resnet.py 25.2 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
from abc import abstractmethod
patil-suraj's avatar
patil-suraj committed
2
from functools import partial
Patrick von Platen's avatar
Patrick von Platen committed
3
4

import numpy as np
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
import torch.nn as nn
import torch.nn.functional as F


def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")

patil-suraj's avatar
patil-suraj committed
35

36
37
38
39
40
41
42
43
44
45
46
47
48
def conv_transpose_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.ConvTranspose1d(*args, **kwargs)
    elif dims == 2:
        return nn.ConvTranspose2d(*args, **kwargs)
    elif dims == 3:
        return nn.ConvTranspose3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


49
50
def Normalize(in_channels, num_groups=32, eps=1e-6):
    return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=eps, affine=True)
51
52
53
54
55
56
57
58
59
60


def nonlinearity(x, swish=1.0):
    # swish
    if swish == 1.0:
        return F.silu(x)
    else:
        return x * F.sigmoid(x * float(swish))


Patrick von Platen's avatar
Patrick von Platen committed
61
62
63
64
65
66
67
68
69
70
71
72
class TimestepBlock(nn.Module):
    """
    Any module where forward() takes timestep embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x, emb):
        """
        Apply the module to `x` given `emb` timestep embeddings.
        """


73
74
75
76
class Upsample(nn.Module):
    """
    An upsampling layer with an optional convolution.

Patrick von Platen's avatar
Patrick von Platen committed
77
78
    :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
    applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
79
80
81
                 upsampling occurs in the inner-two dimensions.
    """

patil-suraj's avatar
patil-suraj committed
82
    def __init__(self, channels, use_conv=False, use_conv_transpose=False, dims=2, out_channels=None, name="conv"):
83
84
85
86
87
88
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        self.use_conv_transpose = use_conv_transpose
patil-suraj's avatar
patil-suraj committed
89
        self.name = name
90

patil-suraj's avatar
patil-suraj committed
91
        conv = None
92
        if use_conv_transpose:
patil-suraj's avatar
patil-suraj committed
93
            conv = conv_transpose_nd(dims, channels, self.out_channels, 4, 2, 1)
94
        elif use_conv:
patil-suraj's avatar
patil-suraj committed
95
96
97
98
99
100
            conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)

        if name == "conv":
            self.conv = conv
        else:
            self.Conv2d_0 = conv
101
102
103
104
105

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.use_conv_transpose:
            return self.conv(x)
patil-suraj's avatar
patil-suraj committed
106

107
108
109
110
        if self.dims == 3:
            x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
        else:
            x = F.interpolate(x, scale_factor=2.0, mode="nearest")
patil-suraj's avatar
patil-suraj committed
111

112
        if self.use_conv:
patil-suraj's avatar
patil-suraj committed
113
114
115
116
            if self.name == "conv":
                x = self.conv(x)
            else:
                x = self.Conv2d_0(x)
patil-suraj's avatar
patil-suraj committed
117

118
119
120
121
122
123
124
        return x


class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.

Patrick von Platen's avatar
Patrick von Platen committed
125
126
    :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
    applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
127
128
129
                 downsampling occurs in the inner-two dimensions.
    """

patil-suraj's avatar
patil-suraj committed
130
    def __init__(self, channels, use_conv=False, dims=2, out_channels=None, padding=1, name="conv"):
131
132
133
134
135
136
137
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        self.padding = padding
        stride = 2 if dims != 3 else (1, 2, 2)
patil-suraj's avatar
patil-suraj committed
138
139
        self.name = name

140
        if use_conv:
patil-suraj's avatar
patil-suraj committed
141
            conv = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding)
142
143
        else:
            assert self.channels == self.out_channels
patil-suraj's avatar
patil-suraj committed
144
145
146
147
            conv = avg_pool_nd(dims, kernel_size=stride, stride=stride)

        if name == "conv":
            self.conv = conv
patil-suraj's avatar
patil-suraj committed
148
149
        elif name == "Conv2d_0":
            self.Conv2d_0 = conv
patil-suraj's avatar
patil-suraj committed
150
151
        else:
            self.op = conv
152
153
154
155
156
157

