resnet.py 36.2 KB
Newer Older
patil-suraj's avatar
patil-suraj committed
1
from functools import partial
Patrick von Platen's avatar
Patrick von Platen committed
2
3

import numpy as np
4
5
6
7
8
import torch
import torch.nn as nn
import torch.nn.functional as F


9
class Upsample2D(nn.Module):
10
11
12
    """
    An upsampling layer with an optional convolution.

Patrick von Platen's avatar
Patrick von Platen committed
13
14
    :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
    applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
15
16
17
                 upsampling occurs in the inner-two dimensions.
    """

18
    def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
19
20
21
22
23
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_conv_transpose = use_conv_transpose
patil-suraj's avatar
patil-suraj committed
24
        self.name = name
25

patil-suraj's avatar
patil-suraj committed
26
        conv = None
27
        if use_conv_transpose:
28
            conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1)
29
        elif use_conv:
30
            conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1)
patil-suraj's avatar
patil-suraj committed
31

32
        # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
patil-suraj's avatar
patil-suraj committed
33
34
35
36
        if name == "conv":
            self.conv = conv
        else:
            self.Conv2d_0 = conv
37
38
39
40
41

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.use_conv_transpose:
            return self.conv(x)
patil-suraj's avatar
patil-suraj committed
42

43
        x = F.interpolate(x, scale_factor=2.0, mode="nearest")
patil-suraj's avatar
patil-suraj committed
44

45
        # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
46
        if self.use_conv:
patil-suraj's avatar
patil-suraj committed
47
48
49
50
            if self.name == "conv":
                x = self.conv(x)
            else:
                x = self.Conv2d_0(x)
patil-suraj's avatar
patil-suraj committed
51

52
53
54
        return x


55
class Downsample2D(nn.Module):
56
57
58
    """
    A downsampling layer with an optional convolution.

Patrick von Platen's avatar
Patrick von Platen committed
59
60
    :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
    applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
61
62
63
                 downsampling occurs in the inner-two dimensions.
    """

64
    def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
65
66
67
68
69
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.padding = padding
70
        stride = 2
patil-suraj's avatar
patil-suraj committed
71
72
        self.name = name

73
        if use_conv:
74
            conv = nn.Conv2d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
75
76
        else:
            assert self.channels == self.out_channels
77
            conv = nn.AvgPool2d(kernel_size=stride, stride=stride)
patil-suraj's avatar
patil-suraj committed
78

79
        # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
patil-suraj's avatar
patil-suraj committed
80
81
        if name == "conv":
            self.conv = conv
patil-suraj's avatar
patil-suraj committed
82
83
        elif name == "Conv2d_0":
            self.Conv2d_0 = conv
Patrick von Platen's avatar
Patrick von Platen committed
84
            self.conv = conv
patil-suraj's avatar
patil-suraj committed
85
86
        else:
            self.op = conv
Patrick von Platen's avatar
Patrick von Platen committed
87
            self.conv = conv
88
89

    def forward(self, x):
90
91
        #        print("use_conv", self.use_conv)
        #        print("padding", self.padding)
92
        assert x.shape[1] == self.channels
93
        if self.use_conv and self.padding == 0:
94
95
            pad = (0, 1, 0, 1)
            x = F.pad(x, pad, mode="constant", value=0)
patil-suraj's avatar
patil-suraj committed
96

97
98
99
100
101
102
103
104
        #        print("x", x.abs().sum())
        self.hey = x
        assert x.shape[1] == self.channels
        x = self.conv(x)
        self.yas = x
        #        print("x", x.abs().sum())

        return x
105
        # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
Patrick von Platen's avatar
Patrick von Platen committed
106
107
108
109
110
111
112
113


#        if self.name == "conv":
#            return self.conv(x)
#        elif self.name == "Conv2d_0":
#            return self.Conv2d_0(x)
#        else:
#            return self.op(x)
114
115


116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
class Upsample1D(nn.Module):
    """
    An upsampling layer with an optional convolution.

    :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
    applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 upsampling occurs in the inner-two dimensions.
    """

    def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_conv_transpose = use_conv_transpose
        self.name = name

        # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
        self.conv = None
        if use_conv_transpose:
            self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1)
        elif use_conv:
            self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1)

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.use_conv_transpose:
            return self.conv(x)

        x = F.interpolate(x, scale_factor=2.0, mode="nearest")

        if self.use_conv:
            x = self.conv(x)

        return x


class Downsample1D(nn.Module):
    """
    A downsampling layer with an optional convolution.

