self.tokenizer.
            tokenizer ([`~transformers.CLIPTokenizer`], *optional*):
                A `CLIPTokenizer` to tokenize text. If not specified, function will take self.tokenizer.
694
            weight_name (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
695
                Name of a custom weight file. This should be used when:
696

Steven Liu's avatar
Steven Liu committed
697
698
699
                    - The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight
                      name such as `text_inv.bin`.
                    - The saved textual inversion file is in the Automatic1111 format.
700
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
701
702
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
703
704
705
706
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
707
708
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
709
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
710
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
711
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
712
713
714
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
715
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
716
717
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
718
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
719
720
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
721
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
722
                The subfolder location of a model file within a larger model repository on the Hub or locally.
723
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
724
725
726
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
727
728
729

        Example:

Steven Liu's avatar
Steven Liu committed
730
        To load a textual inversion embedding vector in 🤗 Diffusers format:
1lint's avatar
1lint committed
731

732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

        pipe.load_textual_inversion("sd-concepts-library/cat-toy")

        prompt = "A <cat-toy> backpack"

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("cat-backpack.png")
        ```

Steven Liu's avatar
Steven Liu committed
747
748
749
        To load a textual inversion embedding vector in Automatic1111 format, make sure to download the vector first
        (for example from [civitAI](https://civitai.com/models/3036?modelVersionId=9857)) and then load the vector
        locally:
750
751
752
753
754
755
756
757

        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

758
        pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
759
760
761
762
763
764

        prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("character.png")
        ```
1lint's avatar
1lint committed
765

766
        """
767
768
769
770
        tokenizer = tokenizer or getattr(self, "tokenizer", None)
        text_encoder = text_encoder or getattr(self, "text_encoder", None)

        if tokenizer is None:
771
            raise ValueError(
772
                f"{self.__class__.__name__} requires `self.tokenizer` or passing a `tokenizer` of type `PreTrainedTokenizer` for calling"
773
774
775
                f" `{self.load_textual_inversion.__name__}`"
            )

776
        if text_encoder is None:
777
            raise ValueError(
778
                f"{self.__class__.__name__} requires `self.text_encoder` or passing a `text_encoder` of type `PreTrainedModel` for calling"
779
780
781
                f" `{self.load_textual_inversion.__name__}`"
            )

782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
        # Remove any existing hooks.
        is_model_cpu_offload = False
        is_sequential_cpu_offload = False
        recursive = False
        for _, component in self.components.items():
            if isinstance(component, nn.Module):
                if hasattr(component, "_hf_hook"):
                    is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
                    is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
                    logger.info(
                        "Accelerate hooks detected. Since you have called `load_textual_inversion()`, the previous hooks will be first removed. Then the textual inversion parameters will be loaded and the hooks will be applied again."
                    )
                    recursive = is_sequential_cpu_offload
                    remove_hook_from_module(component, recurse=recursive)

797
798
799
800
801
802
803
804
805
806
807
808
809
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)

        allow_pickle = False
        if use_safetensors is None:
810
            use_safetensors = True
811
812
813
814
815
816
817
            allow_pickle = True

        user_agent = {
            "file_type": "text_inversion",
            "framework": "pytorch",
        }

818
        if not isinstance(pretrained_model_name_or_path, list):
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
            pretrained_model_name_or_paths = [pretrained_model_name_or_path]
        else:
            pretrained_model_name_or_paths = pretrained_model_name_or_path

        if isinstance(token, str):
            tokens = [token]
        elif token is None:
            tokens = [None] * len(pretrained_model_name_or_paths)
        else:
            tokens = token

        if len(pretrained_model_name_or_paths) != len(tokens):
            raise ValueError(
                f"You have passed a list of models of length {len(pretrained_model_name_or_paths)}, and list of tokens of length {len(tokens)}"
                f"Make sure both lists have the same length."
            )

        valid_tokens = [t for t in tokens if t is not None]
        if len(set(valid_tokens)) < len(valid_tokens):
            raise ValueError(f"You have passed a list of tokens that contains duplicates: {tokens}")

        token_ids_and_embeddings = []

        for pretrained_model_name_or_path, token in zip(pretrained_model_name_or_paths, tokens):
843
            if not isinstance(pretrained_model_name_or_path, (dict, torch.Tensor)):
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
                # 1. Load textual inversion file
                model_file = None
                # Let's first try to load .safetensors weights
                if (use_safetensors and weight_name is None) or (
                    weight_name is not None and weight_name.endswith(".safetensors")
                ):
                    try:
                        model_file = _get_model_file(
                            pretrained_model_name_or_path,
                            weights_name=weight_name or TEXT_INVERSION_NAME_SAFE,
                            cache_dir=cache_dir,
                            force_download=force_download,
                            resume_download=resume_download,
                            proxies=proxies,
                            local_files_only=local_files_only,
                            use_auth_token=use_auth_token,
                            revision=revision,
                            subfolder=subfolder,
                            user_agent=user_agent,
                        )
                        state_dict = safetensors.torch.load_file(model_file, device="cpu")
                    except Exception as e:
                        if not allow_pickle:
                            raise e

                        model_file = None

                if model_file is None:
872
873
                    model_file = _get_model_file(
                        pretrained_model_name_or_path,
874
                        weights_name=weight_name or TEXT_INVERSION_NAME,
875
876
877
878
879
880
881
882
883
884
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
885
886
887
                    state_dict = torch.load(model_file, map_location="cpu")
            else:
                state_dict = pretrained_model_name_or_path
888
889

            # 2. Load token and embedding correcly from file
890
            loaded_token = None
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
            if isinstance(state_dict, torch.Tensor):
                if token is None:
                    raise ValueError(
                        "You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`."
                    )
                embedding = state_dict
            elif len(state_dict) == 1:
                # diffusers
                loaded_token, embedding = next(iter(state_dict.items()))
            elif "string_to_param" in state_dict:
                # A1111
                loaded_token = state_dict["name"]
                embedding = state_dict["string_to_param"]["*"]

            if token is not None and loaded_token != token:
                logger.info(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.")
            else:
                token = loaded_token

910
            embedding = embedding.to(dtype=text_encoder.dtype, device=text_encoder.device)
911

912
            # 3. Make sure we don't mess up the tokenizer or text encoder
913
            vocab = tokenizer.get_vocab()
914
            if token in vocab:
915
                raise ValueError(
916
                    f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder."
917
                )
918
919
920
            elif f"{token}_1" in vocab:
                multi_vector_tokens = [token]
                i = 1
921
                while f"{token}_{i}" in tokenizer.added_tokens_encoder:
922
923
                    multi_vector_tokens.append(f"{token}_{i}")
                    i += 1
924

925
926
927
                raise ValueError(
                    f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder."
                )
928

929
            is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1
930

931
932
933
934
935
936
            if is_multi_vector:
                tokens = [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])]
                embeddings = [e for e in embedding]  # noqa: C416
            else:
                tokens = [token]
                embeddings = [embedding[0]] if len(embedding.shape) > 1 else [embedding]
937

938
            # add tokens and get ids
939
940
            tokenizer.add_tokens(tokens)
            token_ids = tokenizer.convert_tokens_to_ids(tokens)
941
            token_ids_and_embeddings += zip(token_ids, embeddings)
942

943
            logger.info(f"Loaded textual inversion embedding for {token}.")
944

945
        # resize token embeddings and set all new embeddings
946
        text_encoder.resize_token_embeddings(len(tokenizer))
947
        for token_id, embedding in token_ids_and_embeddings:
948
            text_encoder.get_input_embeddings().weight.data[token_id] = embedding
949

950
951
952
953
954
955
        # offload back
        if is_model_cpu_offload:
            self.enable_model_cpu_offload()
        elif is_sequential_cpu_offload:
            self.enable_sequential_cpu_offload()

956
957
958

class LoraLoaderMixin:
    r"""
Steven Liu's avatar
Steven Liu committed
959
960
    Load LoRA layers into [`UNet2DConditionModel`] and
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
961
    """
962
963
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME
964
    num_fused_loras = 0
965
966

    def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
Will Berman's avatar
Will Berman committed
967
        """
968
969
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
        `self.text_encoder`.
Will Berman's avatar
Will Berman committed
970
971
972
973
974
975
976
977
978
979
980
981
982
983

        All kwargs are forwarded to `self.lora_state_dict`.

