resnet.py 31.9 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
from abc import abstractmethod

import numpy as np
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import torch
import torch.nn as nn
import torch.nn.functional as F


def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")

patil-suraj's avatar
patil-suraj committed
34

35
36
37
38
39
40
41
42
43
44
45
46
47
def conv_transpose_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.ConvTranspose1d(*args, **kwargs)
    elif dims == 2:
        return nn.ConvTranspose2d(*args, **kwargs)
    elif dims == 3:
        return nn.ConvTranspose3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


48
49
def Normalize(in_channels, num_groups=32, eps=1e-6):
    return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=eps, affine=True)
50
51
52
53
54
55
56
57
58
59


def nonlinearity(x, swish=1.0):
    # swish
    if swish == 1.0:
        return F.silu(x)
    else:
        return x * F.sigmoid(x * float(swish))


Patrick von Platen's avatar
Patrick von Platen committed
60
61
62
63
64
65
66
67
68
69
70
71
class TimestepBlock(nn.Module):
    """
    Any module where forward() takes timestep embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x, emb):
        """
        Apply the module to `x` given `emb` timestep embeddings.
        """


72
73
74
75
class Upsample(nn.Module):
    """
    An upsampling layer with an optional convolution.

Patrick von Platen's avatar
Patrick von Platen committed
76
77
    :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
    applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
78
79
80
                 upsampling occurs in the inner-two dimensions.
    """

patil-suraj's avatar
patil-suraj committed
81
    def __init__(self, channels, use_conv=False, use_conv_transpose=False, dims=2, out_channels=None):
82
83
84
85
86
87
88
89
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        self.use_conv_transpose = use_conv_transpose

        if use_conv_transpose:
patil-suraj's avatar
patil-suraj committed
90
            self.conv = conv_transpose_nd(dims, channels, self.out_channels, 4, 2, 1)
91
92
93
94
95
96
97
        elif use_conv:
            self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.use_conv_transpose:
            return self.conv(x)
patil-suraj's avatar
patil-suraj committed
98

99
100
101
102
        if self.dims == 3:
            x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
        else:
            x = F.interpolate(x, scale_factor=2.0, mode="nearest")
patil-suraj's avatar
patil-suraj committed
103

104
105
        if self.use_conv:
            x = self.conv(x)
patil-suraj's avatar
patil-suraj committed
106

107
108
109
110
111
112
113
        return x


class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.

Patrick von Platen's avatar
Patrick von Platen committed
114
115
    :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
    applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
116
117
118
                 downsampling occurs in the inner-two dimensions.
    """

patil-suraj's avatar
patil-suraj committed
119
    def __init__(self, channels, use_conv=False, dims=2, out_channels=None, padding=1, name="conv"):
120
121
122
123
124
125
126
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        self.padding = padding
        stride = 2 if dims != 3 else (1, 2, 2)
patil-suraj's avatar
patil-suraj committed
127
128
        self.name = name

129
        if use_conv:
patil-suraj's avatar
patil-suraj committed
130
            conv = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding)
131
132
        else:
            assert self.channels == self.out_channels
patil-suraj's avatar
patil-suraj committed
133
134
135
136
137
138
            conv = avg_pool_nd(dims, kernel_size=stride, stride=stride)

        if name == "conv":
            self.conv = conv
        else:
            self.op = conv
139
140
141
142
143
144

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.use_conv and self.padding == 0 and self.dims == 2:
            pad = (0, 1, 0, 1)
            x = F.pad(x, pad, mode="constant", value=0)
patil-suraj's avatar
patil-suraj committed
145
146
147
148
149

        if self.name == "conv":
            return self.conv(x)
        else:
            return self.op(x)
150
151


Patrick von Platen's avatar
Patrick von Platen committed
152
153
154
155
156
157
158
159
# TODO (patil-suraj): needs test
# class Upsample1d(nn.Module):
#    def __init__(self, dim):
#        super().__init__()
#        self.conv = nn.ConvTranspose1d(dim, dim, 4, 2, 1)
#
#    def forward(self, x):
#        return self.conv(x)
160
161


Patrick von Platen's avatar
Patrick von Platen committed
162
# RESNETS
Patrick von Platen's avatar
Patrick von Platen committed
163

Patrick von Platen's avatar
up  
Patrick von Platen committed
164
# unet_glide.py
Patrick von Platen's avatar
Patrick von Platen committed
165
class ResBlock(TimestepBlock):
166
    """
Patrick von Platen's avatar
Patrick von Platen committed
167
168
169
170
171
172
173
174
175
    A residual block that can optionally change the number of channels.