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.use_conv and self.padding == 0 and self.dims == 2:
            pad = (0, 1, 0, 1)
            x = F.pad(x, pad, mode="constant", value=0)
patil-suraj's avatar
patil-suraj committed
158
159
160

        if self.name == "conv":
            return self.conv(x)
patil-suraj's avatar
patil-suraj committed
161
162
        elif self.name == "Conv2d_0":
            return self.Conv2d_0(x)
patil-suraj's avatar
patil-suraj committed
163
164
        else:
            return self.op(x)
165
166


Patrick von Platen's avatar
Patrick von Platen committed
167
168
169
170
171
172
173
174
# TODO (patil-suraj): needs test
# class Upsample1d(nn.Module):
#    def __init__(self, dim):
#        super().__init__()
#        self.conv = nn.ConvTranspose1d(dim, dim, 4, 2, 1)
#
#    def forward(self, x):
#        return self.conv(x)
175
176


Patrick von Platen's avatar
update  
Patrick von Platen committed
177
# unet.py, unet_grad_tts.py, unet_ldm.py, unet_glide.py, unet_score_vde.py
178
class ResnetBlock(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
179
180
181
182
183
184
185
186
187
    def __init__(
        self,
        *,
        in_channels,
        out_channels=None,
        conv_shortcut=False,
        dropout=0.0,
        temb_channels=512,
        groups=32,
Patrick von Platen's avatar
Patrick von Platen committed
188
        groups_out=None,
Patrick von Platen's avatar
Patrick von Platen committed
189
190
191
        pre_norm=True,
        eps=1e-6,
        non_linearity="swish",
Patrick von Platen's avatar
Patrick von Platen committed
192
        time_embedding_norm="default",
Patrick von Platen's avatar
Patrick von Platen committed
193
        kernel=None,
Patrick von Platen's avatar
Patrick von Platen committed
194
195
        output_scale_factor=1.0,
        use_nin_shortcut=None,
Patrick von Platen's avatar
Patrick von Platen committed
196
197
        up=False,
        down=False,
Patrick von Platen's avatar
Patrick von Platen committed
198
        overwrite_for_grad_tts=False,
Patrick von Platen's avatar
up  
Patrick von Platen committed
199
        overwrite_for_ldm=False,
Patrick von Platen's avatar
Patrick von Platen committed
200
        overwrite_for_glide=False,
Patrick von Platen's avatar
Patrick von Platen committed
201
        overwrite_for_score_vde=False,
Patrick von Platen's avatar
Patrick von Platen committed
202
    ):
203
204
205
206
207
208
        super().__init__()
        self.pre_norm = pre_norm
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut
Patrick von Platen's avatar
Patrick von Platen committed
209
210
211
        self.time_embedding_norm = time_embedding_norm
        self.up = up
        self.down = down
Patrick von Platen's avatar
Patrick von Platen committed
212
213
214
215
216
        self.output_scale_factor = output_scale_factor

        if groups_out is None:
            groups_out = groups

217
218
219
220
221
222
        if self.pre_norm:
            self.norm1 = Normalize(in_channels, num_groups=groups, eps=eps)
        else:
            self.norm1 = Normalize(out_channels, num_groups=groups, eps=eps)

        self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
Patrick von Platen's avatar
Patrick von Platen committed
223
224
225

        if time_embedding_norm == "default":
            self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
Patrick von Platen's avatar
Patrick von Platen committed
226
        elif time_embedding_norm == "scale_shift":
Patrick von Platen's avatar
Patrick von Platen committed
227
228
            self.temb_proj = torch.nn.Linear(temb_channels, 2 * out_channels)

Patrick von Platen's avatar
Patrick von Platen committed
229
        self.norm2 = Normalize(out_channels, num_groups=groups_out, eps=eps)
230
231
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
Patrick von Platen's avatar
up  
Patrick von Platen committed
232

233
234
235
236
        if non_linearity == "swish":
            self.nonlinearity = nonlinearity
        elif non_linearity == "mish":
            self.nonlinearity = Mish()
Patrick von Platen's avatar
up  
Patrick von Platen committed
237
238
        elif non_linearity == "silu":
            self.nonlinearity = nn.SiLU()
239

