resnet.py 34.1 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
from abc import abstractmethod

Patrick von Platen's avatar
Patrick von Platen committed
3
import functools
Patrick von Platen's avatar
Patrick von Platen committed
4
import numpy as np
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
import torch.nn as nn
import torch.nn.functional as F


def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")

patil-suraj's avatar
patil-suraj committed
35

36
37
38
39
40
41
42
43
44
45
46
47
48
def conv_transpose_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.ConvTranspose1d(*args, **kwargs)
    elif dims == 2:
        return nn.ConvTranspose2d(*args, **kwargs)
    elif dims == 3:
        return nn.ConvTranspose3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


49
50
def Normalize(in_channels, num_groups=32, eps=1e-6):
    return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=eps, affine=True)
51
52
53
54
55
56
57
58
59
60


def nonlinearity(x, swish=1.0):
    # swish
    if swish == 1.0:
        return F.silu(x)
    else:
        return x * F.sigmoid(x * float(swish))


Patrick von Platen's avatar
Patrick von Platen committed
61
62
63
64
65
66
67
68
69
70
71
72
class TimestepBlock(nn.Module):
    """
    Any module where forward() takes timestep embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x, emb):
        """
        Apply the module to `x` given `emb` timestep embeddings.
        """


73
74
75
76
class Upsample(nn.Module):
    """
    An upsampling layer with an optional convolution.

Patrick von Platen's avatar
Patrick von Platen committed
77
78
    :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
    applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
79
80
81
                 upsampling occurs in the inner-two dimensions.
    """

patil-suraj's avatar
patil-suraj committed
82
    def __init__(self, channels, use_conv=False, use_conv_transpose=False, dims=2, out_channels=None):
83
84
85
86
87
88
89
90
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        self.use_conv_transpose = use_conv_transpose

        if use_conv_transpose:
patil-suraj's avatar
patil-suraj committed
91
            self.conv = conv_transpose_nd(dims, channels, self.out_channels, 4, 2, 1)
92
93
94
95
96
97
98
        elif use_conv:
            self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.use_conv_transpose:
            return self.conv(x)
patil-suraj's avatar
patil-suraj committed
99

100
101
102
103
        if self.dims == 3:
            x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
        else:
            x = F.interpolate(x, scale_factor=2.0, mode="nearest")
patil-suraj's avatar
patil-suraj committed
104

105
106
        if self.use_conv:
            x = self.conv(x)
patil-suraj's avatar
patil-suraj committed
107

108
109
110
111
112
113
114
        return x


class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.

Patrick von Platen's avatar
Patrick von Platen committed
115
116
    :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
    applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
117
118
119
                 downsampling occurs in the inner-two dimensions.
    """

patil-suraj's avatar
patil-suraj committed
120
    def __init__(self, channels, use_conv=False, dims=2, out_channels=None, padding=1, name="conv"):
121
122
123
124
125
126
127
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        self.padding = padding
        stride = 2 if dims != 3 else (1, 2, 2)
patil-suraj's avatar
patil-suraj committed
128
129
        self.name = name

130
        if use_conv:
patil-suraj's avatar
patil-suraj committed
131
            conv = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding)
132
133
        else:
            assert self.channels == self.out_channels
patil-suraj's avatar
patil-suraj committed
134
135
136
137
138
139
            conv = avg_pool_nd(dims, kernel_size=stride, stride=stride)

        if name == "conv":
            self.conv = conv
        else:
            self.op = conv
140
141
142
143
144
145

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.use_conv and self.padding == 0 and self.dims == 2:
            pad = (0, 1, 0, 1)
            x = F.pad(x, pad, mode="constant", value=0)
patil-suraj's avatar
patil-suraj committed
146
147
148
149
150

        if self.name == "conv":
            return self.conv(x)
        else:
            return self.op(x)
151
152


Patrick von Platen's avatar
Patrick von Platen committed
153
154
155
156
157
158
159
160
# TODO (patil-suraj): needs test
# class Upsample1d(nn.Module):
#    def __init__(self, dim):
#        super().__init__()
#        self.conv = nn.ConvTranspose1d(dim, dim, 4, 2, 1)
#
#    def forward(self, x):
#        return self.conv(x)
161
162