        See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.

        See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into
        `self.unet`.

        See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded
        into `self.text_encoder`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
984
            kwargs (`dict`, *optional*):
Will Berman's avatar
Will Berman committed
985
986
                See [`~loaders.LoraLoaderMixin.lora_state_dict`].
        """
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
        # Remove any existing hooks.
        is_model_cpu_offload = False
        is_sequential_cpu_offload = False
        recurive = False
        for _, component in self.components.items():
            if isinstance(component, nn.Module):
                if hasattr(component, "_hf_hook"):
                    is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
                    is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
                    logger.info(
                        "Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
                    )
                    recurive = is_sequential_cpu_offload
                    remove_hook_from_module(component, recurse=recurive)

1002
1003
        state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
        self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
Will Berman's avatar
Will Berman committed
1004
        self.load_lora_into_text_encoder(
1005
            state_dict,
1006
            network_alphas=network_alphas,
1007
1008
            text_encoder=self.text_encoder,
            lora_scale=self.lora_scale,
Will Berman's avatar
Will Berman committed
1009
1010
        )

1011
1012
1013
1014
1015
1016
        # Offload back.
        if is_model_cpu_offload:
            self.enable_model_cpu_offload()
        elif is_sequential_cpu_offload:
            self.enable_sequential_cpu_offload()

Will Berman's avatar
Will Berman committed
1017
1018
1019
1020
1021
1022
    @classmethod
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
1023
        r"""
1024
        Return state dict for lora weights and the network alphas.
Will Berman's avatar
Will Berman committed
1025
1026
1027
1028
1029
1030
1031
1032

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>
1033
1034
1035
1036
1037

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

Steven Liu's avatar
Steven Liu committed
1038
1039
1040
1041
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
1042
1043
1044
1045
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1046
1047
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
1048
1049
1050
1051
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1052
1053
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
1054
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1055
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1056
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
1057
1058
1059
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
1060
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1061
1062
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1063
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1064
1065
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
1066
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
1067
                The subfolder location of a model file within a larger model repository on the Hub or locally.
1068
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1069
1070
1071
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084

        """
        # Load the main state dict first which has the LoRA layers for either of
        # UNet and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
1085
        unet_config = kwargs.pop("unet_config", None)
1086
1087
1088
1089
        use_safetensors = kwargs.pop("use_safetensors", None)

        allow_pickle = False
        if use_safetensors is None:
1090
            use_safetensors = True
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
            allow_pickle = True

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

        model_file = None
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
            # Let's first try to load .safetensors weights
            if (use_safetensors and weight_name is None) or (
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
                try:
1105
1106
1107
1108
1109
1110
1111
                    # Here we're relaxing the loading check to enable more Inference API
                    # friendliness where sometimes, it's not at all possible to automatically
                    # determine `weight_name`.
                    if weight_name is None:
                        weight_name = cls._best_guess_weight_name(
                            pretrained_model_name_or_path_or_dict, file_extension=".safetensors"
                        )
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
Will Berman's avatar
Will Berman committed
1126
                except (IOError, safetensors.SafetensorError) as e:
1127
1128
1129
                    if not allow_pickle:
                        raise e
                    # try loading non-safetensors weights
1130
                    model_file = None
1131
                    pass
1132

1133
            if model_file is None:
1134
1135
1136
1137
                if weight_name is None:
                    weight_name = cls._best_guess_weight_name(
                        pretrained_model_name_or_path_or_dict, file_extension=".bin"
                    )
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
                    weights_name=weight_name or LORA_WEIGHT_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
        else:
            state_dict = pretrained_model_name_or_path_or_dict

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
        network_alphas = None
        if all(
            (
                k.startswith("lora_te_")
                or k.startswith("lora_unet_")
                or k.startswith("lora_te1_")
                or k.startswith("lora_te2_")
            )
            for k in state_dict.keys()
        ):
            # Map SDXL blocks correctly.
            if unet_config is not None:
                # use unet config to remap block numbers
1168
                state_dict = cls._maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
1169
            state_dict, network_alphas = cls._convert_kohya_lora_to_diffusers(state_dict)
Will Berman's avatar
Will Berman committed
1170

1171
        return state_dict, network_alphas
Will Berman's avatar
Will Berman committed
1172

1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
    @classmethod
    def _best_guess_weight_name(cls, pretrained_model_name_or_path_or_dict, file_extension=".safetensors"):
        targeted_files = []

        if os.path.isfile(pretrained_model_name_or_path_or_dict):
            return
        elif os.path.isdir(pretrained_model_name_or_path_or_dict):
            targeted_files = [
                f for f in os.listdir(pretrained_model_name_or_path_or_dict) if f.endswith(file_extension)
            ]
        else:
            files_in_repo = model_info(pretrained_model_name_or_path_or_dict).siblings
            targeted_files = [f.rfilename for f in files_in_repo if f.rfilename.endswith(file_extension)]
        if len(targeted_files) == 0:
            return

1189
1190
1191
1192
1193
1194
1195
1196
        # "scheduler" does not correspond to a LoRA checkpoint.
        # "optimizer" does not correspond to a LoRA checkpoint
        # only top-level checkpoints are considered and not the other ones, hence "checkpoint".
        unallowed_substrings = {"scheduler", "optimizer", "checkpoint"}
        targeted_files = list(
            filter(lambda x: all(substring not in x for substring in unallowed_substrings), targeted_files)
        )

1197
1198
1199
1200
1201
1202
1203
        if len(targeted_files) > 1:
            raise ValueError(
                f"Provided path contains more than one weights file in the {file_extension} format. Either specify `weight_name` in `load_lora_weights` or make sure there's only one  `.safetensors` or `.bin` file in  {pretrained_model_name_or_path_or_dict}."
            )
        weight_name = targeted_files[0]
        return weight_name

Will Berman's avatar
Will Berman committed
1204
    @classmethod
1205
1206
    def _maybe_map_sgm_blocks_to_diffusers(cls, state_dict, unet_config, delimiter="_", block_slice_pos=5):
        # 1. get all state_dict_keys
chillpixel's avatar
chillpixel committed
1207
        all_keys = list(state_dict.keys())
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
        sgm_patterns = ["input_blocks", "middle_block", "output_blocks"]

        # 2. check if needs remapping, if not return original dict
        is_in_sgm_format = False
        for key in all_keys:
            if any(p in key for p in sgm_patterns):
                is_in_sgm_format = True
                break

        if not is_in_sgm_format:
            return state_dict

        # 3. Else remap from SGM patterns
1221
1222
1223
1224
1225
        new_state_dict = {}
        inner_block_map = ["resnets", "attentions", "upsamplers"]