Patrick von Platen's avatar
Patrick von Platen committed
240
        self.upsample = self.downsample = None
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
        if self.up:
            if kernel == "fir":
                fir_kernel = (1, 3, 3, 1)
                self.upsample = lambda x: upsample_2d(x, k=fir_kernel)
            elif kernel == "sde_vp":
                self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
            else:
                self.upsample = Upsample(in_channels, use_conv=False, dims=2)
        elif self.down:
            if kernel == "fir":
                fir_kernel = (1, 3, 3, 1)
                self.downsample = lambda x: downsample_2d(x, k=fir_kernel)
            elif kernel == "sde_vp":
                self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2)
            else:
                self.downsample = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op")
Patrick von Platen's avatar
Patrick von Platen committed
257

258
        self.use_nin_shortcut = self.in_channels != self.out_channels if use_nin_shortcut is None else use_nin_shortcut
Patrick von Platen's avatar
Patrick von Platen committed
259

260
        self.nin_shortcut = None
Patrick von Platen's avatar
Patrick von Platen committed
261
        if self.use_nin_shortcut:
Patrick von Platen's avatar
Patrick von Platen committed
262
            self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
263

Patrick von Platen's avatar
Patrick von Platen committed
264
        # TODO(SURAJ, PATRICK): ALL OF THE FOLLOWING OF THE INIT METHOD CAN BE DELETED ONCE WEIGHTS ARE CONVERTED
265
        self.is_overwritten = False
Patrick von Platen's avatar
Patrick von Platen committed
266
        self.overwrite_for_glide = overwrite_for_glide
267
        self.overwrite_for_grad_tts = overwrite_for_grad_tts
Patrick von Platen's avatar
Patrick von Platen committed
268
        self.overwrite_for_ldm = overwrite_for_ldm or overwrite_for_glide
Patrick von Platen's avatar
Patrick von Platen committed
269
        self.overwrite_for_score_vde = overwrite_for_score_vde
270
271
272
273
274
275
276
277
278
279
280
281
282
        if self.overwrite_for_grad_tts:
            dim = in_channels
            dim_out = out_channels
            time_emb_dim = temb_channels
            self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out))
            self.pre_norm = pre_norm

            self.block1 = Block(dim, dim_out, groups=groups)
            self.block2 = Block(dim_out, dim_out, groups=groups)
            if dim != dim_out:
                self.res_conv = torch.nn.Conv2d(dim, dim_out, 1)
            else:
                self.res_conv = torch.nn.Identity()
Patrick von Platen's avatar
up  
Patrick von Platen committed
283
284
285
286
287
        elif self.overwrite_for_ldm:
            dims = 2
            channels = in_channels
            emb_channels = temb_channels
            use_scale_shift_norm = False
Patrick von Platen's avatar
Patrick von Platen committed
288
            non_linearity = "silu"
Patrick von Platen's avatar
up  
Patrick von Platen committed
289
290
291
292
293
294
295
296
297
298

            self.in_layers = nn.Sequential(
                normalization(channels, swish=1.0),
                nn.Identity(),
                conv_nd(dims, channels, self.out_channels, 3, padding=1),
            )
            self.emb_layers = nn.Sequential(
                nn.SiLU(),
                linear(
                    emb_channels,
Patrick von Platen's avatar
Patrick von Platen committed
299
                    2 * self.out_channels if self.time_embedding_norm == "scale_shift" else self.out_channels,
Patrick von Platen's avatar
up  
Patrick von Platen committed
300
301
302
303
304
305
306
307
308
309
310
311
                ),
            )
            self.out_layers = nn.Sequential(
                normalization(self.out_channels, swish=0.0 if use_scale_shift_norm else 1.0),
                nn.SiLU() if use_scale_shift_norm else nn.Identity(),
                nn.Dropout(p=dropout),
                zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)),
            )
            if self.out_channels == in_channels:
                self.skip_connection = nn.Identity()
            else:
                self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
Patrick von Platen's avatar
Patrick von Platen committed
312
313
314
315
316
317
318
319
        elif self.overwrite_for_score_vde:
            in_ch = in_channels
            out_ch = out_channels