    :param channels: the number of input channels. :param emb_channels: the number of timestep embedding channels.
    :param dropout: the rate of dropout. :param out_channels: if specified, the number of out channels. :param
    use_conv: if True and out_channels is specified, use a spatial
        convolution instead of a smaller 1x1 convolution to change the channels in the skip connection.
    :param dims: determines if the signal is 1D, 2D, or 3D. :param use_checkpoint: if True, use gradient checkpointing
    on this module. :param up: if True, use this block for upsampling. :param down: if True, use this block for
    downsampling.
176
177
    """

Patrick von Platen's avatar
Patrick von Platen committed
178
179
180
181
182
183
184
185
186
187
188
189
    def __init__(
        self,
        channels,
        emb_channels,
        dropout,
        out_channels=None,
        use_conv=False,
        use_scale_shift_norm=False,
        dims=2,
        use_checkpoint=False,
        up=False,
        down=False,
Patrick von Platen's avatar
Patrick von Platen committed
190
        overwrite=True,  # TODO(Patrick) - use for glide at later stage
Patrick von Platen's avatar
Patrick von Platen committed
191
    ):
192
193
        super().__init__()
        self.channels = channels
Patrick von Platen's avatar
Patrick von Platen committed
194
195
        self.emb_channels = emb_channels
        self.dropout = dropout
196
197
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
Patrick von Platen's avatar
Patrick von Platen committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        self.use_checkpoint = use_checkpoint
        self.use_scale_shift_norm = use_scale_shift_norm

        self.in_layers = nn.Sequential(
            normalization(channels, swish=1.0),
            nn.Identity(),
            conv_nd(dims, channels, self.out_channels, 3, padding=1),
        )

        self.updown = up or down

        if up:
            self.h_upd = Upsample(channels, use_conv=False, dims=dims)
            self.x_upd = Upsample(channels, use_conv=False, dims=dims)
        elif down:
            self.h_upd = Downsample(channels, use_conv=False, dims=dims, padding=1, name="op")
            self.x_upd = Downsample(channels, use_conv=False, dims=dims, padding=1, name="op")
        else:
            self.h_upd = self.x_upd = nn.Identity()

        self.emb_layers = nn.Sequential(
            nn.SiLU(),
            linear(
                emb_channels,
Patrick von Platen's avatar
Patrick von Platen committed
222
                2 * self.out_channels,
Patrick von Platen's avatar
Patrick von Platen committed
223
224
225
            ),
        )
        self.out_layers = nn.Sequential(
Patrick von Platen's avatar
up  
Patrick von Platen committed
226
227
            normalization(self.out_channels, swish=0.0),
            nn.SiLU(),
Patrick von Platen's avatar
Patrick von Platen committed
228
229
230
231
232
233
234
235
236
237
238
            nn.Dropout(p=dropout),
            zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)),
        )

        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        elif use_conv:
            self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
        else:
            self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)

Patrick von Platen's avatar
up  
Patrick von Platen committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
        self.overwrite = overwrite
        self.is_overwritten = False
        if self.overwrite:
            in_channels = channels
            out_channels = self.out_channels
            conv_shortcut = False
            dropout = 0.0
            temb_channels = emb_channels
            groups = 32
            pre_norm = True
            eps = 1e-5
            non_linearity = "silu"
            self.pre_norm = pre_norm
            self.in_channels = in_channels
            out_channels = in_channels if out_channels is None else out_channels
            self.out_channels = out_channels
            self.use_conv_shortcut = conv_shortcut

Patrick von Platen's avatar
Patrick von Platen committed
257
258
259
            # Add to init
            self.time_embedding_norm = "scale_shift"

Patrick von Platen's avatar
up  
Patrick von Platen committed
260
261
262
263
264
265
            if self.pre_norm:
                self.norm1 = Normalize(in_channels, num_groups=groups, eps=eps)
            else:
                self.norm1 = Normalize(out_channels, num_groups=groups, eps=eps)

            self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
Patrick von Platen's avatar
Patrick von Platen committed
266
            self.temb_proj = torch.nn.Linear(temb_channels, 2 * out_channels)
Patrick von Platen's avatar
up  
Patrick von Platen committed
267
268
269
270
271
272
273
274
275
276
277
278
279
            self.norm2 = Normalize(out_channels, num_groups=groups, eps=eps)
            self.dropout = torch.nn.Dropout(dropout)
            self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
            if non_linearity == "swish":
                self.nonlinearity = nonlinearity
            elif non_linearity == "mish":
                self.nonlinearity = Mish()
            elif non_linearity == "silu":
                self.nonlinearity = nn.SiLU()

            if self.in_channels != self.out_channels:
                self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)