    :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
    applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 downsampling occurs in the inner-two dimensions.
    """

    def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.padding = padding
        stride = 2
        self.name = name

        if use_conv:
            self.conv = nn.Conv1d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
        else:
            assert self.channels == self.out_channels
            self.conv = nn.AvgPool1d(kernel_size=stride, stride=stride)

    def forward(self, x):
        assert x.shape[1] == self.channels
        return self.conv(x)


class FirUpsample2D(nn.Module):
    def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)):
        super().__init__()
        out_channels = out_channels if out_channels else channels
        if use_conv:
            self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.use_conv = use_conv
        self.fir_kernel = fir_kernel
        self.out_channels = out_channels

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
    def _upsample_2d(self, x, w=None, k=None, factor=2, gain=1):
        """Fused `upsample_2d()` followed by `Conv2d()`.

        Args:
        Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
        efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary:
        order.
        x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
            C]`.
        w: Weight tensor of the shape `[filterH, filterW, inChannels,
            outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`.
        k: FIR filter of the shape `[firH, firW]` or `[firN]`
            (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
        factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).

        Returns:
        Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same datatype as
        `x`.
        """

        assert isinstance(factor, int) and factor >= 1

        # Setup filter kernel.
        if k is None:
            k = [1] * factor

        # setup kernel
        k = np.asarray(k, dtype=np.float32)
        if k.ndim == 1:
            k = np.outer(k, k)
        k /= np.sum(k)

        k = k * (gain * (factor**2))

        if self.use_conv:
            convH = w.shape[2]
            convW = w.shape[3]
            inC = w.shape[1]

            p = (k.shape[0] - factor) - (convW - 1)

            stride = (factor, factor)
            # Determine data dimensions.
            stride = [1, 1, factor, factor]
            output_shape = ((x.shape[2] - 1) * factor + convH, (x.shape[3] - 1) * factor + convW)
            output_padding = (
                output_shape[0] - (x.shape[2] - 1) * stride[0] - convH,
                output_shape[1] - (x.shape[3] - 1) * stride[1] - convW,
            )
            assert output_padding[0] >= 0 and output_padding[1] >= 0
            inC = w.shape[1]
            num_groups = x.shape[1] // inC

            # Transpose weights.
            w = torch.reshape(w, (num_groups, -1, inC, convH, convW))
            w = w[..., ::-1, ::-1].permute(0, 2, 1, 3, 4)
            w = torch.reshape(w, (num_groups * inC, -1, convH, convW))

            x = F.conv_transpose2d(x, w, stride=stride, output_padding=output_padding, padding=0)

            x = upfirdn2d_native(x, torch.tensor(k, device=x.device), pad=((p + 1) // 2 + factor - 1, p // 2 + 1))
        else:
            p = k.shape[0] - factor
            x = upfirdn2d_native(
                x, torch.tensor(k, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2)
            )

        return x

261
262
    def forward(self, x):
        if self.use_conv:
263
            h = self._upsample_2d(x, self.Conv2d_0.weight, k=self.fir_kernel)
264
265
            h = h + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
        else:
266
            h = self._upsample_2d(x, k=self.fir_kernel, factor=2)
267
268
269
270
271
272
273
274
275

        return h


class FirDownsample2D(nn.Module):
    def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)):
        super().__init__()
        out_channels = out_channels if out_channels else channels
        if use_conv:
276
            self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
277
278
279
280
        self.fir_kernel = fir_kernel
        self.use_conv = use_conv
        self.out_channels = out_channels

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    def _downsample_2d(self, x, w=None, k=None, factor=2, gain=1):
        """Fused `Conv2d()` followed by `downsample_2d()`.

        Args:
        Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
        efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary:
        order.
            x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. w: Weight tensor of the shape `[filterH,
            filterW, inChannels, outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] //
            numGroups`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] *
            factor`, which corresponds to average pooling. factor: Integer downsampling factor (default: 2). gain:
            Scaling factor for signal magnitude (default: 1.0).

        Returns:
            Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and same
            datatype as `x`.
        """
298

299
300
301
        assert isinstance(factor, int) and factor >= 1
        if k is None:
            k = [1] * factor
302

303
304
305
306
307
        # setup kernel
        k = np.asarray(k, dtype=np.float32)
        if k.ndim == 1:
            k = np.outer(k, k)
        k /= np.sum(k)
308

309
        k = k * gain
310

311
312
313
314
315
316
317
318
319
        if self.use_conv:
            _, _, convH, convW = w.shape
            p = (k.shape[0] - factor) + (convW - 1)
            s = [factor, factor]
            x = upfirdn2d_native(x, torch.tensor(k, device=x.device), pad=((p + 1) // 2, p // 2))
            x = F.conv2d(x, w, stride=s, padding=0)
        else:
            p = k.shape[0] - factor
            x = upfirdn2d_native(x, torch.tensor(k, device=x.device), down=factor, pad=((p + 1) // 2, p // 2))
320