            eps = 1e-6
            num_groups = min(in_ch // 4, 32)
            num_groups_out = min(out_ch // 4, 32)
            temb_dim = temb_channels
Patrick von Platen's avatar
Patrick von Platen committed
320
321
322
            #            output_scale_factor = np.sqrt(2.0)
            #            non_linearity = "silu"
            #            use_nin_shortcut = in_channels != out_channels or use_nin_shortcut = True
Patrick von Platen's avatar
Patrick von Platen committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

            self.GroupNorm_0 = nn.GroupNorm(num_groups=num_groups, num_channels=in_ch, eps=eps)
            self.up = up
            self.down = down
            self.Conv_0 = conv2d(in_ch, out_ch, kernel_size=3, padding=1)
            if temb_dim is not None:
                self.Dense_0 = nn.Linear(temb_dim, out_ch)
                self.Dense_0.weight.data = variance_scaling()(self.Dense_0.weight.shape)
                nn.init.zeros_(self.Dense_0.bias)

            self.GroupNorm_1 = nn.GroupNorm(num_groups=num_groups_out, num_channels=out_ch, eps=eps)
            self.Dropout_0 = nn.Dropout(dropout)
            self.Conv_1 = conv2d(out_ch, out_ch, init_scale=0.0, kernel_size=3, padding=1)
            if in_ch != out_ch or up or down:
                # 1x1 convolution with DDPM initialization.
                self.Conv_2 = conv2d(in_ch, out_ch, kernel_size=1, padding=0)

Patrick von Platen's avatar
Patrick von Platen committed
340
            #            self.skip_rescale = skip_rescale
Patrick von Platen's avatar
Patrick von Platen committed
341
342
343
344
345
            self.in_ch = in_ch
            self.out_ch = out_ch

            # TODO(Patrick) - move to main init
            self.is_overwritten = False
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

    def set_weights_grad_tts(self):
        self.conv1.weight.data = self.block1.block[0].weight.data
        self.conv1.bias.data = self.block1.block[0].bias.data
        self.norm1.weight.data = self.block1.block[1].weight.data
        self.norm1.bias.data = self.block1.block[1].bias.data

        self.conv2.weight.data = self.block2.block[0].weight.data
        self.conv2.bias.data = self.block2.block[0].bias.data
        self.norm2.weight.data = self.block2.block[1].weight.data
        self.norm2.bias.data = self.block2.block[1].bias.data

        self.temb_proj.weight.data = self.mlp[1].weight.data
        self.temb_proj.bias.data = self.mlp[1].bias.data

        if self.in_channels != self.out_channels:
            self.nin_shortcut.weight.data = self.res_conv.weight.data
            self.nin_shortcut.bias.data = self.res_conv.bias.data

Patrick von Platen's avatar
up  
Patrick von Platen committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
    def set_weights_ldm(self):
        self.norm1.weight.data = self.in_layers[0].weight.data
        self.norm1.bias.data = self.in_layers[0].bias.data

        self.conv1.weight.data = self.in_layers[-1].weight.data
        self.conv1.bias.data = self.in_layers[-1].bias.data

        self.temb_proj.weight.data = self.emb_layers[-1].weight.data
        self.temb_proj.bias.data = self.emb_layers[-1].bias.data

        self.norm2.weight.data = self.out_layers[0].weight.data
        self.norm2.bias.data = self.out_layers[0].bias.data

        self.conv2.weight.data = self.out_layers[-1].weight.data
        self.conv2.bias.data = self.out_layers[-1].bias.data

        if self.in_channels != self.out_channels:
            self.nin_shortcut.weight.data = self.skip_connection.weight.data
            self.nin_shortcut.bias.data = self.skip_connection.bias.data