Patrick von Platen's avatar
Patrick von Platen committed
280
281
282
283
284
285
286
287
            self.up, self.down = up, down
#            if self.up:
#                self.h_upd = Upsample(in_channels, use_conv=False, dims=dims)
#                self.x_upd = Upsample(in_channels, use_conv=False, dims=dims)
#            elif self.down:
#                self.h_upd = Downsample(in_channels, use_conv=False, dims=dims, padding=1, name="op")
#                self.x_upd = Downsample(in_channels, use_conv=False, dims=dims, padding=1, name="op")

Patrick von Platen's avatar
up  
Patrick von Platen committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
    def set_weights(self):
        # TODO(Patrick): use for glide at later stage
        self.norm1.weight.data = self.in_layers[0].weight.data
        self.norm1.bias.data = self.in_layers[0].bias.data

        self.conv1.weight.data = self.in_layers[-1].weight.data
        self.conv1.bias.data = self.in_layers[-1].bias.data

        self.temb_proj.weight.data = self.emb_layers[-1].weight.data
        self.temb_proj.bias.data = self.emb_layers[-1].bias.data

        self.norm2.weight.data = self.out_layers[0].weight.data
        self.norm2.bias.data = self.out_layers[0].bias.data

        self.conv2.weight.data = self.out_layers[-1].weight.data
        self.conv2.bias.data = self.out_layers[-1].bias.data

        if self.in_channels != self.out_channels:
            self.nin_shortcut.weight.data = self.skip_connection.weight.data
            self.nin_shortcut.bias.data = self.skip_connection.bias.data

Patrick von Platen's avatar
Patrick von Platen committed
309
310
311
312
313
314
315
    def forward(self, x, emb):
        """
        Apply the block to a Tensor, conditioned on a timestep embedding.

        :param x: an [N x C x ...] Tensor of features. :param emb: an [N x emb_channels] Tensor of timestep embeddings.
        :return: an [N x C x ...] Tensor of outputs.
        """
Patrick von Platen's avatar
up  
Patrick von Platen committed
316
317
318
319
        if self.overwrite:
            # TODO(Patrick): use for glide at later stage
            self.set_weights()

Patrick von Platen's avatar
Patrick von Platen committed
320
        orig_x = x
Patrick von Platen's avatar
Patrick von Platen committed
321
322
323
324
325
326
327
328
        if self.updown:
            in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
            h = in_rest(x)
            h = self.h_upd(h)
            x = self.x_upd(x)
            h = in_conv(h)
        else:
            h = self.in_layers(x)
Patrick von Platen's avatar
up  
Patrick von Platen committed
329

Patrick von Platen's avatar
Patrick von Platen committed
330
331
332
        emb_out = self.emb_layers(emb).type(h.dtype)
        while len(emb_out.shape) < len(h.shape):
            emb_out = emb_out[..., None]
Patrick von Platen's avatar
up  
Patrick von Platen committed
333

Patrick von Platen's avatar
Patrick von Platen committed
334
335
336
337
338
339
340
341
        if self.use_scale_shift_norm:
            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
            scale, shift = torch.chunk(emb_out, 2, dim=1)
            h = out_norm(h) * (1 + scale) + shift
            h = out_rest(h)
        else:
            h = h + emb_out
            h = self.out_layers(h)
Patrick von Platen's avatar
up  
Patrick von Platen committed
342
343
344

        result = self.skip_connection(x) + h

Patrick von Platen's avatar
up  
Patrick von Platen committed
345
        # TODO(Patrick) Use for glide at later stage
Patrick von Platen's avatar
Patrick von Platen committed
346
        result = self.forward_2(orig_x, emb)
Patrick von Platen's avatar
up  
Patrick von Platen committed
347
348
        return result

Patrick von Platen's avatar
up  
Patrick von Platen committed
349
    def forward_2(self, x, temb):
Patrick von Platen's avatar
up  
Patrick von Platen committed
350
351
352
353
354
        if self.overwrite and not self.is_overwritten:
            self.set_weights()
            self.is_overwritten = True

        h = x
Patrick von Platen's avatar
up  
Patrick von Platen committed
355
356
        h = self.norm1(h)
        h = self.nonlinearity(h)
Patrick von Platen's avatar
up  
Patrick von Platen committed
357

Patrick von Platen's avatar
Patrick von Platen committed
358
359
360
361
        if self.up or self.down:
            x = self.x_upd(x)
            h = self.h_upd(h)

Patrick von Platen's avatar
up  
Patrick von Platen committed
362
363
        h = self.conv1(h)