321
        return x
322

323
324
325
326
327
328
    def forward(self, x):
        if self.use_conv:
            x = self._downsample_2d(x, w=self.Conv2d_0.weight, k=self.fir_kernel)
            x = x + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
        else:
            x = self._downsample_2d(x, k=self.fir_kernel, factor=2)
329

330
        return x
331
332


Patrick von Platen's avatar
Patrick von Platen committed
333
# TODO (patil-suraj): needs test
334
# class Upsample2D1d(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
335
336
337
338
339
340
#    def __init__(self, dim):
#        super().__init__()
#        self.conv = nn.ConvTranspose1d(dim, dim, 4, 2, 1)
#
#    def forward(self, x):
#        return self.conv(x)
341
342


Patrick von Platen's avatar
update  
Patrick von Platen committed
343
# unet.py, unet_grad_tts.py, unet_ldm.py, unet_glide.py, unet_score_vde.py
Patrick von Platen's avatar
Patrick von Platen committed
344
# => All 2D-Resnets are included here now!
Patrick von Platen's avatar
Patrick von Platen committed
345
class ResnetBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
346
347
348
349
350
351
352
353
354
    def __init__(
        self,
        *,
        in_channels,
        out_channels=None,
        conv_shortcut=False,
        dropout=0.0,
        temb_channels=512,
        groups=32,
Patrick von Platen's avatar
Patrick von Platen committed
355
        groups_out=None,
Patrick von Platen's avatar
Patrick von Platen committed
356
357
358
        pre_norm=True,
        eps=1e-6,
        non_linearity="swish",
Patrick von Platen's avatar
Patrick von Platen committed
359
        time_embedding_norm="default",
Patrick von Platen's avatar
Patrick von Platen committed
360
        kernel=None,
Patrick von Platen's avatar
Patrick von Platen committed
361
362
        output_scale_factor=1.0,
        use_nin_shortcut=None,
Patrick von Platen's avatar
Patrick von Platen committed
363
364
        up=False,
        down=False,
Patrick von Platen's avatar
Patrick von Platen committed
365
        overwrite_for_grad_tts=False,
Patrick von Platen's avatar
up  
Patrick von Platen committed
366
        overwrite_for_ldm=False,
Patrick von Platen's avatar
Patrick von Platen committed
367
        overwrite_for_glide=False,
Patrick von Platen's avatar
Patrick von Platen committed
368
        overwrite_for_score_vde=False,
Patrick von Platen's avatar
Patrick von Platen committed
369
    ):
370
371
372
373
374
375
        super().__init__()
        self.pre_norm = pre_norm
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut
Patrick von Platen's avatar
Patrick von Platen committed
376
377
378
        self.time_embedding_norm = time_embedding_norm
        self.up = up
        self.down = down
Patrick von Platen's avatar
Patrick von Platen committed
379
380
381
382
383
        self.output_scale_factor = output_scale_factor

        if groups_out is None:
            groups_out = groups

384
        if self.pre_norm:
385
            self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
386
        else:
387
            self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps, affine=True)
388
389

        self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
Patrick von Platen's avatar
Patrick von Platen committed
390

391
        if time_embedding_norm == "default" and temb_channels > 0:
Patrick von Platen's avatar
Patrick von Platen committed
392
            self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
393
        elif time_embedding_norm == "scale_shift" and temb_channels > 0:
Patrick von Platen's avatar
Patrick von Platen committed
394
395
            self.temb_proj = torch.nn.Linear(temb_channels, 2 * out_channels)

396
        self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
397
398
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
Patrick von Platen's avatar
up  
Patrick von Platen committed
399

400
        if non_linearity == "swish":
401
            self.nonlinearity = lambda x: F.silu(x)
402
403
        elif non_linearity == "mish":
            self.nonlinearity = Mish()
Patrick von Platen's avatar
up  
Patrick von Platen committed
404
405
        elif non_linearity == "silu":
            self.nonlinearity = nn.SiLU()
406