Patrick von Platen's avatar
Patrick von Platen committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
    def set_weights_score_vde(self):
        self.conv1.weight.data = self.Conv_0.weight.data
        self.conv1.bias.data = self.Conv_0.bias.data
        self.norm1.weight.data = self.GroupNorm_0.weight.data
        self.norm1.bias.data = self.GroupNorm_0.bias.data

        self.conv2.weight.data = self.Conv_1.weight.data
        self.conv2.bias.data = self.Conv_1.bias.data
        self.norm2.weight.data = self.GroupNorm_1.weight.data
        self.norm2.bias.data = self.GroupNorm_1.bias.data

        self.temb_proj.weight.data = self.Dense_0.weight.data
        self.temb_proj.bias.data = self.Dense_0.bias.data

        if self.in_channels != self.out_channels or self.up or self.down:
            self.nin_shortcut.weight.data = self.Conv_2.weight.data
            self.nin_shortcut.bias.data = self.Conv_2.bias.data

Patrick von Platen's avatar
up  
Patrick von Platen committed
403
    def forward(self, x, temb, mask=1.0):
Patrick von Platen's avatar
Patrick von Platen committed
404
405
        # TODO(Patrick) eventually this class should be split into multiple classes
        # too many if else statements
406
407
408
        if self.overwrite_for_grad_tts and not self.is_overwritten:
            self.set_weights_grad_tts()
            self.is_overwritten = True
Patrick von Platen's avatar
up  
Patrick von Platen committed
409
410
411
        elif self.overwrite_for_ldm and not self.is_overwritten:
            self.set_weights_ldm()
            self.is_overwritten = True
Patrick von Platen's avatar
Patrick von Platen committed
412
413
414
        elif self.overwrite_for_score_vde and not self.is_overwritten:
            self.set_weights_score_vde()
            self.is_overwritten = True
415
416

        h = x
Patrick von Platen's avatar
up  
Patrick von Platen committed
417
        h = h * mask
418
419
420
421
        if self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)

Patrick von Platen's avatar
Patrick von Platen committed
422
423
424
425
426
427
        if self.upsample is not None:
            x = self.upsample(x)
            h = self.upsample(h)
        elif self.downsample is not None:
            x = self.downsample(x)
            h = self.downsample(h)
Patrick von Platen's avatar
Patrick von Platen committed
428

429
430
431
432
433
        h = self.conv1(h)

        if not self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)
Patrick von Platen's avatar
up  
Patrick von Platen committed
434
        h = h * mask
435

Patrick von Platen's avatar
Patrick von Platen committed
436
        temb = self.temb_proj(self.nonlinearity(temb))[:, :, None, None]
Patrick von Platen's avatar
Patrick von Platen committed
437

Patrick von Platen's avatar
Patrick von Platen committed
438
439
        if self.time_embedding_norm == "scale_shift":
            scale, shift = torch.chunk(temb, 2, dim=1)
440
441

            h = self.norm2(h)
Patrick von Platen's avatar
Patrick von Platen committed
442
            h = h + h * scale + shift
443
            h = self.nonlinearity(h)
Patrick von Platen's avatar
Patrick von Platen committed
444
445
446
447
448
449
        elif self.time_embedding_norm == "default":
            h = h + temb
            h = h * mask
            if self.pre_norm:
                h = self.norm2(h)
                h = self.nonlinearity(h)
450
451
452
453
454
455
456

        h = self.dropout(h)
        h = self.conv2(h)

        if not self.pre_norm:
            h = self.norm2(h)
            h = self.nonlinearity(h)
Patrick von Platen's avatar
up  
Patrick von Platen committed
457
        h = h * mask
458

Patrick von Platen's avatar
up  
Patrick von Platen committed
459
        x = x * mask
Patrick von Platen's avatar
Patrick von Platen committed
460
        if self.nin_shortcut is not None:
Patrick von Platen's avatar
Patrick von Platen committed
461
            x = self.nin_shortcut(x)
462

463
        return (x + h) / self.output_scale_factor
464
465


Patrick von Platen's avatar
finish  
Patrick von Platen committed
466
# TODO(Patrick) - just there to convert the weights; can delete afterward
467
468
469
470
471
class Block(torch.nn.Module):
    def __init__(self, dim, dim_out, groups=8):
        super(Block, self).__init__()
        self.block = torch.nn.Sequential(
            torch.nn.Conv2d(dim, dim_out, 3, padding=1), torch.nn.GroupNorm(groups, dim_out), Mish()
Patrick von Platen's avatar
Patrick von Platen committed
472
473
474
        )