Patrick von Platen's avatar
up  
Patrick von Platen committed
364
        temb = self.temb_proj(self.nonlinearity(temb))[:, :, None, None]
Patrick von Platen's avatar
up  
Patrick von Platen committed
365

Patrick von Platen's avatar
Patrick von Platen committed
366
367
        if self.time_embedding_norm == "scale_shift":
            scale, shift = torch.chunk(temb, 2, dim=1)
Patrick von Platen's avatar
up  
Patrick von Platen committed
368

Patrick von Platen's avatar
Patrick von Platen committed
369
370
371
372
373
374
375
            h = self.norm2(h)
            h = h + h * scale + shift
            h = self.nonlinearity(h)
        else:
            h = h + temb
            h = self.norm2(h)
            h = self.nonlinearity(h)
Patrick von Platen's avatar
up  
Patrick von Platen committed
376
377
378
379
380

        h = self.dropout(h)
        h = self.conv2(h)

        if self.in_channels != self.out_channels:
Patrick von Platen's avatar
Patrick von Platen committed
381
            x = self.nin_shortcut(x)
Patrick von Platen's avatar
up  
Patrick von Platen committed
382
383

        return x + h
384

Patrick von Platen's avatar
Patrick von Platen committed
385

Patrick von Platen's avatar
up  
Patrick von Platen committed
386
# unet.py, unet_grad_tts.py, unet_ldm.py
387
class ResnetBlock(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
388
389
390
391
392
393
394
395
396
397
398
399
    def __init__(
        self,
        *,
        in_channels,
        out_channels=None,
        conv_shortcut=False,
        dropout=0.0,
        temb_channels=512,
        groups=32,
        pre_norm=True,
        eps=1e-6,
        non_linearity="swish",
Patrick von Platen's avatar
Patrick von Platen committed
400
401
402
        time_embedding_norm="default",
        up=False,
        down=False,
Patrick von Platen's avatar
Patrick von Platen committed
403
        overwrite_for_grad_tts=False,
Patrick von Platen's avatar
up  
Patrick von Platen committed
404
        overwrite_for_ldm=False,
Patrick von Platen's avatar
Patrick von Platen committed
405
        overwrite_for_glide=False,
Patrick von Platen's avatar
Patrick von Platen committed
406
    ):
407
408
409
410
411
412
        super().__init__()
        self.pre_norm = pre_norm
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut
Patrick von Platen's avatar
Patrick von Platen committed
413
414
415
        self.time_embedding_norm = time_embedding_norm
        self.up = up
        self.down = down
416
417
418
419
420
421
422

        if self.pre_norm:
            self.norm1 = Normalize(in_channels, num_groups=groups, eps=eps)
        else:
            self.norm1 = Normalize(out_channels, num_groups=groups, eps=eps)

        self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
Patrick von Platen's avatar
Patrick von Platen committed
423
424
425

        if time_embedding_norm == "default":
            self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
Patrick von Platen's avatar
Patrick von Platen committed
426
        elif time_embedding_norm == "scale_shift":
Patrick von Platen's avatar
Patrick von Platen committed
427
428
            self.temb_proj = torch.nn.Linear(temb_channels, 2 * out_channels)

429
430
431
        self.norm2 = Normalize(out_channels, num_groups=groups, eps=eps)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
Patrick von Platen's avatar
up  
Patrick von Platen committed
432

433
434
435
436
        if non_linearity == "swish":
            self.nonlinearity = nonlinearity
        elif non_linearity == "mish":
            self.nonlinearity = Mish()
Patrick von Platen's avatar
up  
Patrick von Platen committed
437
438
        elif non_linearity == "silu":
            self.nonlinearity = nn.SiLU()
439

Patrick von Platen's avatar
Patrick von Platen committed
440
441
442
443
444
445
446
        if up:
            self.h_upd = Upsample(in_channels, use_conv=False, dims=2)
            self.x_upd = Upsample(in_channels, use_conv=False, dims=2)
        elif down:
            self.h_upd = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op")
            self.x_upd = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op")