        # Retrieves # of down, mid and up blocks
        input_block_ids, middle_block_ids, output_block_ids = set(), set(), set()
1226
1227
1228
1229
1230

        for layer in all_keys:
            if "text" in layer:
                new_state_dict[layer] = state_dict.pop(layer)
            else:
1231
                layer_id = int(layer.split(delimiter)[:block_slice_pos][-1])
1232
                if sgm_patterns[0] in layer:
1233
                    input_block_ids.add(layer_id)
1234
                elif sgm_patterns[1] in layer:
1235
                    middle_block_ids.add(layer_id)
1236
                elif sgm_patterns[2] in layer:
1237
1238
                    output_block_ids.add(layer_id)
                else:
1239
                    raise ValueError(f"Checkpoint not supported because layer {layer} not supported.")
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301

        input_blocks = {
            layer_id: [key for key in state_dict if f"input_blocks{delimiter}{layer_id}" in key]
            for layer_id in input_block_ids
        }
        middle_blocks = {
            layer_id: [key for key in state_dict if f"middle_block{delimiter}{layer_id}" in key]
            for layer_id in middle_block_ids
        }
        output_blocks = {
            layer_id: [key for key in state_dict if f"output_blocks{delimiter}{layer_id}" in key]
            for layer_id in output_block_ids
        }

        # Rename keys accordingly
        for i in input_block_ids:
            block_id = (i - 1) // (unet_config.layers_per_block + 1)
            layer_in_block_id = (i - 1) % (unet_config.layers_per_block + 1)

            for key in input_blocks[i]:
                inner_block_id = int(key.split(delimiter)[block_slice_pos])
                inner_block_key = inner_block_map[inner_block_id] if "op" not in key else "downsamplers"
                inner_layers_in_block = str(layer_in_block_id) if "op" not in key else "0"
                new_key = delimiter.join(
                    key.split(delimiter)[: block_slice_pos - 1]
                    + [str(block_id), inner_block_key, inner_layers_in_block]
                    + key.split(delimiter)[block_slice_pos + 1 :]
                )
                new_state_dict[new_key] = state_dict.pop(key)

        for i in middle_block_ids:
            key_part = None
            if i == 0:
                key_part = [inner_block_map[0], "0"]
            elif i == 1:
                key_part = [inner_block_map[1], "0"]
            elif i == 2:
                key_part = [inner_block_map[0], "1"]
            else:
                raise ValueError(f"Invalid middle block id {i}.")

            for key in middle_blocks[i]:
                new_key = delimiter.join(
                    key.split(delimiter)[: block_slice_pos - 1] + key_part + key.split(delimiter)[block_slice_pos:]
                )
                new_state_dict[new_key] = state_dict.pop(key)

        for i in output_block_ids:
            block_id = i // (unet_config.layers_per_block + 1)
            layer_in_block_id = i % (unet_config.layers_per_block + 1)

            for key in output_blocks[i]:
                inner_block_id = int(key.split(delimiter)[block_slice_pos])
                inner_block_key = inner_block_map[inner_block_id]
                inner_layers_in_block = str(layer_in_block_id) if inner_block_id < 2 else "0"
                new_key = delimiter.join(
                    key.split(delimiter)[: block_slice_pos - 1]
                    + [str(block_id), inner_block_key, inner_layers_in_block]
                    + key.split(delimiter)[block_slice_pos + 1 :]
                )
                new_state_dict[new_key] = state_dict.pop(key)

1302
        if len(state_dict) > 0:
1303
1304
1305
1306
1307
1308
            raise ValueError("At this point all state dict entries have to be converted.")

        return new_state_dict

    @classmethod
    def load_lora_into_unet(cls, state_dict, network_alphas, unet):
Will Berman's avatar
Will Berman committed
1309
        """
1310
        This will load the LoRA layers specified in `state_dict` into `unet`.
Will Berman's avatar
Will Berman committed
1311
1312
1313
1314
1315
1316

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
1317
            network_alphas (`Dict[str, float]`):
Will Berman's avatar
Will Berman committed
1318
1319
1320
1321
                See `LoRALinearLayer` for more details.
            unet (`UNet2DConditionModel`):
                The UNet model to load the LoRA layers into.
        """
1322
1323
1324
1325
        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
        # their prefixes.
        keys = list(state_dict.keys())
1326

Will Berman's avatar
Will Berman committed
1327
        if all(key.startswith(cls.unet_name) or key.startswith(cls.text_encoder_name) for key in keys):
1328
            # Load the layers corresponding to UNet.
Will Berman's avatar
Will Berman committed
1329
            logger.info(f"Loading {cls.unet_name}.")
1330

1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
            unet_keys = [k for k in keys if k.startswith(cls.unet_name)]
            state_dict = {k.replace(f"{cls.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}

            if network_alphas is not None:
                alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.unet_name)]
                network_alphas = {
                    k.replace(f"{cls.unet_name}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
                }

        else:
            # Otherwise, we're dealing with the old format. This means the `state_dict` should only
            # contain the module names of the `unet` as its keys WITHOUT any prefix.
zideliu's avatar
zideliu committed
1343
            warn_message = "You have saved the LoRA weights using the old format. To convert the old LoRA weights to the new format, you can first load them in a dictionary and then create a new dictionary like the following: `new_state_dict = {f'unet.{module_name}': params for module_name, params in old_state_dict.items()}`."
1344
            warnings.warn(warn_message)
1345

1346
1347
1348
        # load loras into unet
        unet.load_attn_procs(state_dict, network_alphas=network_alphas)

Will Berman's avatar
Will Berman committed
1349
    @classmethod
1350
    def load_lora_into_text_encoder(cls, state_dict, network_alphas, text_encoder, prefix=None, lora_scale=1.0):
Will Berman's avatar
Will Berman committed
1351
1352
1353
1354
1355
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
1356
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
Will Berman's avatar
Will Berman committed
1357
                additional `text_encoder` to distinguish between unet lora layers.
1358
            network_alphas (`Dict[str, float]`):
Will Berman's avatar
Will Berman committed
1359
1360
1361
                See `LoRALinearLayer` for more details.
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
1362
1363
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
Will Berman's avatar
Will Berman committed
1364
1365
1366
1367
1368
1369
1370
1371
1372
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
        """

        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
        # their prefixes.
        keys = list(state_dict.keys())
1373
1374
        prefix = cls.text_encoder_name if prefix is None else prefix

1375
        # Safe prefix to check with.
1376
        if any(cls.text_encoder_name in key for key in keys):
Will Berman's avatar
Will Berman committed
1377
            # Load the layers corresponding to text encoder and make necessary adjustments.
1378
            text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split(".")[0] == prefix]
Will Berman's avatar
Will Berman committed
1379
            text_encoder_lora_state_dict = {
1380
                k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys
Will Berman's avatar
Will Berman committed
1381
            }
1382

Will Berman's avatar
Will Berman committed
1383
            if len(text_encoder_lora_state_dict) > 0:
1384
                logger.info(f"Loading {prefix}.")
1385
                rank = {}
Will Berman's avatar
Will Berman committed
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423

                if any("to_out_lora" in k for k in text_encoder_lora_state_dict.keys()):
                    # Convert from the old naming convention to the new naming convention.
                    #
                    # Previously, the old LoRA layers were stored on the state dict at the
                    # same level as the attention block i.e.
                    # `text_model.encoder.layers.11.self_attn.to_out_lora.up.weight`.
                    #
                    # This is no actual module at that point, they were monkey patched on to the
                    # existing module. We want to be able to load them via their actual state dict.
                    # They're in `PatchedLoraProjection.lora_linear_layer` now.
                    for name, _ in text_encoder_attn_modules(text_encoder):
                        text_encoder_lora_state_dict[
                            f"{name}.q_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_q_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.k_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_k_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.v_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_v_lora.up.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.out_proj.lora_linear_layer.up.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_out_lora.up.weight")