Patrick von Platen's avatar
Patrick von Platen committed
407
        self.upsample = self.downsample = None
408
409
410
411
412
413
414
        if self.up:
            if kernel == "fir":
                fir_kernel = (1, 3, 3, 1)
                self.upsample = lambda x: upsample_2d(x, k=fir_kernel)
            elif kernel == "sde_vp":
                self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
            else:
415
                self.upsample = Upsample2D(in_channels, use_conv=False)
416
417
418
419
420
421
422
        elif self.down:
            if kernel == "fir":
                fir_kernel = (1, 3, 3, 1)
                self.downsample = lambda x: downsample_2d(x, k=fir_kernel)
            elif kernel == "sde_vp":
                self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2)
            else:
423
                self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op")
Patrick von Platen's avatar
Patrick von Platen committed
424

425
        self.use_nin_shortcut = self.in_channels != self.out_channels if use_nin_shortcut is None else use_nin_shortcut
Patrick von Platen's avatar
Patrick von Platen committed
426

427
        self.nin_shortcut = None
Patrick von Platen's avatar
Patrick von Platen committed
428
        if self.use_nin_shortcut:
Patrick von Platen's avatar
Patrick von Platen committed
429
            self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
430

Patrick von Platen's avatar
Patrick von Platen committed
431
        # TODO(SURAJ, PATRICK): ALL OF THE FOLLOWING OF THE INIT METHOD CAN BE DELETED ONCE WEIGHTS ARE CONVERTED
432
        self.is_overwritten = False
Patrick von Platen's avatar
Patrick von Platen committed
433
        self.overwrite_for_glide = overwrite_for_glide
434
        self.overwrite_for_grad_tts = overwrite_for_grad_tts
Patrick von Platen's avatar
Patrick von Platen committed
435
        self.overwrite_for_ldm = overwrite_for_ldm or overwrite_for_glide
Patrick von Platen's avatar
Patrick von Platen committed
436
        self.overwrite_for_score_vde = overwrite_for_score_vde
437
438
439
440
441
442
443
444
445
446
447
448
449
        if self.overwrite_for_grad_tts:
            dim = in_channels
            dim_out = out_channels
            time_emb_dim = temb_channels
            self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out))
            self.pre_norm = pre_norm

            self.block1 = Block(dim, dim_out, groups=groups)
            self.block2 = Block(dim_out, dim_out, groups=groups)
            if dim != dim_out:
                self.res_conv = torch.nn.Conv2d(dim, dim_out, 1)
            else:
                self.res_conv = torch.nn.Identity()
Patrick von Platen's avatar
up  
Patrick von Platen committed
450
451
452
453
        elif self.overwrite_for_ldm:
            channels = in_channels
            emb_channels = temb_channels
            use_scale_shift_norm = False
Patrick von Platen's avatar
Patrick von Platen committed
454
            non_linearity = "silu"
Patrick von Platen's avatar
up  
Patrick von Platen committed
455
456
457
458

            self.in_layers = nn.Sequential(
                normalization(channels, swish=1.0),
                nn.Identity(),
459
                nn.Conv2d(channels, self.out_channels, 3, padding=1),
Patrick von Platen's avatar
up  
Patrick von Platen committed
460
461
462
463
464
            )
            self.emb_layers = nn.Sequential(
                nn.SiLU(),
                linear(
                    emb_channels,
Patrick von Platen's avatar
Patrick von Platen committed
465
                    2 * self.out_channels if self.time_embedding_norm == "scale_shift" else self.out_channels,
Patrick von Platen's avatar
up  
Patrick von Platen committed
466
467
468
469
470
471
                ),
            )
            self.out_layers = nn.Sequential(
                normalization(self.out_channels, swish=0.0 if use_scale_shift_norm else 1.0),
                nn.SiLU() if use_scale_shift_norm else nn.Identity(),
                nn.Dropout(p=dropout),
472
                zero_module(nn.Conv2d(self.out_channels, self.out_channels, 3, padding=1)),
Patrick von Platen's avatar
up  
Patrick von Platen committed
473
474
475
476
            )
            if self.out_channels == in_channels:
                self.skip_connection = nn.Identity()
            else:
477
                self.skip_connection = nn.Conv2d(channels, self.out_channels, 1)
478
            self.set_weights_ldm()
Patrick von Platen's avatar
Patrick von Platen committed
479
480
481
482
483
484
485
486
487
488
489
490
        elif self.overwrite_for_score_vde:
            in_ch = in_channels
            out_ch = out_channels

            eps = 1e-6
            num_groups = min(in_ch // 4, 32)
            num_groups_out = min(out_ch // 4, 32)
            temb_dim = temb_channels

            self.GroupNorm_0 = nn.GroupNorm(num_groups=num_groups, num_channels=in_ch, eps=eps)
            self.up = up
            self.down = down
491
            self.Conv_0 = nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1)
Patrick von Platen's avatar
Patrick von Platen committed
492
493
494
495
496
497
            if temb_dim is not None:
                self.Dense_0 = nn.Linear(temb_dim, out_ch)
                nn.init.zeros_(self.Dense_0.bias)