447
448
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
Patrick von Platen's avatar
up  
Patrick von Platen committed
449
                # TODO(Patrick) - this branch is never used I think => can be deleted!
450
451
452
453
454
                self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
            else:
                self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)

        self.is_overwritten = False
Patrick von Platen's avatar
Patrick von Platen committed
455
        self.overwrite_for_glide = overwrite_for_glide
456
        self.overwrite_for_grad_tts = overwrite_for_grad_tts
Patrick von Platen's avatar
Patrick von Platen committed
457
        self.overwrite_for_ldm = overwrite_for_ldm or overwrite_for_glide
458
459
460
461
462
463
464
465
466
467
468
469
470
        if self.overwrite_for_grad_tts:
            dim = in_channels
            dim_out = out_channels
            time_emb_dim = temb_channels
            self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out))
            self.pre_norm = pre_norm

            self.block1 = Block(dim, dim_out, groups=groups)
            self.block2 = Block(dim_out, dim_out, groups=groups)
            if dim != dim_out:
                self.res_conv = torch.nn.Conv2d(dim, dim_out, 1)
            else:
                self.res_conv = torch.nn.Identity()
Patrick von Platen's avatar
up  
Patrick von Platen committed
471
472
        elif self.overwrite_for_ldm:
            dims = 2
Patrick von Platen's avatar
up  
Patrick von Platen committed
473
474
475
            #            eps = 1e-5
            #            non_linearity = "silu"
            #            overwrite_for_ldm
Patrick von Platen's avatar
up  
Patrick von Platen committed
476
477
478
479
480
481
482
483
484
485
486
487
488
            channels = in_channels
            emb_channels = temb_channels
            use_scale_shift_norm = False

            self.in_layers = nn.Sequential(
                normalization(channels, swish=1.0),
                nn.Identity(),
                conv_nd(dims, channels, self.out_channels, 3, padding=1),
            )
            self.emb_layers = nn.Sequential(
                nn.SiLU(),
                linear(
                    emb_channels,
Patrick von Platen's avatar
Patrick von Platen committed
489
                    2 * self.out_channels if self.time_embedding_norm == "scale_shift" else self.out_channels,
Patrick von Platen's avatar
up  
Patrick von Platen committed
490
491
492
493
494
495
496
497
498
499
                ),
            )
            self.out_layers = nn.Sequential(
                normalization(self.out_channels, swish=0.0 if use_scale_shift_norm else 1.0),
                nn.SiLU() if use_scale_shift_norm else nn.Identity(),
                nn.Dropout(p=dropout),
                zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)),
            )
            if self.out_channels == in_channels:
                self.skip_connection = nn.Identity()
Patrick von Platen's avatar
up  
Patrick von Platen committed
500
501
            #            elif use_conv:
            #                self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
Patrick von Platen's avatar
up  
Patrick von Platen committed
502
503
            else:
                self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

    def set_weights_grad_tts(self):
        self.conv1.weight.data = self.block1.block[0].weight.data
        self.conv1.bias.data = self.block1.block[0].bias.data
        self.norm1.weight.data = self.block1.block[1].weight.data
        self.norm1.bias.data = self.block1.block[1].bias.data

        self.conv2.weight.data = self.block2.block[0].weight.data
        self.conv2.bias.data = self.block2.block[0].bias.data
        self.norm2.weight.data = self.block2.block[1].weight.data
        self.norm2.bias.data = self.block2.block[1].bias.data

        self.temb_proj.weight.data = self.mlp[1].weight.data
        self.temb_proj.bias.data = self.mlp[1].bias.data

        if self.in_channels != self.out_channels:
            self.nin_shortcut.weight.data = self.res_conv.weight.data
            self.nin_shortcut.bias.data = self.res_conv.bias.data

Patrick von Platen's avatar
up  
Patrick von Platen committed
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
    def set_weights_ldm(self):
        self.norm1.weight.data = self.in_layers[0].weight.data
        self.norm1.bias.data = self.in_layers[0].bias.data

        self.conv1.weight.data = self.in_layers[-1].weight.data
        self.conv1.bias.data = self.in_layers[-1].bias.data

        self.temb_proj.weight.data = self.emb_layers[-1].weight.data
        self.temb_proj.bias.data = self.emb_layers[-1].bias.data

        self.norm2.weight.data = self.out_layers[0].weight.data
        self.norm2.bias.data = self.out_layers[0].bias.data

        self.conv2.weight.data = self.out_layers[-1].weight.data
        self.conv2.bias.data = self.out_layers[-1].bias.data

        if self.in_channels != self.out_channels:
            self.nin_shortcut.weight.data = self.skip_connection.weight.data
            self.nin_shortcut.bias.data = self.skip_connection.bias.data

    def forward(self, x, temb, mask=1.0):
544
545
546
        if self.overwrite_for_grad_tts and not self.is_overwritten:
            self.set_weights_grad_tts()
            self.is_overwritten = True
Patrick von Platen's avatar
up  
Patrick von Platen committed
547
548
549
        elif self.overwrite_for_ldm and not self.is_overwritten:
            self.set_weights_ldm()
            self.is_overwritten = True
550
551

        h = x
Patrick von Platen's avatar
up  
Patrick von Platen committed
552
        h = h * mask
553
554
555
556
        if self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)