                        text_encoder_lora_state_dict[
                            f"{name}.q_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_q_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.k_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_k_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.v_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_v_lora.down.weight")
                        text_encoder_lora_state_dict[
                            f"{name}.out_proj.lora_linear_layer.down.weight"
                        ] = text_encoder_lora_state_dict.pop(f"{name}.to_out_lora.down.weight")

1424
1425
1426
1427
                for name, _ in text_encoder_attn_modules(text_encoder):
                    rank_key = f"{name}.out_proj.lora_linear_layer.up.weight"
                    rank.update({rank_key: text_encoder_lora_state_dict[rank_key].shape[1]})

1428
                patch_mlp = any(".mlp." in key for key in text_encoder_lora_state_dict.keys())
1429
1430
1431
1432
1433
1434
                if patch_mlp:
                    for name, _ in text_encoder_mlp_modules(text_encoder):
                        rank_key_fc1 = f"{name}.fc1.lora_linear_layer.up.weight"
                        rank_key_fc2 = f"{name}.fc2.lora_linear_layer.up.weight"
                        rank.update({rank_key_fc1: text_encoder_lora_state_dict[rank_key_fc1].shape[1]})
                        rank.update({rank_key_fc2: text_encoder_lora_state_dict[rank_key_fc2].shape[1]})
Will Berman's avatar
Will Berman committed
1435

1436
1437
1438
1439
1440
1441
1442
1443
                if network_alphas is not None:
                    alpha_keys = [
                        k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix
                    ]
                    network_alphas = {
                        k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
                    }

1444
1445
1446
1447
1448
1449
1450
                cls._modify_text_encoder(
                    text_encoder,
                    lora_scale,
                    network_alphas,
                    rank=rank,
                    patch_mlp=patch_mlp,
                )
Will Berman's avatar
Will Berman committed
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462

                # set correct dtype & device
                text_encoder_lora_state_dict = {
                    k: v.to(device=text_encoder.device, dtype=text_encoder.dtype)
                    for k, v in text_encoder_lora_state_dict.items()
                }
                load_state_dict_results = text_encoder.load_state_dict(text_encoder_lora_state_dict, strict=False)
                if len(load_state_dict_results.unexpected_keys) != 0:
                    raise ValueError(
                        f"failed to load text encoder state dict, unexpected keys: {load_state_dict_results.unexpected_keys}"
                    )

1463
1464
1465
1466
1467
1468
    @property
    def lora_scale(self) -> float:
        # property function that returns the lora scale which can be set at run time by the pipeline.
        # if _lora_scale has not been set, return 1
        return self._lora_scale if hasattr(self, "_lora_scale") else 1.0

1469
    def _remove_text_encoder_monkey_patch(self):
Will Berman's avatar
Will Berman committed
1470
1471
1472
1473
1474
1475
        self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)

    @classmethod
    def _remove_text_encoder_monkey_patch_classmethod(cls, text_encoder):
        for _, attn_module in text_encoder_attn_modules(text_encoder):
            if isinstance(attn_module.q_proj, PatchedLoraProjection):
Patrick von Platen's avatar
Patrick von Platen committed
1476
1477
1478
1479
                attn_module.q_proj.lora_linear_layer = None
                attn_module.k_proj.lora_linear_layer = None
                attn_module.v_proj.lora_linear_layer = None
                attn_module.out_proj.lora_linear_layer = None
Will Berman's avatar
Will Berman committed
1480

1481
1482
        for _, mlp_module in text_encoder_mlp_modules(text_encoder):
            if isinstance(mlp_module.fc1, PatchedLoraProjection):
Patrick von Platen's avatar
Patrick von Platen committed
1483
1484
                mlp_module.fc1.lora_linear_layer = None
                mlp_module.fc2.lora_linear_layer = None
1485

Will Berman's avatar
Will Berman committed
1486
    @classmethod
1487
1488
1489
1490
    def _modify_text_encoder(
        cls,
        text_encoder,
        lora_scale=1,
1491
        network_alphas=None,
1492
        rank: Union[Dict[str, int], int] = 4,
1493
1494
1495
        dtype=None,
        patch_mlp=False,
    ):
1496
1497
1498
        r"""
        Monkey-patches the forward passes of attention modules of the text encoder.
        """
1499
1500

        # First, remove any monkey-patch that might have been applied before
Will Berman's avatar
Will Berman committed
1501
        cls._remove_text_encoder_monkey_patch_classmethod(text_encoder)
1502

Will Berman's avatar
Will Berman committed
1503
        lora_parameters = []
1504
        network_alphas = {} if network_alphas is None else network_alphas
1505
        is_network_alphas_populated = len(network_alphas) > 0
1506
1507

        for name, attn_module in text_encoder_attn_modules(text_encoder):
1508
1509
1510
1511
            query_alpha = network_alphas.pop(name + ".to_q_lora.down.weight.alpha", None)
            key_alpha = network_alphas.pop(name + ".to_k_lora.down.weight.alpha", None)
            value_alpha = network_alphas.pop(name + ".to_v_lora.down.weight.alpha", None)
            out_alpha = network_alphas.pop(name + ".to_out_lora.down.weight.alpha", None)
1512

1513
1514
1515
1516
1517
            if isinstance(rank, dict):
                current_rank = rank.pop(f"{name}.out_proj.lora_linear_layer.up.weight")
            else:
                current_rank = rank

Patrick von Platen's avatar
Patrick von Platen committed
1518
1519
1520
1521
1522
            q_linear_layer = (
                attn_module.q_proj.regular_linear_layer
                if isinstance(attn_module.q_proj, PatchedLoraProjection)
                else attn_module.q_proj
            )
Will Berman's avatar
Will Berman committed
1523
            attn_module.q_proj = PatchedLoraProjection(
Patrick von Platen's avatar
Patrick von Platen committed
1524
                q_linear_layer, lora_scale, network_alpha=query_alpha, rank=current_rank, dtype=dtype
1525
            )
Will Berman's avatar
Will Berman committed
1526
            lora_parameters.extend(attn_module.q_proj.lora_linear_layer.parameters())
1527

Patrick von Platen's avatar
Patrick von Platen committed
1528
1529
1530
1531
1532
            k_linear_layer = (
                attn_module.k_proj.regular_linear_layer
                if isinstance(attn_module.k_proj, PatchedLoraProjection)
                else attn_module.k_proj
            )
Will Berman's avatar
Will Berman committed
1533
            attn_module.k_proj = PatchedLoraProjection(
Patrick von Platen's avatar
Patrick von Platen committed
1534
                k_linear_layer, lora_scale, network_alpha=key_alpha, rank=current_rank, dtype=dtype
Will Berman's avatar
Will Berman committed
1535
1536
            )
            lora_parameters.extend(attn_module.k_proj.lora_linear_layer.parameters())
1537

Patrick von Platen's avatar
Patrick von Platen committed
1538
1539
1540
1541
1542
            v_linear_layer = (
                attn_module.v_proj.regular_linear_layer
                if isinstance(attn_module.v_proj, PatchedLoraProjection)
                else attn_module.v_proj
            )
Will Berman's avatar
Will Berman committed
1543
            attn_module.v_proj = PatchedLoraProjection(
Patrick von Platen's avatar
Patrick von Platen committed
1544
                v_linear_layer, lora_scale, network_alpha=value_alpha, rank=current_rank, dtype=dtype
Will Berman's avatar
Will Berman committed
1545
1546
            )
            lora_parameters.extend(attn_module.v_proj.lora_linear_layer.parameters())
1547

