resnet.py 6.42 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import torch
import torch.nn as nn
import torch.nn.functional as F


def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")

patil-suraj's avatar
patil-suraj committed
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
def conv_transpose_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.ConvTranspose1d(*args, **kwargs)
    elif dims == 2:
        return nn.ConvTranspose2d(*args, **kwargs)
    elif dims == 3:
        return nn.ConvTranspose3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def Normalize(in_channels):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)


def nonlinearity(x, swish=1.0):
    # swish
    if swish == 1.0:
        return F.silu(x)
    else:
        return x * F.sigmoid(x * float(swish))


class Upsample(nn.Module):
    """
    An upsampling layer with an optional convolution.

    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 upsampling occurs in the inner-two dimensions.
    """

patil-suraj's avatar
patil-suraj committed
67
    def __init__(self, channels, use_conv=False, use_conv_transpose=False, dims=2, out_channels=None):
68
69
70
71
72
73
74
75
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        self.use_conv_transpose = use_conv_transpose

        if use_conv_transpose:
patil-suraj's avatar
patil-suraj committed
76
            self.conv = conv_transpose_nd(dims, channels, self.out_channels, 4, 2, 1)
77
78
79
80
81
82
83
        elif use_conv:
            self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.use_conv_transpose:
            return self.conv(x)
patil-suraj's avatar
patil-suraj committed
84

85
86
87
88
        if self.dims == 3:
            x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
        else:
            x = F.interpolate(x, scale_factor=2.0, mode="nearest")
patil-suraj's avatar
patil-suraj committed
89

90
91
        if self.use_conv:
            x = self.conv(x)
patil-suraj's avatar
patil-suraj committed
92

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        return x


class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.

    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 downsampling occurs in the inner-two dimensions.
    """

    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        self.padding = padding
        stride = 2 if dims != 3 else (1, 2, 2)
        if use_conv:
            self.down = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding)
        else:
            assert self.channels == self.out_channels
            self.down = avg_pool_nd(dims, kernel_size=stride, stride=stride)

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.use_conv and self.padding == 0 and self.dims == 2:
            pad = (0, 1, 0, 1)
            x = F.pad(x, pad, mode="constant", value=0)
        return self.down(x)


patil-suraj's avatar
patil-suraj committed
128
# TODO (patil-suraj): needs test
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
class Upsample1d(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.conv = nn.ConvTranspose1d(dim, dim, 4, 2, 1)

    def forward(self, x):
        return self.conv(x)


# class ResnetBlock(nn.Module):
#     def __init__(
#         self,
#         *,
#         in_channels,
#         out_channels=None,
#         conv_shortcut=False,
#         dropout,
#         temb_channels=512,
#         use_scale_shift_norm=False,
#     ):
#         super().__init__()
#         self.in_channels = in_channels
#         out_channels = in_channels if out_channels is None else out_channels
#         self.out_channels = out_channels
#         self.use_conv_shortcut = conv_shortcut
#         self.use_scale_shift_norm = use_scale_shift_norm

#         self.norm1 = Normalize(in_channels)
#         self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)

#         temp_out_channles = 2 * out_channels if use_scale_shift_norm else out_channels
#         self.temb_proj = torch.nn.Linear(temb_channels, temp_out_channles)

#         self.norm2 = Normalize(out_channels)
#         self.dropout = torch.nn.Dropout(dropout)
#         self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
#         if self.in_channels != self.out_channels:
#             if self.use_conv_shortcut:
#                 self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
#             else:
#                 self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)

#     def forward(self, x, temb):
#         h = x
#         h = self.norm1(h)
#         h = nonlinearity(h)
#         h = self.conv1(h)

#         # TODO: check if this broadcasting works correctly for 1D and 3D
#         temb = self.temb_proj(nonlinearity(temb))[:, :, None, None]

#         if self.use_scale_shift_norm:
#             out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
#             scale, shift = torch.chunk(temb, 2, dim=1)
#             h = self.norm2(h) * (1 + scale) + shift
#             h = out_rest(h)
#         else:
#             h = h + temb
#             h = self.norm2(h)
#             h = nonlinearity(h)
#             h = self.dropout(h)
#             h = self.conv2(h)

#         if self.in_channels != self.out_channels:
#             if self.use_conv_shortcut:
#                 x = self.conv_shortcut(x)
#             else:
#                 x = self.nin_shortcut(x)

#         return x + h