Patrick von Platen's avatar
Patrick von Platen committed
163
# RESNETS
Patrick von Platen's avatar
up  
Patrick von Platen committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# unet_score_estimation.py
class ResnetBlockBigGANppNew(nn.Module):
    def __init__(
        self,
        act,
        in_ch,
        out_ch=None,
        temb_dim=None,
        up=False,
        down=False,
        dropout=0.1,
        fir_kernel=(1, 3, 3, 1),
        skip_rescale=True,
        init_scale=0.0,
        overwrite=True,
    ):
        super().__init__()

        out_ch = out_ch if out_ch else in_ch
        self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6)
        self.up = up
        self.down = down
        self.fir_kernel = fir_kernel

        self.Conv_0 = conv2d(in_ch, out_ch, kernel_size=3, padding=1)
        if temb_dim is not None:
            self.Dense_0 = nn.Linear(temb_dim, out_ch)
            self.Dense_0.weight.data = variance_scaling()(self.Dense_0.weight.shape)
            nn.init.zeros_(self.Dense_0.bias)

        self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6)
        self.Dropout_0 = nn.Dropout(dropout)
        self.Conv_1 = conv2d(out_ch, out_ch, init_scale=init_scale, kernel_size=3, padding=1)
        if in_ch != out_ch or up or down:
            # 1x1 convolution with DDPM initialization.
            self.Conv_2 = conv2d(in_ch, out_ch, kernel_size=1, padding=0)

        self.skip_rescale = skip_rescale
        self.act = act
        self.in_ch = in_ch
        self.out_ch = out_ch

        self.is_overwritten = False
        self.overwrite = overwrite
        if overwrite:
            self.output_scale_factor = np.sqrt(2.0)
            self.in_channels = in_channels = in_ch
            self.out_channels = out_channels = out_ch
            groups = min(in_ch // 4, 32)
            out_groups = min(out_ch // 4, 32)
            eps = 1e-6
            self.pre_norm = True
            temb_channels = temb_dim
            non_linearity = "silu"
            self.time_embedding_norm = time_embedding_norm = "default"

            if self.pre_norm:
                self.norm1 = Normalize(in_channels, num_groups=groups, eps=eps)
            else:
                self.norm1 = Normalize(out_channels, num_groups=groups, eps=eps)

            self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)

            if time_embedding_norm == "default":
                self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
            elif time_embedding_norm == "scale_shift":
                self.temb_proj = torch.nn.Linear(temb_channels, 2 * out_channels)

            self.norm2 = Normalize(out_channels, num_groups=out_groups, eps=eps)
            self.dropout = torch.nn.Dropout(dropout)
            self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)

            if non_linearity == "swish":
                self.nonlinearity = nonlinearity
            elif non_linearity == "mish":
                self.nonlinearity = Mish()
            elif non_linearity == "silu":
                self.nonlinearity = nn.SiLU()

            if up:
                self.h_upd = Upsample(in_channels, use_conv=False, dims=2)
                self.x_upd = Upsample(in_channels, use_conv=False, dims=2)
            elif down:
                self.h_upd = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op")
                self.x_upd = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op")

            if self.in_channels != self.out_channels or self.up or self.down:
                self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)

    def set_weights(self):
        self.conv1.weight.data = self.Conv_0.weight.data
        self.conv1.bias.data = self.Conv_0.bias.data
        self.norm1.weight.data = self.GroupNorm_0.weight.data
        self.norm1.bias.data = self.GroupNorm_0.bias.data

        self.conv2.weight.data = self.Conv_1.weight.data
        self.conv2.bias.data = self.Conv_1.bias.data
        self.norm2.weight.data = self.GroupNorm_1.weight.data
        self.norm2.bias.data = self.GroupNorm_1.bias.data

        self.temb_proj.weight.data = self.Dense_0.weight.data
        self.temb_proj.bias.data = self.Dense_0.bias.data

        if self.in_channels != self.out_channels or self.up or self.down:
            self.nin_shortcut.weight.data = self.Conv_2.weight.data
            self.nin_shortcut.bias.data = self.Conv_2.bias.data