Patrick von Platen's avatar
Patrick von Platen committed
557
        if self.up or self.down:
Patrick von Platen's avatar
Patrick von Platen committed
558
            x = self.x_upd(x)
Patrick von Platen's avatar
Patrick von Platen committed
559
560
            h = self.h_upd(h)

561
562
563
564
565
        h = self.conv1(h)

        if not self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)
Patrick von Platen's avatar
up  
Patrick von Platen committed
566
        h = h * mask
567

Patrick von Platen's avatar
Patrick von Platen committed
568
569
570
        temb = self.temb_proj(self.nonlinearity(temb))[:, :, None, None]
        if self.time_embedding_norm == "scale_shift":
            scale, shift = torch.chunk(temb, 2, dim=1)
571
572

            h = self.norm2(h)
Patrick von Platen's avatar
Patrick von Platen committed
573
            h = h + h * scale + shift
574
            h = self.nonlinearity(h)
Patrick von Platen's avatar
Patrick von Platen committed
575
576
577
578
579
580
        elif self.time_embedding_norm == "default":
            h = h + temb
            h = h * mask
            if self.pre_norm:
                h = self.norm2(h)
                h = self.nonlinearity(h)
581
582
583
584
585
586
587

        h = self.dropout(h)
        h = self.conv2(h)

        if not self.pre_norm:
            h = self.norm2(h)
            h = self.nonlinearity(h)
Patrick von Platen's avatar
up  
Patrick von Platen committed
588
        h = h * mask
589

Patrick von Platen's avatar
up  
Patrick von Platen committed
590
        x = x * mask
591
        if self.in_channels != self.out_channels:
Patrick von Platen's avatar
Patrick von Platen committed
592
593
594
595
#            if self.use_conv_shortcut:
#                x = self.conv_shortcut(x)
#            else:
            x = self.nin_shortcut(x)
596
597
598
599

        return x + h


Patrick von Platen's avatar
finish  
Patrick von Platen committed
600
# TODO(Patrick) - just there to convert the weights; can delete afterward
601
602
603
604
605
class Block(torch.nn.Module):
    def __init__(self, dim, dim_out, groups=8):
        super(Block, self).__init__()
        self.block = torch.nn.Sequential(
            torch.nn.Conv2d(dim, dim_out, 3, padding=1), torch.nn.GroupNorm(groups, dim_out), Mish()
Patrick von Platen's avatar
Patrick von Platen committed
606
607
        )

608
609
610
    def forward(self, x, mask):
        output = self.block(x * mask)
        return output * mask
Patrick von Platen's avatar
Patrick von Platen committed
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635


# unet_score_estimation.py
class ResnetBlockBigGANpp(nn.Module):
    def __init__(
        self,
        act,
        in_ch,
        out_ch=None,
        temb_dim=None,
        up=False,
        down=False,
        dropout=0.1,
        fir_kernel=(1, 3, 3, 1),
        skip_rescale=True,
        init_scale=0.0,
    ):
        super().__init__()

        out_ch = out_ch if out_ch else in_ch
        self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6)
        self.up = up
        self.down = down
        self.fir_kernel = fir_kernel

patil-suraj's avatar
patil-suraj committed
636
        self.Conv_0 = conv2d(in_ch, out_ch, kernel_size=3, padding=1)
Patrick von Platen's avatar
Patrick von Platen committed
637
638
        if temb_dim is not None:
            self.Dense_0 = nn.Linear(temb_dim, out_ch)
patil-suraj's avatar
patil-suraj committed
639
            self.Dense_0.weight.data = variance_scaling()(self.Dense_0.weight.shape)
Patrick von Platen's avatar
Patrick von Platen committed
640
641
642
643
            nn.init.zeros_(self.Dense_0.bias)

        self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6)
        self.Dropout_0 = nn.Dropout(dropout)
patil-suraj's avatar
patil-suraj committed
644
        self.Conv_1 = conv2d(out_ch, out_ch, init_scale=init_scale, kernel_size=3, padding=1)
Patrick von Platen's avatar
Patrick von Platen committed
645
        if in_ch != out_ch or up or down:
patil-suraj's avatar
style  
patil-suraj committed
646
            # 1x1 convolution with DDPM initialization.
patil-suraj's avatar
patil-suraj committed
647
            self.Conv_2 = conv2d(in_ch, out_ch, kernel_size=1, padding=0)
Patrick von Platen's avatar
Patrick von Platen committed
648
649
650
651
652
653
654
655
656
657