475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# unet_rl.py
class ResidualTemporalBlock(nn.Module):
    def __init__(self, inp_channels, out_channels, embed_dim, horizon, kernel_size=5):
        super().__init__()

        self.blocks = nn.ModuleList(
            [
                Conv1dBlock(inp_channels, out_channels, kernel_size),
                Conv1dBlock(out_channels, out_channels, kernel_size),
            ]
        )

        self.time_mlp = nn.Sequential(
            nn.Mish(),
            nn.Linear(embed_dim, out_channels),
            RearrangeDim(),
            #            Rearrange("batch t -> batch t 1"),
        )

        self.residual_conv = (
            nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity()
        )

    def forward(self, x, t):
        """
        x : [ batch_size x inp_channels x horizon ] t : [ batch_size x embed_dim ] returns: out : [ batch_size x
        out_channels x horizon ]
        """
        out = self.blocks[0](x) + self.time_mlp(t)
        out = self.blocks[1](out)
        return out + self.residual_conv(x)


Patrick von Platen's avatar
Patrick von Platen committed
508
509
510
511
# HELPER Modules


def normalization(channels, swish=0.0):
512
    """
Patrick von Platen's avatar
Patrick von Platen committed
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
    Make a standard normalization layer, with an optional swish activation.

    :param channels: number of input channels. :return: an nn.Module for normalization.
    """
    return GroupNorm32(num_channels=channels, num_groups=32, swish=swish)


class GroupNorm32(nn.GroupNorm):
    def __init__(self, num_groups, num_channels, swish, eps=1e-5):
        super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps)
        self.swish = swish

    def forward(self, x):
        y = super().forward(x.float()).to(x.dtype)
        if self.swish == 1.0:
            y = F.silu(y)
        elif self.swish:
            y = y * F.sigmoid(y * float(self.swish))
        return y


def linear(*args, **kwargs):
    """
    Create a linear module.
    """
    return nn.Linear(*args, **kwargs)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
544
    """
Patrick von Platen's avatar
Patrick von Platen committed
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
    for p in module.parameters():
        p.detach().zero_()
    return module


class Mish(torch.nn.Module):
    def forward(self, x):
        return x * torch.tanh(torch.nn.functional.softplus(x))


class Conv1dBlock(nn.Module):
    """
    Conv1d --> GroupNorm --> Mish
    """

    def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
561
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
562
563
564
565
566
567
568
569
570
571

        self.block = nn.Sequential(
            nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2),
            RearrangeDim(),
            #            Rearrange("batch channels horizon -> batch channels 1 horizon"),
            nn.GroupNorm(n_groups, out_channels),
            RearrangeDim(),
            #            Rearrange("batch channels 1 horizon -> batch channels horizon"),
            nn.Mish(),
        )
572
573

    def forward(self, x):
Patrick von Platen's avatar
Patrick von Platen committed
574
575
576
577
578
579
580
581
582
583
584
585
586
587
        return self.block(x)


class RearrangeDim(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, tensor):
        if len(tensor.shape) == 2:
            return tensor[:, :, None]
        if len(tensor.shape) == 3:
            return tensor[:, :, None, :]
        elif len(tensor.shape) == 4:
            return tensor[:, :, 0, :]
588
        else:
Patrick von Platen's avatar
Patrick von Platen committed
589
590
591
            raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.")