            self.GroupNorm_1 = nn.GroupNorm(num_groups=num_groups_out, num_channels=out_ch, eps=eps)
            self.Dropout_0 = nn.Dropout(dropout)
498
            self.Conv_1 = nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1)
Patrick von Platen's avatar
Patrick von Platen committed
499
500
            if in_ch != out_ch or up or down:
                # 1x1 convolution with DDPM initialization.
501
                self.Conv_2 = nn.Conv2d(in_ch, out_ch, kernel_size=1, padding=0)
Patrick von Platen's avatar
Patrick von Platen committed
502
503
504
505

            self.in_ch = in_ch
            self.out_ch = out_ch

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
    def set_weights_grad_tts(self):
        self.conv1.weight.data = self.block1.block[0].weight.data
        self.conv1.bias.data = self.block1.block[0].bias.data
        self.norm1.weight.data = self.block1.block[1].weight.data
        self.norm1.bias.data = self.block1.block[1].bias.data

        self.conv2.weight.data = self.block2.block[0].weight.data
        self.conv2.bias.data = self.block2.block[0].bias.data
        self.norm2.weight.data = self.block2.block[1].weight.data
        self.norm2.bias.data = self.block2.block[1].bias.data

        self.temb_proj.weight.data = self.mlp[1].weight.data
        self.temb_proj.bias.data = self.mlp[1].bias.data

        if self.in_channels != self.out_channels:
            self.nin_shortcut.weight.data = self.res_conv.weight.data
            self.nin_shortcut.bias.data = self.res_conv.bias.data

Patrick von Platen's avatar
up  
Patrick von Platen committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
    def set_weights_ldm(self):
        self.norm1.weight.data = self.in_layers[0].weight.data
        self.norm1.bias.data = self.in_layers[0].bias.data

        self.conv1.weight.data = self.in_layers[-1].weight.data
        self.conv1.bias.data = self.in_layers[-1].bias.data

        self.temb_proj.weight.data = self.emb_layers[-1].weight.data
        self.temb_proj.bias.data = self.emb_layers[-1].bias.data

        self.norm2.weight.data = self.out_layers[0].weight.data
        self.norm2.bias.data = self.out_layers[0].bias.data

        self.conv2.weight.data = self.out_layers[-1].weight.data
        self.conv2.bias.data = self.out_layers[-1].bias.data

        if self.in_channels != self.out_channels:
            self.nin_shortcut.weight.data = self.skip_connection.weight.data
            self.nin_shortcut.bias.data = self.skip_connection.bias.data

Patrick von Platen's avatar
Patrick von Platen committed
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
    def set_weights_score_vde(self):
        self.conv1.weight.data = self.Conv_0.weight.data
        self.conv1.bias.data = self.Conv_0.bias.data
        self.norm1.weight.data = self.GroupNorm_0.weight.data
        self.norm1.bias.data = self.GroupNorm_0.bias.data

        self.conv2.weight.data = self.Conv_1.weight.data
        self.conv2.bias.data = self.Conv_1.bias.data
        self.norm2.weight.data = self.GroupNorm_1.weight.data
        self.norm2.bias.data = self.GroupNorm_1.bias.data

        self.temb_proj.weight.data = self.Dense_0.weight.data
        self.temb_proj.bias.data = self.Dense_0.bias.data

        if self.in_channels != self.out_channels or self.up or self.down:
            self.nin_shortcut.weight.data = self.Conv_2.weight.data
            self.nin_shortcut.bias.data = self.Conv_2.bias.data

Patrick von Platen's avatar
up  
Patrick von Platen committed
562
    def forward(self, x, temb, mask=1.0):
Patrick von Platen's avatar
Patrick von Platen committed
563
564
        # TODO(Patrick) eventually this class should be split into multiple classes
        # too many if else statements
565
566
567
        if self.overwrite_for_grad_tts and not self.is_overwritten:
            self.set_weights_grad_tts()
            self.is_overwritten = True
Patrick von Platen's avatar
Patrick von Platen committed
568
569
570
        elif self.overwrite_for_score_vde and not self.is_overwritten:
            self.set_weights_score_vde()
            self.is_overwritten = True
571
572

        h = x
Patrick von Platen's avatar
up  
Patrick von Platen committed
573
        h = h * mask
574
575
576
577
        if self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)