        self.skip_rescale = skip_rescale
        self.act = act
        self.in_ch = in_ch
        self.out_ch = out_ch

    def forward(self, x, temb=None):
        h = self.act(self.GroupNorm_0(x))

        if self.up:
658
659
            h = upsample_2d(h, self.fir_kernel, factor=2)
            x = upsample_2d(x, self.fir_kernel, factor=2)
Patrick von Platen's avatar
Patrick von Platen committed
660
        elif self.down:
661
662
            h = downsample_2d(h, self.fir_kernel, factor=2)
            x = downsample_2d(x, self.fir_kernel, factor=2)
Patrick von Platen's avatar
Patrick von Platen committed
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680

        h = self.Conv_0(h)
        # Add bias to each feature map conditioned on the time embedding
        if temb is not None:
            h += self.Dense_0(self.act(temb))[:, :, None, None]
        h = self.act(self.GroupNorm_1(h))
        h = self.Dropout_0(h)
        h = self.Conv_1(h)

        if self.in_ch != self.out_ch or self.up or self.down:
            x = self.Conv_2(x)

        if not self.skip_rescale:
            return x + h
        else:
            return (x + h) / np.sqrt(2.0)


681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
# unet_rl.py
class ResidualTemporalBlock(nn.Module):
    def __init__(self, inp_channels, out_channels, embed_dim, horizon, kernel_size=5):
        super().__init__()

        self.blocks = nn.ModuleList(
            [
                Conv1dBlock(inp_channels, out_channels, kernel_size),
                Conv1dBlock(out_channels, out_channels, kernel_size),
            ]
        )

        self.time_mlp = nn.Sequential(
            nn.Mish(),
            nn.Linear(embed_dim, out_channels),
            RearrangeDim(),
            #            Rearrange("batch t -> batch t 1"),
        )

        self.residual_conv = (
            nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity()
        )

    def forward(self, x, t):
        """
        x : [ batch_size x inp_channels x horizon ] t : [ batch_size x embed_dim ] returns: out : [ batch_size x
        out_channels x horizon ]
        """
        out = self.blocks[0](x) + self.time_mlp(t)
        out = self.blocks[1](out)
        return out + self.residual_conv(x)


Patrick von Platen's avatar
Patrick von Platen committed
714
715
716
717
# HELPER Modules


def normalization(channels, swish=0.0):
718
    """
Patrick von Platen's avatar
Patrick von Platen committed
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
    Make a standard normalization layer, with an optional swish activation.

    :param channels: number of input channels. :return: an nn.Module for normalization.
    """
    return GroupNorm32(num_channels=channels, num_groups=32, swish=swish)


class GroupNorm32(nn.GroupNorm):
    def __init__(self, num_groups, num_channels, swish, eps=1e-5):
        super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps)
        self.swish = swish

    def forward(self, x):
        y = super().forward(x.float()).to(x.dtype)
        if self.swish == 1.0:
            y = F.silu(y)
        elif self.swish:
            y = y * F.sigmoid(y * float(self.swish))
        return y


def linear(*args, **kwargs):
    """
    Create a linear module.
    """
    return nn.Linear(*args, **kwargs)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
750
    """
Patrick von Platen's avatar
Patrick von Platen committed
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
    for p in module.parameters():
        p.detach().zero_()
    return module


class Mish(torch.nn.Module):
    def forward(self, x):
        return x * torch.tanh(torch.nn.functional.softplus(x))


class Conv1dBlock(nn.Module):
    """
    Conv1d --> GroupNorm --> Mish
    """

    def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
767
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
768
769
770
771
772
773
774
775
776
777

        self.block = nn.Sequential(
            nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2),
            RearrangeDim(),
            #            Rearrange("batch channels horizon -> batch channels 1 horizon"),
            nn.GroupNorm(n_groups, out_channels),
            RearrangeDim(),
            #            Rearrange("batch channels 1 horizon -> batch channels horizon"),
            nn.Mish(),
        )
778
779

    def forward(self, x):
Patrick von Platen's avatar
Patrick von Platen committed
780
781
782
783
784
785
786
787
788
789
790
791
792
793
        return self.block(x)


class RearrangeDim(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, tensor):
        if len(tensor.shape) == 2:
            return tensor[:, :, None]
        if len(tensor.shape) == 3:
            return tensor[:, :, None, :]
        elif len(tensor.shape) == 4:
            return tensor[:, :, 0, :]
794
        else:
Patrick von Platen's avatar
Patrick von Platen committed
795
796
797
            raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.")