patil-suraj's avatar
patil-suraj committed
592
593
def conv2d(in_planes, out_planes, kernel_size=3, stride=1, bias=True, init_scale=1.0, padding=1):
    """nXn convolution with DDPM initialization."""
patil-suraj's avatar
style  
patil-suraj committed
594
    conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias)
patil-suraj's avatar
patil-suraj committed
595
    conv.weight.data = variance_scaling(init_scale)(conv.weight.data.shape)
Patrick von Platen's avatar
Patrick von Platen committed
596
597
598
599
    nn.init.zeros_(conv.bias)
    return conv


patil-suraj's avatar
patil-suraj committed
600
def variance_scaling(scale=1.0, in_axis=1, out_axis=0, dtype=torch.float32, device="cpu"):
Patrick von Platen's avatar
Patrick von Platen committed
601
    """Ported from JAX."""
patil-suraj's avatar
patil-suraj committed
602
    scale = 1e-10 if scale == 0 else scale
Patrick von Platen's avatar
Patrick von Platen committed
603
604
605
606
607
608
609
610
611

    def _compute_fans(shape, in_axis=1, out_axis=0):
        receptive_field_size = np.prod(shape) / shape[in_axis] / shape[out_axis]
        fan_in = shape[in_axis] * receptive_field_size
        fan_out = shape[out_axis] * receptive_field_size
        return fan_in, fan_out

    def init(shape, dtype=dtype, device=device):
        fan_in, fan_out = _compute_fans(shape, in_axis, out_axis)
patil-suraj's avatar
patil-suraj committed
612
        denominator = (fan_in + fan_out) / 2
Patrick von Platen's avatar
Patrick von Platen committed
613
        variance = scale / denominator
patil-suraj's avatar
patil-suraj committed
614
        return (torch.rand(*shape, dtype=dtype, device=device) * 2.0 - 1.0) * np.sqrt(3 * variance)
615

Patrick von Platen's avatar
Patrick von Platen committed
616
    return init
617
618


Patrick von Platen's avatar
Patrick von Platen committed
619
620
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
    return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
621
622


Patrick von Platen's avatar
Patrick von Platen committed
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
    _, channel, in_h, in_w = input.shape
    input = input.reshape(-1, in_h, in_w, 1)

    _, in_h, in_w, minor = input.shape
    kernel_h, kernel_w = kernel.shape

    out = input.view(-1, in_h, 1, in_w, 1, minor)
    out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
    out = out.view(-1, in_h * up_y, in_w * up_x, minor)

    out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
    out = out[
        :,
        max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
        max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
        :,
    ]

    out = out.permute(0, 3, 1, 2)
    out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
    w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
    out = F.conv2d(out, w)
    out = out.reshape(
        -1,
        minor,
        in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
        in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
    )
    out = out.permute(0, 2, 3, 1)
    out = out[:, ::down_y, ::down_x, :]

    out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
    out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1

    return out.view(-1, channel, out_h, out_w)


def upsample_2d(x, k=None, factor=2, gain=1):
    r"""Upsample a batch of 2D images with the given filter.

    Args:
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
    filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
    `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a:
    multiple of the upsampling factor.
        x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
          C]`.
        k: FIR filter of the shape `[firH, firW]` or `[firN]`
          (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
        factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).

    Returns:
        Tensor of the shape `[N, C, H * factor, W * factor]`
    """
    assert isinstance(factor, int) and factor >= 1
    if k is None:
        k = [1] * factor
    k = _setup_kernel(k) * (gain * (factor**2))
    p = k.shape[0] - factor
    return upfirdn2d(x, torch.tensor(k, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2))


def downsample_2d(x, k=None, factor=2, gain=1):
    r"""Downsample a batch of 2D images with the given filter.

    Args:
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
    given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
    specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
    shape is a multiple of the downsampling factor.
        x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
          C]`.
        k: FIR filter of the shape `[firH, firW]` or `[firN]`
          (separable). The default is `[1] * factor`, which corresponds to average pooling.
        factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).

    Returns:
        Tensor of the shape `[N, C, H // factor, W // factor]`
    """

    assert isinstance(factor, int) and factor >= 1
    if k is None:
        k = [1] * factor
    k = _setup_kernel(k) * gain
    p = k.shape[0] - factor
    return upfirdn2d(x, torch.tensor(k, device=x.device), down=factor, pad=((p + 1) // 2, p // 2))


def _setup_kernel(k):
    k = np.asarray(k, dtype=np.float32)
    if k.ndim == 1:
        k = np.outer(k, k)
    k /= np.sum(k)
    assert k.ndim == 2
    assert k.shape[0] == k.shape[1]
    return k