Patrick von Platen's avatar
Patrick von Platen committed
1548
1549
1550
1551
1552
            out_linear_layer = (
                attn_module.out_proj.regular_linear_layer
                if isinstance(attn_module.out_proj, PatchedLoraProjection)
                else attn_module.out_proj
            )
Will Berman's avatar
Will Berman committed
1553
            attn_module.out_proj = PatchedLoraProjection(
Patrick von Platen's avatar
Patrick von Platen committed
1554
                out_linear_layer, lora_scale, network_alpha=out_alpha, rank=current_rank, dtype=dtype
Will Berman's avatar
Will Berman committed
1555
1556
            )
            lora_parameters.extend(attn_module.out_proj.lora_linear_layer.parameters())
1557

1558
        if patch_mlp:
1559
            for name, mlp_module in text_encoder_mlp_modules(text_encoder):
1560
1561
1562
                fc1_alpha = network_alphas.pop(name + ".fc1.lora_linear_layer.down.weight.alpha", None)
                fc2_alpha = network_alphas.pop(name + ".fc2.lora_linear_layer.down.weight.alpha", None)

1563
1564
                current_rank_fc1 = rank.pop(f"{name}.fc1.lora_linear_layer.up.weight")
                current_rank_fc2 = rank.pop(f"{name}.fc2.lora_linear_layer.up.weight")
1565

Patrick von Platen's avatar
Patrick von Platen committed
1566
1567
1568
1569
1570
                fc1_linear_layer = (
                    mlp_module.fc1.regular_linear_layer
                    if isinstance(mlp_module.fc1, PatchedLoraProjection)
                    else mlp_module.fc1
                )
1571
                mlp_module.fc1 = PatchedLoraProjection(
Patrick von Platen's avatar
Patrick von Platen committed
1572
                    fc1_linear_layer, lora_scale, network_alpha=fc1_alpha, rank=current_rank_fc1, dtype=dtype
1573
1574
1575
                )
                lora_parameters.extend(mlp_module.fc1.lora_linear_layer.parameters())

Patrick von Platen's avatar
Patrick von Platen committed
1576
1577
1578
1579
1580
                fc2_linear_layer = (
                    mlp_module.fc2.regular_linear_layer
                    if isinstance(mlp_module.fc2, PatchedLoraProjection)
                    else mlp_module.fc2
                )
1581
                mlp_module.fc2 = PatchedLoraProjection(
Patrick von Platen's avatar
Patrick von Platen committed
1582
                    fc2_linear_layer, lora_scale, network_alpha=fc2_alpha, rank=current_rank_fc2, dtype=dtype
1583
1584
1585
                )
                lora_parameters.extend(mlp_module.fc2.lora_linear_layer.parameters())

1586
1587
1588
1589
1590
        if is_network_alphas_populated and len(network_alphas) > 0:
            raise ValueError(
                f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
            )

Will Berman's avatar
Will Berman committed
1591
        return lora_parameters
1592
1593
1594
1595
1596

    @classmethod
    def save_lora_weights(
        self,
        save_directory: Union[str, os.PathLike],
1597
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1598
1599
1600
1601
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
1602
        safe_serialization: bool = True,
1603
1604
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
1605
        Save the LoRA parameters corresponding to the UNet and text encoder.
1606
1607
1608

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
1609
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
1610
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
1611
1612
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
Steven Liu's avatar
Steven Liu committed
1613
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
1614
                encoder LoRA state dict because it comes from 🤗 Transformers.
1615
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
1616
1617
1618
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
1619
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
1620
1621
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
1622
                `DIFFUSERS_SAVE_MODE`.
1623
1624
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
1625
1626
1627
        """
        # Create a flat dictionary.
        state_dict = {}
1628
1629

        # Populate the dictionary.
1630
        if unet_lora_layers is not None:
1631
1632
1633
1634
1635
            weights = (
                unet_lora_layers.state_dict() if isinstance(unet_lora_layers, torch.nn.Module) else unet_lora_layers
            )

            unet_lora_state_dict = {f"{self.unet_name}.{module_name}": param for module_name, param in weights.items()}
1636
            state_dict.update(unet_lora_state_dict)
1637

1638
        if text_encoder_lora_layers is not None:
1639
1640
1641
1642
1643
1644
            weights = (
                text_encoder_lora_layers.state_dict()
                if isinstance(text_encoder_lora_layers, torch.nn.Module)
                else text_encoder_lora_layers
            )

1645
            text_encoder_lora_state_dict = {
1646
                f"{self.text_encoder_name}.{module_name}": param for module_name, param in weights.items()
1647
1648
1649
1650
            }
            state_dict.update(text_encoder_lora_state_dict)

        # Save the model
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
        self.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def write_lora_layers(
        state_dict: Dict[str, torch.Tensor],
        save_directory: str,
        is_main_process: bool,
        weight_name: str,
        save_function: Callable,
        safe_serialization: bool,
    ):
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save

        os.makedirs(save_directory, exist_ok=True)

1683
1684
1685
1686
1687
1688
1689
1690
        if weight_name is None:
            if safe_serialization:
                weight_name = LORA_WEIGHT_NAME_SAFE
            else:
                weight_name = LORA_WEIGHT_NAME

        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
1lint's avatar
1lint committed
1691

Will Berman's avatar
Will Berman committed
1692
1693
    @classmethod
    def _convert_kohya_lora_to_diffusers(cls, state_dict):
1694
1695
        unet_state_dict = {}
        te_state_dict = {}
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
        te2_state_dict = {}
        network_alphas = {}

        # every down weight has a corresponding up weight and potentially an alpha weight
        lora_keys = [k for k in state_dict.keys() if k.endswith("lora_down.weight")]
        for key in lora_keys:
            lora_name = key.split(".")[0]
            lora_name_up = lora_name + ".lora_up.weight"
            lora_name_alpha = lora_name + ".alpha"

            if lora_name.startswith("lora_unet_"):
                diffusers_name = key.replace("lora_unet_", "").replace("_", ".")

                if "input.blocks" in diffusers_name:
                    diffusers_name = diffusers_name.replace("input.blocks", "down_blocks")
                else:
1712
                    diffusers_name = diffusers_name.replace("down.blocks", "down_blocks")
1713
1714
1715
1716

                if "middle.block" in diffusers_name:
                    diffusers_name = diffusers_name.replace("middle.block", "mid_block")
                else:
1717
                    diffusers_name = diffusers_name.replace("mid.block", "mid_block")
1718
1719
1720
                if "output.blocks" in diffusers_name:
                    diffusers_name = diffusers_name.replace("output.blocks", "up_blocks")
                else:
1721
                    diffusers_name = diffusers_name.replace("up.blocks", "up_blocks")
1722

1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
                diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks")
                diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora")
                diffusers_name = diffusers_name.replace("proj.in", "proj_in")
                diffusers_name = diffusers_name.replace("proj.out", "proj_out")
                diffusers_name = diffusers_name.replace("emb.layers", "time_emb_proj")