    def forward(self, x, temb=None):
        if self.overwrite and not self.is_overwritten:
            self.set_weights()
            self.is_overwritten = True

        orig_x = x
        h = self.act(self.GroupNorm_0(x))

        if self.up:
            h = upsample_2d(h, self.fir_kernel, factor=2)
            x = upsample_2d(x, self.fir_kernel, factor=2)
        elif self.down:
            h = downsample_2d(h, self.fir_kernel, factor=2)
            x = downsample_2d(x, self.fir_kernel, factor=2)

        h = self.Conv_0(h)
        # Add bias to each feature map conditioned on the time embedding
        if temb is not None:
            h += self.Dense_0(self.act(temb))[:, :, None, None]
        h = self.act(self.GroupNorm_1(h))
        h = self.Dropout_0(h)
        h = self.Conv_1(h)

        if self.in_ch != self.out_ch or self.up or self.down:
            x = self.Conv_2(x)

        if not self.skip_rescale:
            raise ValueError("Is this branch run?!")
#            import ipdb; ipdb.set_trace()
            result = x + h
        else:
            result = (x + h) / np.sqrt(2.0)

        result_2 = self.forward_2(orig_x, temb)

        return result_2

    def forward_2(self, x, temb, mask=1.0):
        h = x
        h = h * mask
        if self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)

#        if self.up or self.down:
#            x = self.x_upd(x)
#            h = self.h_upd(h)
        if self.up:
            h = upsample_2d(h, self.fir_kernel, factor=2)
            x = upsample_2d(x, self.fir_kernel, factor=2)
        elif self.down:
            h = downsample_2d(h, self.fir_kernel, factor=2)
            x = downsample_2d(x, self.fir_kernel, factor=2)

        h = self.conv1(h)

        if not self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)
        h = h * mask

        temb = self.temb_proj(self.nonlinearity(temb))[:, :, None, None]

        if self.time_embedding_norm == "scale_shift":
            scale, shift = torch.chunk(temb, 2, dim=1)

            h = self.norm2(h)
            h = h + h * scale + shift
            h = self.nonlinearity(h)
        elif self.time_embedding_norm == "default":
            h = h + temb
            h = h * mask
            if self.pre_norm:
                h = self.norm2(h)
                h = self.nonlinearity(h)
        else:
            raise ValueError("Nananan nanana - don't go here!")

        h = self.dropout(h)
        h = self.conv2(h)

        if not self.pre_norm:
            h = self.norm2(h)
            h = self.nonlinearity(h)
        h = h * mask

        x = x * mask
#        if self.in_channels != self.out_channels:
        if self.in_channels != self.out_channels or self.up or self.down:
            x = self.nin_shortcut(x)

        result = x + h

        return result / self.output_scale_factor

Patrick von Platen's avatar
Patrick von Platen committed
366

Patrick von Platen's avatar
Patrick von Platen committed
367
# unet.py, unet_grad_tts.py, unet_ldm.py, unet_glide.py
368
class ResnetBlock(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
369
370
371
372
373
374
375
376
377
    def __init__(
        self,
        *,
        in_channels,
        out_channels=None,
        conv_shortcut=False,
        dropout=0.0,
        temb_channels=512,
        groups=32,
Patrick von Platen's avatar
Patrick von Platen committed
378
        groups_out=None,
Patrick von Platen's avatar
Patrick von Platen committed
379
380
381
        pre_norm=True,
        eps=1e-6,
        non_linearity="swish",
Patrick von Platen's avatar
Patrick von Platen committed
382
        time_embedding_norm="default",
Patrick von Platen's avatar
Patrick von Platen committed
383
384
385
        fir_kernel=(1, 3, 3, 1),
        output_scale_factor=1.0,
        use_nin_shortcut=None,
Patrick von Platen's avatar
Patrick von Platen committed
386
387
        up=False,
        down=False,
Patrick von Platen's avatar
Patrick von Platen committed
388
        overwrite_for_grad_tts=False,
Patrick von Platen's avatar
up  
Patrick von Platen committed
389
        overwrite_for_ldm=False,
Patrick von Platen's avatar
Patrick von Platen committed
390
        overwrite_for_glide=False,
Patrick von Platen's avatar
Patrick von Platen committed
391
        overwrite_for_score_vde=False,
Patrick von Platen's avatar
Patrick von Platen committed
392
    ):
393
394
395
396
397
398
        super().__init__()
        self.pre_norm = pre_norm
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut
Patrick von Platen's avatar
Patrick von Platen committed
399
400
401
        self.time_embedding_norm = time_embedding_norm
        self.up = up
        self.down = down
Patrick von Platen's avatar
Patrick von Platen committed
402
403
404
405
406
407
408
        self.output_scale_factor = output_scale_factor