Patrick von Platen's avatar
Patrick von Platen committed
578
579
580
581
582
583
        if self.upsample is not None:
            x = self.upsample(x)
            h = self.upsample(h)
        elif self.downsample is not None:
            x = self.downsample(x)
            h = self.downsample(h)
Patrick von Platen's avatar
Patrick von Platen committed
584

585
586
587
588
589
        h = self.conv1(h)

        if not self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)
Patrick von Platen's avatar
up  
Patrick von Platen committed
590
        h = h * mask
591

592
593
594
595
        if temb is not None:
            temb = self.temb_proj(self.nonlinearity(temb))[:, :, None, None]
        else:
            temb = 0
Patrick von Platen's avatar
Patrick von Platen committed
596

Patrick von Platen's avatar
Patrick von Platen committed
597
598
        if self.time_embedding_norm == "scale_shift":
            scale, shift = torch.chunk(temb, 2, dim=1)
599
600

            h = self.norm2(h)
Patrick von Platen's avatar
Patrick von Platen committed
601
            h = h + h * scale + shift
602
            h = self.nonlinearity(h)
Patrick von Platen's avatar
Patrick von Platen committed
603
604
605
606
607
608
        elif self.time_embedding_norm == "default":
            h = h + temb
            h = h * mask
            if self.pre_norm:
                h = self.norm2(h)
                h = self.nonlinearity(h)
609
610
611
612
613
614
615

        h = self.dropout(h)
        h = self.conv2(h)

        if not self.pre_norm:
            h = self.norm2(h)
            h = self.nonlinearity(h)
Patrick von Platen's avatar
up  
Patrick von Platen committed
616
        h = h * mask
617

Patrick von Platen's avatar
up  
Patrick von Platen committed
618
        x = x * mask
Patrick von Platen's avatar
Patrick von Platen committed
619
        if self.nin_shortcut is not None:
Patrick von Platen's avatar
Patrick von Platen committed
620
            x = self.nin_shortcut(x)
621

622
        return (x + h) / self.output_scale_factor
623
624


625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
class ResnetBlock(nn.Module):
    def __init__(
        self,
        *,
        in_channels,
        out_channels=None,
        conv_shortcut=False,
        dropout=0.0,
        temb_channels=512,
        groups=32,
        groups_out=None,
        pre_norm=True,
        eps=1e-6,
        non_linearity="swish",
        time_embedding_norm="default",
        kernel=None,
        output_scale_factor=1.0,
        use_nin_shortcut=None,
        up=False,
        down=False,
        overwrite_for_grad_tts=False,
        overwrite_for_ldm=False,
        overwrite_for_glide=False,
        overwrite_for_score_vde=False,
    ):
        super().__init__()
        self.pre_norm = pre_norm
        self.pre_norm = True
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut
        self.time_embedding_norm = time_embedding_norm
        self.up = up
        self.down = down
        self.output_scale_factor = output_scale_factor

        if groups_out is None:
            groups_out = groups

        if self.pre_norm:
            self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
        else:
            self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps, affine=True)

        self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)

        if time_embedding_norm == "default" and temb_channels > 0:
Patrick von Platen's avatar
Patrick von Platen committed
673
            self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels)
674
        elif time_embedding_norm == "scale_shift" and temb_channels > 0:
Patrick von Platen's avatar
Patrick von Platen committed
675
            self.time_emb_proj = torch.nn.Linear(temb_channels, 2 * out_channels)
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707

        self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)

        if non_linearity == "swish":
            self.nonlinearity = lambda x: F.silu(x)
        elif non_linearity == "mish":
            self.nonlinearity = Mish()
        elif non_linearity == "silu":
            self.nonlinearity = nn.SiLU()

        self.upsample = self.downsample = None
        if self.up:
            if kernel == "fir":
                fir_kernel = (1, 3, 3, 1)
                self.upsample = lambda x: upsample_2d(x, k=fir_kernel)
            elif kernel == "sde_vp":
                self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
            else:
                self.upsample = Upsample2D(in_channels, use_conv=False)
        elif self.down:
            if kernel == "fir":
                fir_kernel = (1, 3, 3, 1)
                self.downsample = lambda x: downsample_2d(x, k=fir_kernel)
            elif kernel == "sde_vp":
                self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2)
            else:
                self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op")

        self.use_nin_shortcut = self.in_channels != self.out_channels if use_nin_shortcut is None else use_nin_shortcut