                # SDXL specificity.
                if "emb" in diffusers_name:
                    pattern = r"\.\d+(?=\D*$)"
                    diffusers_name = re.sub(pattern, "", diffusers_name, count=1)
                if ".in." in diffusers_name:
                    diffusers_name = diffusers_name.replace("in.layers.2", "conv1")
                if ".out." in diffusers_name:
                    diffusers_name = diffusers_name.replace("out.layers.3", "conv2")
                if "downsamplers" in diffusers_name or "upsamplers" in diffusers_name:
                    diffusers_name = diffusers_name.replace("op", "conv")
                if "skip" in diffusers_name:
                    diffusers_name = diffusers_name.replace("skip.connection", "conv_shortcut")

                if "transformer_blocks" in diffusers_name:
                    if "attn1" in diffusers_name or "attn2" in diffusers_name:
                        diffusers_name = diffusers_name.replace("attn1", "attn1.processor")
                        diffusers_name = diffusers_name.replace("attn2", "attn2.processor")
                        unet_state_dict[diffusers_name] = state_dict.pop(key)
                        unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                    elif "ff" in diffusers_name:
                        unet_state_dict[diffusers_name] = state_dict.pop(key)
                        unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif any(key in diffusers_name for key in ("proj_in", "proj_out")):
                    unet_state_dict[diffusers_name] = state_dict.pop(key)
                    unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                else:
                    unet_state_dict[diffusers_name] = state_dict.pop(key)
                    unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            elif lora_name.startswith("lora_te_"):
                diffusers_name = key.replace("lora_te_", "").replace("_", ".")
                diffusers_name = diffusers_name.replace("text.model", "text_model")
                diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                if "self_attn" in diffusers_name:
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif "mlp" in diffusers_name:
                    # Be aware that this is the new diffusers convention and the rest of the code might
                    # not utilize it yet.
                    diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # (sayakpaul): Duplicate code. Needs to be cleaned.
            elif lora_name.startswith("lora_te1_"):
                diffusers_name = key.replace("lora_te1_", "").replace("_", ".")
                diffusers_name = diffusers_name.replace("text.model", "text_model")
                diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                if "self_attn" in diffusers_name:
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif "mlp" in diffusers_name:
                    # Be aware that this is the new diffusers convention and the rest of the code might
                    # not utilize it yet.
                    diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
                    te_state_dict[diffusers_name] = state_dict.pop(key)
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # (sayakpaul): Duplicate code. Needs to be cleaned.
            elif lora_name.startswith("lora_te2_"):
                diffusers_name = key.replace("lora_te2_", "").replace("_", ".")
                diffusers_name = diffusers_name.replace("text.model", "text_model")
                diffusers_name = diffusers_name.replace("self.attn", "self_attn")
                diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
                diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
                diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
                diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
                if "self_attn" in diffusers_name:
                    te2_state_dict[diffusers_name] = state_dict.pop(key)
                    te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
                elif "mlp" in diffusers_name:
                    # Be aware that this is the new diffusers convention and the rest of the code might
                    # not utilize it yet.
                    diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
                    te2_state_dict[diffusers_name] = state_dict.pop(key)
                    te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # Rename the alphas so that they can be mapped appropriately.
            if lora_name_alpha in state_dict:
                alpha = state_dict.pop(lora_name_alpha).item()
                if lora_name_alpha.startswith("lora_unet_"):
                    prefix = "unet."
                elif lora_name_alpha.startswith(("lora_te_", "lora_te1_")):
                    prefix = "text_encoder."
                else:
                    prefix = "text_encoder_2."
                new_name = prefix + diffusers_name.split(".lora.")[0] + ".alpha"
                network_alphas.update({new_name: alpha})

        if len(state_dict) > 0:
            raise ValueError(
                f"The following keys have not been correctly be renamed: \n\n {', '.join(state_dict.keys())}"
1832
            )
1833

1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
        logger.info("Kohya-style checkpoint detected.")
        unet_state_dict = {f"{cls.unet_name}.{module_name}": params for module_name, params in unet_state_dict.items()}
        te_state_dict = {
            f"{cls.text_encoder_name}.{module_name}": params for module_name, params in te_state_dict.items()
        }
        te2_state_dict = (
            {f"text_encoder_2.{module_name}": params for module_name, params in te2_state_dict.items()}
            if len(te2_state_dict) > 0
            else None
        )
        if te2_state_dict is not None:
            te_state_dict.update(te2_state_dict)

1847
        new_state_dict = {**unet_state_dict, **te_state_dict}
1848
        return new_state_dict, network_alphas
1849

1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
    def unload_lora_weights(self):
        """
        Unloads the LoRA parameters.

        Examples:

        ```python
        >>> # Assuming `pipeline` is already loaded with the LoRA parameters.
        >>> pipeline.unload_lora_weights()
        >>> ...
        ```
        """
1862
1863
1864
        for _, module in self.unet.named_modules():
            if hasattr(module, "set_lora_layer"):
                module.set_lora_layer(None)
1865

1866
1867
1868
        # Safe to call the following regardless of LoRA.
        self._remove_text_encoder_monkey_patch()

1869
    def fuse_lora(self, fuse_unet: bool = True, fuse_text_encoder: bool = True, lora_scale: float = 1.0):
Patrick von Platen's avatar
Patrick von Platen committed
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            fuse_unet (`bool`, defaults to `True`): Whether to fuse the UNet LoRA parameters.
            fuse_text_encoder (`bool`, defaults to `True`):
                Whether to fuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
                LoRA parameters then it won't have any effect.
1884
1885
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
Patrick von Platen's avatar
Patrick von Platen committed
1886
        """
1887
1888
1889
1890
1891
1892
1893
        if fuse_unet or fuse_text_encoder:
            self.num_fused_loras += 1
            if self.num_fused_loras > 1:
                logger.warn(
                    "The current API is supported for operating with a single LoRA file. You are trying to load and fuse more than one LoRA which is not well-supported.",
                )

Patrick von Platen's avatar
Patrick von Platen committed
1894
        if fuse_unet:
1895
            self.unet.fuse_lora(lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
1896
1897
1898
1899

        def fuse_text_encoder_lora(text_encoder):
            for _, attn_module in text_encoder_attn_modules(text_encoder):
                if isinstance(attn_module.q_proj, PatchedLoraProjection):
1900
1901
1902
1903
                    attn_module.q_proj._fuse_lora(lora_scale)
                    attn_module.k_proj._fuse_lora(lora_scale)
                    attn_module.v_proj._fuse_lora(lora_scale)
                    attn_module.out_proj._fuse_lora(lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
1904
1905
1906

            for _, mlp_module in text_encoder_mlp_modules(text_encoder):
                if isinstance(mlp_module.fc1, PatchedLoraProjection):
1907
1908
                    mlp_module.fc1._fuse_lora(lora_scale)
                    mlp_module.fc2._fuse_lora(lora_scale)
Patrick von Platen's avatar
Patrick von Platen committed
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954

        if fuse_text_encoder:
            if hasattr(self, "text_encoder"):
                fuse_text_encoder_lora(self.text_encoder)
            if hasattr(self, "text_encoder_2"):
                fuse_text_encoder_lora(self.text_encoder_2)

    def unfuse_lora(self, unfuse_unet: bool = True, unfuse_text_encoder: bool = True):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
            unfuse_text_encoder (`bool`, defaults to `True`):
                Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
                LoRA parameters then it won't have any effect.
        """
        if unfuse_unet:
            self.unet.unfuse_lora()

        def unfuse_text_encoder_lora(text_encoder):
            for _, attn_module in text_encoder_attn_modules(text_encoder):
                if isinstance(attn_module.q_proj, PatchedLoraProjection):
                    attn_module.q_proj._unfuse_lora()
                    attn_module.k_proj._unfuse_lora()
                    attn_module.v_proj._unfuse_lora()
                    attn_module.out_proj._unfuse_lora()

            for _, mlp_module in text_encoder_mlp_modules(text_encoder):
                if isinstance(mlp_module.fc1, PatchedLoraProjection):
                    mlp_module.fc1._unfuse_lora()
                    mlp_module.fc2._unfuse_lora()

        if unfuse_text_encoder:
            if hasattr(self, "text_encoder"):
                unfuse_text_encoder_lora(self.text_encoder)
            if hasattr(self, "text_encoder_2"):
                unfuse_text_encoder_lora(self.text_encoder_2)

1955
1956
        self.num_fused_loras -= 1

1lint's avatar
1lint committed
1957

Patrick von Platen's avatar
Patrick von Platen committed
1958
class FromSingleFileMixin:
Steven Liu's avatar
Steven Liu committed
1959
1960
1961
    """
    Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`].
    """
1lint's avatar
1lint committed
1962
1963