patil-suraj's avatar
patil-suraj committed
798
799
def conv2d(in_planes, out_planes, kernel_size=3, stride=1, bias=True, init_scale=1.0, padding=1):
    """nXn convolution with DDPM initialization."""
patil-suraj's avatar
style  
patil-suraj committed
800
    conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias)
patil-suraj's avatar
patil-suraj committed
801
    conv.weight.data = variance_scaling(init_scale)(conv.weight.data.shape)
Patrick von Platen's avatar
Patrick von Platen committed
802
803
804
805
    nn.init.zeros_(conv.bias)
    return conv


patil-suraj's avatar
patil-suraj committed
806
def variance_scaling(scale=1.0, in_axis=1, out_axis=0, dtype=torch.float32, device="cpu"):
Patrick von Platen's avatar
Patrick von Platen committed
807
    """Ported from JAX."""
patil-suraj's avatar
patil-suraj committed
808
    scale = 1e-10 if scale == 0 else scale
Patrick von Platen's avatar
Patrick von Platen committed
809
810
811
812
813
814
815
816
817

    def _compute_fans(shape, in_axis=1, out_axis=0):
        receptive_field_size = np.prod(shape) / shape[in_axis] / shape[out_axis]
        fan_in = shape[in_axis] * receptive_field_size
        fan_out = shape[out_axis] * receptive_field_size
        return fan_in, fan_out

    def init(shape, dtype=dtype, device=device):
        fan_in, fan_out = _compute_fans(shape, in_axis, out_axis)
patil-suraj's avatar
patil-suraj committed
818
        denominator = (fan_in + fan_out) / 2
Patrick von Platen's avatar
Patrick von Platen committed
819
        variance = scale / denominator
patil-suraj's avatar
patil-suraj committed
820
        return (torch.rand(*shape, dtype=dtype, device=device) * 2.0 - 1.0) * np.sqrt(3 * variance)
821

Patrick von Platen's avatar
Patrick von Platen committed
822
    return init
823
824


Patrick von Platen's avatar
Patrick von Platen committed
825
826
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
    return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
827
828


Patrick von Platen's avatar
Patrick von Platen committed
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
    _, channel, in_h, in_w = input.shape
    input = input.reshape(-1, in_h, in_w, 1)

    _, in_h, in_w, minor = input.shape
    kernel_h, kernel_w = kernel.shape

    out = input.view(-1, in_h, 1, in_w, 1, minor)
    out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
    out = out.view(-1, in_h * up_y, in_w * up_x, minor)

    out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
    out = out[
        :,
        max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
        max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
        :,
    ]

    out = out.permute(0, 3, 1, 2)
    out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
    w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
    out = F.conv2d(out, w)
    out = out.reshape(
        -1,
        minor,
        in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
        in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
    )
    out = out.permute(0, 2, 3, 1)
    out = out[:, ::down_y, ::down_x, :]

    out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
    out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1

    return out.view(-1, channel, out_h, out_w)


def upsample_2d(x, k=None, factor=2, gain=1):
    r"""Upsample a batch of 2D images with the given filter.

    Args:
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
    filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
    `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a:
    multiple of the upsampling factor.
        x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
          C]`.
        k: FIR filter of the shape `[firH, firW]` or `[firN]`
          (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
        factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).

    Returns:
        Tensor of the shape `[N, C, H * factor, W * factor]`
    """
    assert isinstance(factor, int) and factor >= 1
    if k is None:
        k = [1] * factor
    k = _setup_kernel(k) * (gain * (factor**2))
    p = k.shape[0] - factor
    return upfirdn2d(x, torch.tensor(k, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2))


def downsample_2d(x, k=None, factor=2, gain=1):
    r"""Downsample a batch of 2D images with the given filter.

    Args:
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
    given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
    specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
    shape is a multiple of the downsampling factor.
        x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
          C]`.
        k: FIR filter of the shape `[firH, firW]` or `[firN]`
          (separable). The default is `[1] * factor`, which corresponds to average pooling.
        factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).

    Returns:
        Tensor of the shape `[N, C, H // factor, W // factor]`
    """

    assert isinstance(factor, int) and factor >= 1
    if k is None:
        k = [1] * factor
    k = _setup_kernel(k) * gain
    p = k.shape[0] - factor
    return upfirdn2d(x, torch.tensor(k, device=x.device), down=factor, pad=((p + 1) // 2, p // 2))


def _setup_kernel(k):
    k = np.asarray(k, dtype=np.float32)
    if k.ndim == 1:
        k = np.outer(k, k)
    k /= np.sum(k)
    assert k.ndim == 2
    assert k.shape[0] == k.shape[1]
    return k