Patrick von Platen's avatar
Patrick von Platen committed
708
        self.conv_shortcut = None
709
        if self.use_nin_shortcut:
Patrick von Platen's avatar
Patrick von Platen committed
710
            self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731

    def forward(self, x, temb):
        h = x
        if self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)

        if self.upsample is not None:
            x = self.upsample(x)
            h = self.upsample(h)
        elif self.downsample is not None:
            x = self.downsample(x)
            h = self.downsample(h)

        h = self.conv1(h)

        if not self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)

        if temb is not None:
Patrick von Platen's avatar
Patrick von Platen committed
732
            temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
        else:
            temb = 0

        if self.time_embedding_norm == "scale_shift":
            scale, shift = torch.chunk(temb, 2, dim=1)

            h = self.norm2(h)
            h = h + h * scale + shift
            h = self.nonlinearity(h)
        elif self.time_embedding_norm == "default":
            h = h + temb
            if self.pre_norm:
                h = self.norm2(h)
                h = self.nonlinearity(h)

        h = self.dropout(h)
        h = self.conv2(h)

        if not self.pre_norm:
            h = self.norm2(h)
            h = self.nonlinearity(h)

Patrick von Platen's avatar
Patrick von Platen committed
755
756
        if self.conv_shortcut is not None:
            x = self.conv_shortcut(x)
757
758
759
760
761
762
763
764
765
766

        return (x + h) / self.output_scale_factor

    def set_weight(self, resnet):
        self.norm1.weight.data = resnet.norm1.weight.data
        self.norm1.bias.data = resnet.norm1.bias.data

        self.conv1.weight.data = resnet.conv1.weight.data
        self.conv1.bias.data = resnet.conv1.bias.data

Patrick von Platen's avatar
Patrick von Platen committed
767
768
        self.time_emb_proj.weight.data = resnet.temb_proj.weight.data
        self.time_emb_proj.bias.data = resnet.temb_proj.bias.data
769
770
771
772
773
774
775
776

        self.norm2.weight.data = resnet.norm2.weight.data
        self.norm2.bias.data = resnet.norm2.bias.data

        self.conv2.weight.data = resnet.conv2.weight.data
        self.conv2.bias.data = resnet.conv2.bias.data

        if self.use_nin_shortcut:
Patrick von Platen's avatar
Patrick von Platen committed
777
778
            self.conv_shortcut.weight.data = resnet.nin_shortcut.weight.data
            self.conv_shortcut.bias.data = resnet.nin_shortcut.bias.data
779
780


Patrick von Platen's avatar
finish  
Patrick von Platen committed
781
# TODO(Patrick) - just there to convert the weights; can delete afterward
782
783
784
785
786
class Block(torch.nn.Module):
    def __init__(self, dim, dim_out, groups=8):
        super(Block, self).__init__()
        self.block = torch.nn.Sequential(
            torch.nn.Conv2d(dim, dim_out, 3, padding=1), torch.nn.GroupNorm(groups, dim_out), Mish()
Patrick von Platen's avatar
Patrick von Platen committed
787
788
789
        )


790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
# unet_rl.py
class ResidualTemporalBlock(nn.Module):
    def __init__(self, inp_channels, out_channels, embed_dim, horizon, kernel_size=5):
        super().__init__()

        self.blocks = nn.ModuleList(
            [
                Conv1dBlock(inp_channels, out_channels, kernel_size),
                Conv1dBlock(out_channels, out_channels, kernel_size),
            ]
        )

        self.time_mlp = nn.Sequential(
            nn.Mish(),
            nn.Linear(embed_dim, out_channels),
            RearrangeDim(),
            #            Rearrange("batch t -> batch t 1"),
        )

        self.residual_conv = (
            nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity()
        )

    def forward(self, x, t):
        """
        x : [ batch_size x inp_channels x horizon ] t : [ batch_size x embed_dim ] returns: out : [ batch_size x
        out_channels x horizon ]
        """
        out = self.blocks[0](x) + self.time_mlp(t)
        out = self.blocks[1](out)
        return out + self.residual_conv(x)


Patrick von Platen's avatar
Patrick von Platen committed
823
824
825
826
# HELPER Modules


def normalization(channels, swish=0.0):
827
    """
Patrick von Platen's avatar
Patrick von Platen committed
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
    Make a standard normalization layer, with an optional swish activation.