    @classmethod
Patrick von Platen's avatar
Patrick von Platen committed
1964
1965
1966
1967
1968
1969
1970
    def from_ckpt(cls, *args, **kwargs):
        deprecation_message = "The function `from_ckpt` is deprecated in favor of `from_single_file` and will be removed in diffusers v.0.21. Please make sure to use `StableDiffusionPipeline.from_single_file(...)` instead."
        deprecate("from_ckpt", "0.21.0", deprecation_message, standard_warn=False)
        return cls.from_single_file(*args, **kwargs)

    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
1lint's avatar
1lint committed
1971
        r"""
1972
1973
        Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors`
        format. The pipeline is set in evaluation mode (`model.eval()`) by default.
1lint's avatar
1lint committed
1974
1975
1976
1977

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
Steven Liu's avatar
Steven Liu committed
1978
1979
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
1lint's avatar
1lint committed
1980
1981
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
1982
1983
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
1lint's avatar
1lint committed
1984
1985
1986
1987
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1988
1989
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
1lint's avatar
1lint committed
1990
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1991
1992
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
1lint's avatar
1lint committed
1993
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1994
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1lint's avatar
1lint committed
1995
1996
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
1997
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
Steven Liu's avatar
Steven Liu committed
1998
                won't be downloaded from the Hub.
1lint's avatar
1lint committed
1999
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
2000
2001
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1lint's avatar
1lint committed
2002
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
2003
2004
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
2005
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
2006
2007
2008
2009
2010
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            extract_ema (`bool`, *optional*, defaults to `False`):
                Whether to extract the EMA weights or not. Pass `True` to extract the EMA weights which usually yield
2011
                higher quality images for inference. Non-EMA weights are usually better for continuing finetuning.
1lint's avatar
1lint committed
2012
            upcast_attention (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
2013
                Whether the attention computation should always be upcasted.
1lint's avatar
1lint committed
2014
            image_size (`int`, *optional*, defaults to 512):
Steven Liu's avatar
Steven Liu committed
2015
2016
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
1lint's avatar
1lint committed
2017
            prediction_type (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
2018
2019
2020
                The prediction type the model was trained on. Use `'epsilon'` for all Stable Diffusion v1 models and
                the Stable Diffusion v2 base model. Use `'v_prediction'` for Stable Diffusion v2.
            num_in_channels (`int`, *optional*, defaults to `None`):
2021
                The number of input channels. If `None`, it is automatically inferred.
Steven Liu's avatar
Steven Liu committed
2022
            scheduler_type (`str`, *optional*, defaults to `"pndm"`):
1lint's avatar
1lint committed
2023
2024
2025
                Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm",
                "ddim"]`.
            load_safety_checker (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
2026
                Whether to load the safety checker or not.
2027
2028
2029
2030
            text_encoder ([`~transformers.CLIPTextModel`], *optional*, defaults to `None`):
                An instance of `CLIPTextModel` to use, specifically the
                [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. If this
                parameter is `None`, the function loads a new instance of `CLIPTextModel` by itself if needed.
2031
2032
2033
            vae (`AutoencoderKL`, *optional*, defaults to `None`):
                Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. If
                this parameter is `None`, the function will load a new instance of [CLIP] by itself, if needed.
2034
2035
2036
            tokenizer ([`~transformers.CLIPTokenizer`], *optional*, defaults to `None`):
                An instance of `CLIPTokenizer` to use. If this parameter is `None`, the function loads a new instance
                of `CLIPTokenizer` by itself if needed.
2037
2038
2039
            original_config_file (`str`):
                Path to `.yaml` config file corresponding to the original architecture. If `None`, will be
                automatically inferred by looking for a key that only exists in SD2.0 models.
1lint's avatar
1lint committed
2040
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
2041
2042
2043
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.
1lint's avatar
1lint committed
2044
2045
2046
2047
2048
2049
2050

        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
Patrick von Platen's avatar
Patrick von Platen committed
2051
        >>> pipeline = StableDiffusionPipeline.from_single_file(
1lint's avatar
1lint committed
2052
2053
2054
2055
2056
        ...     "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
        ... )

        >>> # Download pipeline from local file
        >>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
Patrick von Platen's avatar
Patrick von Platen committed
2057
        >>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly")
1lint's avatar
1lint committed
2058
2059

        >>> # Enable float16 and move to GPU
Patrick von Platen's avatar
Patrick von Platen committed
2060
        >>> pipeline = StableDiffusionPipeline.from_single_file(
1lint's avatar
1lint committed
2061
2062
2063
2064
2065
2066
2067
2068
2069
        ...     "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
        ...     torch_dtype=torch.float16,
        ... )
        >>> pipeline.to("cuda")
        ```
        """
        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt

2070
        original_config_file = kwargs.pop("original_config_file", None)
1lint's avatar
1lint committed
2071
2072
2073
2074
2075
2076
2077
2078
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        extract_ema = kwargs.pop("extract_ema", False)
2079
        image_size = kwargs.pop("image_size", None)
1lint's avatar
1lint committed
2080
2081
2082
2083
2084
        scheduler_type = kwargs.pop("scheduler_type", "pndm")
        num_in_channels = kwargs.pop("num_in_channels", None)
        upcast_attention = kwargs.pop("upcast_attention", None)
        load_safety_checker = kwargs.pop("load_safety_checker", True)
        prediction_type = kwargs.pop("prediction_type", None)
2085
        text_encoder = kwargs.pop("text_encoder", None)
2086
        vae = kwargs.pop("vae", None)
2087
        controlnet = kwargs.pop("controlnet", None)
2088
        tokenizer = kwargs.pop("tokenizer", None)
1lint's avatar
1lint committed
2089
2090
2091

        torch_dtype = kwargs.pop("torch_dtype", None)

2092
        use_safetensors = kwargs.pop("use_safetensors", None)
1lint's avatar
1lint committed
2093
2094
2095
2096
2097

        pipeline_name = cls.__name__
        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

2098
        if from_safetensors and use_safetensors is False:
1lint's avatar
1lint committed
2099
2100
2101
2102
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # TODO: For now we only support stable diffusion
        stable_unclip = None
2103
        model_type = None
1lint's avatar
1lint committed
2104

2105
2106
2107
2108
2109
2110
2111
2112
        if pipeline_name in [
            "StableDiffusionControlNetPipeline",
            "StableDiffusionControlNetImg2ImgPipeline",
            "StableDiffusionControlNetInpaintPipeline",
        ]:
            from .models.controlnet import ControlNetModel
            from .pipelines.controlnet.multicontrolnet import MultiControlNetModel

2113
            # Model type will be inferred from the checkpoint.
2114
2115
            if not isinstance(controlnet, (ControlNetModel, MultiControlNetModel)):
                raise ValueError("ControlNet needs to be passed if loading from ControlNet pipeline.")
1lint's avatar
1lint committed
2116
        elif "StableDiffusion" in pipeline_name:
2117
2118
            # Model type will be inferred from the checkpoint.
            pass
1lint's avatar
1lint committed
2119
        elif pipeline_name == "StableUnCLIPPipeline":
2120
            model_type = "FrozenOpenCLIPEmbedder"
1lint's avatar
1lint committed
2121
2122
            stable_unclip = "txt2img"
        elif pipeline_name == "StableUnCLIPImg2ImgPipeline":
2123
            model_type = "FrozenOpenCLIPEmbedder"
1lint's avatar
1lint committed
2124
2125
            stable_unclip = "img2img"
        elif pipeline_name == "PaintByExamplePipeline":
2126
            model_type = "PaintByExample"
1lint's avatar
1lint committed
2127
        elif pipeline_name == "LDMTextToImagePipeline":
2128
            model_type = "LDMTextToImage"
1lint's avatar
1lint committed
2129
2130
2131
2132
        else:
            raise ValueError(f"Unhandled pipeline class: {pipeline_name}")

        # remove huggingface url
2133
2134
2135
        has_valid_url_prefix = False
        valid_url_prefixes = ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]
        for prefix in valid_url_prefixes:
1lint's avatar
1lint committed
2136
2137
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]
2138
                has_valid_url_prefix = True
1lint's avatar
1lint committed
2139
2140
2141
2142

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
2143
2144
2145
2146
2147
            if not has_valid_url_prefix:
                raise ValueError(
                    f"The provided path is either not a file or a valid huggingface URL was not provided. Valid URLs begin with {', '.join(valid_url_prefixes)}"
                )

1lint's avatar
1lint committed
2148
            # get repo_id and (potentially nested) file path of ckpt in repo
2149
2150
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])
1lint's avatar
1lint committed
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        pipe = download_from_original_stable_diffusion_ckpt(
            pretrained_model_link_or_path,
            pipeline_class=cls,
            model_type=model_type,
            stable_unclip=stable_unclip,
            controlnet=controlnet,
            from_safetensors=from_safetensors,
            extract_ema=extract_ema,
            image_size=image_size,
            scheduler_type=scheduler_type,
            num_in_channels=num_in_channels,
            upcast_attention=upcast_attention,
            load_safety_checker=load_safety_checker,
            prediction_type=prediction_type,
2184
            text_encoder=text_encoder,
2185
            vae=vae,
2186
            tokenizer=tokenizer,
2187
            original_config_file=original_config_file,
1lint's avatar
1lint committed
2188
2189
2190
2191
2192
2193
        )

        if torch_dtype is not None:
            pipe.to(torch_dtype=torch_dtype)

        return pipe
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297


class FromOriginalVAEMixin:
    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
        r"""
        Instantiate a [`AutoencoderKL`] from pretrained controlnet weights saved in the original `.ckpt` or
        `.safetensors` format. The pipeline is format. The pipeline is set in evaluation mode (`model.eval()`) by
        default.

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to True, the model
                won't be downloaded from the Hub.
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            image_size (`int`, *optional*, defaults to 512):
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            upcast_attention (`bool`, *optional*, defaults to `None`):
                Whether the attention computation should always be upcasted.
            scaling_factor (`float`, *optional*, defaults to 0.18215):
                The component-wise standard deviation of the trained latent space computed using the first batch of the
                training set. This is used to scale the latent space to have unit variance when training the diffusion
                model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
                diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z
                = 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution
                Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.

        <Tip warning={true}>

            Make sure to pass both `image_size` and `scaling_factor` to `from_single_file()` if you want to load
            a VAE that does accompany a stable diffusion model of v2 or higher or SDXL.

        </Tip>

        Examples:

        ```py
        from diffusers import AutoencoderKL

        url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"  # can also be local file
        model = AutoencoderKL.from_single_file(url)
        ```
        """
        if not is_omegaconf_available():
            raise ValueError(BACKENDS_MAPPING["omegaconf"][1])

        from omegaconf import OmegaConf

        from .models import AutoencoderKL

        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import (
            convert_ldm_vae_checkpoint,
            create_vae_diffusers_config,
        )

        config_file = kwargs.pop("config_file", None)
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        image_size = kwargs.pop("image_size", None)
        scaling_factor = kwargs.pop("scaling_factor", None)
        kwargs.pop("upcast_attention", None)

        torch_dtype = kwargs.pop("torch_dtype", None)

2298
        use_safetensors = kwargs.pop("use_safetensors", None)
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470

        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

        if from_safetensors and use_safetensors is False:
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # remove huggingface url
        for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
            # get repo_id and (potentially nested) file path of ckpt in repo
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        if from_safetensors:
            from safetensors import safe_open

            checkpoint = {}
            with safe_open(pretrained_model_link_or_path, framework="pt", device="cpu") as f:
                for key in f.keys():
                    checkpoint[key] = f.get_tensor(key)
        else:
            checkpoint = torch.load(pretrained_model_link_or_path, map_location="cpu")

        if "state_dict" in checkpoint:
            checkpoint = checkpoint["state_dict"]

        if config_file is None:
            config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
            config_file = BytesIO(requests.get(config_url).content)

        original_config = OmegaConf.load(config_file)

        # default to sd-v1-5
        image_size = image_size or 512

        vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
        converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)

        if scaling_factor is None:
            if (
                "model" in original_config
                and "params" in original_config.model
                and "scale_factor" in original_config.model.params
            ):
                vae_scaling_factor = original_config.model.params.scale_factor
            else:
                vae_scaling_factor = 0.18215  # default SD scaling factor

        vae_config["scaling_factor"] = vae_scaling_factor

        ctx = init_empty_weights if is_accelerate_available() else nullcontext
        with ctx():
            vae = AutoencoderKL(**vae_config)

        if is_accelerate_available():
            for param_name, param in converted_vae_checkpoint.items():
                set_module_tensor_to_device(vae, param_name, "cpu", value=param)
        else:
            vae.load_state_dict(converted_vae_checkpoint)

        if torch_dtype is not None:
            vae.to(torch_dtype=torch_dtype)

        return vae


class FromOriginalControlnetMixin:
    @classmethod
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
        r"""
        Instantiate a [`ControlNetModel`] from pretrained controlnet weights saved in the original `.ckpt` or
        `.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to True, the model
                won't be downloaded from the Hub.
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            image_size (`int`, *optional*, defaults to 512):
                The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
                Diffusion v2 base model. Use 768 for Stable Diffusion v2.
            upcast_attention (`bool`, *optional*, defaults to `None`):
                Whether the attention computation should always be upcasted.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.

        Examples:

        ```py
        from diffusers import StableDiffusionControlnetPipeline, ControlNetModel

        url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth"  # can also be a local path
        model = ControlNetModel.from_single_file(url)

        url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors"  # can also be a local path
        pipe = StableDiffusionControlnetPipeline.from_single_file(url, controlnet=controlnet)
        ```
        """
        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt

        config_file = kwargs.pop("config_file", None)
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        num_in_channels = kwargs.pop("num_in_channels", None)
        use_linear_projection = kwargs.pop("use_linear_projection", None)
        revision = kwargs.pop("revision", None)
        extract_ema = kwargs.pop("extract_ema", False)
        image_size = kwargs.pop("image_size", None)
        upcast_attention = kwargs.pop("upcast_attention", None)

        torch_dtype = kwargs.pop("torch_dtype", None)

2471
        use_safetensors = kwargs.pop("use_safetensors", None)
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529

        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

        if from_safetensors and use_safetensors is False:
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # remove huggingface url
        for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
            # get repo_id and (potentially nested) file path of ckpt in repo
            repo_id = "/".join(ckpt_path.parts[:2])
            file_path = "/".join(ckpt_path.parts[2:])

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        if config_file is None:
            config_url = "https://raw.githubusercontent.com/lllyasviel/ControlNet/main/models/cldm_v15.yaml"
            config_file = BytesIO(requests.get(config_url).content)

        image_size = image_size or 512

        controlnet = download_controlnet_from_original_ckpt(
            pretrained_model_link_or_path,
            original_config_file=config_file,
            image_size=image_size,
            extract_ema=extract_ema,
            num_in_channels=num_in_channels,
            upcast_attention=upcast_attention,
            from_safetensors=from_safetensors,
            use_linear_projection=use_linear_projection,
        )

        if torch_dtype is not None:
            controlnet.to(torch_dtype=torch_dtype)

        return controlnet