    :param channels: number of input channels. :return: an nn.Module for normalization.
    """
    return GroupNorm32(num_channels=channels, num_groups=32, swish=swish)


class GroupNorm32(nn.GroupNorm):
    def __init__(self, num_groups, num_channels, swish, eps=1e-5):
        super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps)
        self.swish = swish

    def forward(self, x):
        y = super().forward(x.float()).to(x.dtype)
        if self.swish == 1.0:
            y = F.silu(y)
        elif self.swish:
            y = y * F.sigmoid(y * float(self.swish))
        return y


def linear(*args, **kwargs):
    """
    Create a linear module.
    """
    return nn.Linear(*args, **kwargs)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
859
    """
Patrick von Platen's avatar
Patrick von Platen committed
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
    for p in module.parameters():
        p.detach().zero_()
    return module


class Mish(torch.nn.Module):
    def forward(self, x):
        return x * torch.tanh(torch.nn.functional.softplus(x))


class Conv1dBlock(nn.Module):
    """
    Conv1d --> GroupNorm --> Mish
    """

    def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
876
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
877
878
879
880
881
882
883
884
885
886

        self.block = nn.Sequential(
            nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2),
            RearrangeDim(),
            #            Rearrange("batch channels horizon -> batch channels 1 horizon"),
            nn.GroupNorm(n_groups, out_channels),
            RearrangeDim(),
            #            Rearrange("batch channels 1 horizon -> batch channels horizon"),
            nn.Mish(),
        )
887
888

    def forward(self, x):
Patrick von Platen's avatar
Patrick von Platen committed
889
890
891
892
893
894
895
896
897
898
899
900
901
902
        return self.block(x)


class RearrangeDim(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, tensor):
        if len(tensor.shape) == 2:
            return tensor[:, :, None]
        if len(tensor.shape) == 3:
            return tensor[:, :, None, :]
        elif len(tensor.shape) == 4:
            return tensor[:, :, 0, :]
903
        else:
Patrick von Platen's avatar
Patrick von Platen committed
904
905
906
907
            raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.")


def upsample_2d(x, k=None, factor=2, gain=1):
908
    r"""Upsample2D a batch of 2D images with the given filter.
Patrick von Platen's avatar
Patrick von Platen committed
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926

    Args:
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
    filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
    `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a:
    multiple of the upsampling factor.
        x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
          C]`.
        k: FIR filter of the shape `[firH, firW]` or `[firN]`
          (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
        factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).

    Returns:
        Tensor of the shape `[N, C, H * factor, W * factor]`
    """
    assert isinstance(factor, int) and factor >= 1
    if k is None:
        k = [1] * factor
927
928
929
930
931
932
933

    k = np.asarray(k, dtype=np.float32)
    if k.ndim == 1:
        k = np.outer(k, k)
    k /= np.sum(k)

    k = k * (gain * (factor**2))
Patrick von Platen's avatar
Patrick von Platen committed
934
    p = k.shape[0] - factor
935
    return upfirdn2d_native(x, torch.tensor(k, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2))
Patrick von Platen's avatar
Patrick von Platen committed
936
937
938


def downsample_2d(x, k=None, factor=2, gain=1):
939
    r"""Downsample2D a batch of 2D images with the given filter.
Patrick von Platen's avatar
Patrick von Platen committed
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963

    Args:
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
    given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
    specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
    shape is a multiple of the downsampling factor.
        x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
          C]`.
        k: FIR filter of the shape `[firH, firW]` or `[firN]`
          (separable). The default is `[1] * factor`, which corresponds to average pooling.
        factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).

    Returns:
        Tensor of the shape `[N, C, H // factor, W // factor]`
    """

    assert isinstance(factor, int) and factor >= 1
    if k is None:
        k = [1] * factor

    k = np.asarray(k, dtype=np.float32)
    if k.ndim == 1:
        k = np.outer(k, k)
    k /= np.sum(k)
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010

    k = k * gain
    p = k.shape[0] - factor
    return upfirdn2d_native(x, torch.tensor(k, device=x.device), down=factor, pad=((p + 1) // 2, p // 2))


def upfirdn2d_native(input, kernel, up=1, down=1, pad=(0, 0)):
    up_x = up_y = up
    down_x = down_y = down
    pad_x0 = pad_y0 = pad[0]
    pad_x1 = pad_y1 = pad[1]

    _, channel, in_h, in_w = input.shape
    input = input.reshape(-1, in_h, in_w, 1)

    _, in_h, in_w, minor = input.shape
    kernel_h, kernel_w = kernel.shape

    out = input.view(-1, in_h, 1, in_w, 1, minor)
    out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
    out = out.view(-1, in_h * up_y, in_w * up_x, minor)

    out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
    out = out[
        :,
        max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
        max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
        :,
    ]

    out = out.permute(0, 3, 1, 2)
    out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
    w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
    out = F.conv2d(out, w)
    out = out.reshape(
        -1,
        minor,
        in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
        in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
    )
    out = out.permute(0, 2, 3, 1)
    out = out[:, ::down_y, ::down_x, :]

    out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
    out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1

    return out.view(-1, channel, out_h, out_w)