        if groups_out is None:
            groups_out = groups

        if use_nin_shortcut is None:
            use_nin_shortcut = self.in_channels != self.out_channels
409
410
411
412
413
414
415

        if self.pre_norm:
            self.norm1 = Normalize(in_channels, num_groups=groups, eps=eps)
        else:
            self.norm1 = Normalize(out_channels, num_groups=groups, eps=eps)

        self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
Patrick von Platen's avatar
Patrick von Platen committed
416
417
418

        if time_embedding_norm == "default":
            self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
Patrick von Platen's avatar
Patrick von Platen committed
419
        elif time_embedding_norm == "scale_shift":
Patrick von Platen's avatar
Patrick von Platen committed
420
421
            self.temb_proj = torch.nn.Linear(temb_channels, 2 * out_channels)

Patrick von Platen's avatar
Patrick von Platen committed
422
        self.norm2 = Normalize(out_channels, num_groups=groups_out, eps=eps)
423
424
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
Patrick von Platen's avatar
up  
Patrick von Platen committed
425

426
427
428
429
        if non_linearity == "swish":
            self.nonlinearity = nonlinearity
        elif non_linearity == "mish":
            self.nonlinearity = Mish()
Patrick von Platen's avatar
up  
Patrick von Platen committed
430
431
        elif non_linearity == "silu":
            self.nonlinearity = nn.SiLU()
432

Patrick von Platen's avatar
Patrick von Platen committed
433
434
435
436
437
438
439
440
441
442
443
#        if up:
#            self.h_upd = Upsample(in_channels, use_conv=False, dims=2)
#            self.x_upd = Upsample(in_channels, use_conv=False, dims=2)
#        elif down:
#            self.h_upd = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op")
#            self.x_upd = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op")
        self.upsample = Upsample(in_channels, use_conv=False, dims=2) if self.up else None
        self.downsample = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op") if self.down else None

        self.nin_shortcut = None
        if use_nin_shortcut:
Patrick von Platen's avatar
Patrick von Platen committed
444
            self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
445

Patrick von Platen's avatar
Patrick von Platen committed
446
        # TODO(SURAJ, PATRICK): ALL OF THE FOLLOWING OF THE INIT METHOD CAN BE DELETED ONCE WEIGHTS ARE CONVERTED
447
        self.is_overwritten = False
Patrick von Platen's avatar
Patrick von Platen committed
448
        self.overwrite_for_glide = overwrite_for_glide
449
        self.overwrite_for_grad_tts = overwrite_for_grad_tts
Patrick von Platen's avatar
Patrick von Platen committed
450
        self.overwrite_for_ldm = overwrite_for_ldm or overwrite_for_glide
Patrick von Platen's avatar
Patrick von Platen committed
451
        self.overwrite_for_score_vde = overwrite_for_score_vde
452
453
454
455
456
457
458
459
460
461
462
463
464
        if self.overwrite_for_grad_tts:
            dim = in_channels
            dim_out = out_channels
            time_emb_dim = temb_channels
            self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out))
            self.pre_norm = pre_norm

            self.block1 = Block(dim, dim_out, groups=groups)
            self.block2 = Block(dim_out, dim_out, groups=groups)
            if dim != dim_out:
                self.res_conv = torch.nn.Conv2d(dim, dim_out, 1)
            else:
                self.res_conv = torch.nn.Identity()
Patrick von Platen's avatar
up  
Patrick von Platen committed
465
466
467
468
469
        elif self.overwrite_for_ldm:
            dims = 2
            channels = in_channels
            emb_channels = temb_channels
            use_scale_shift_norm = False
Patrick von Platen's avatar
Patrick von Platen committed
470
            non_linearity = "silu"
Patrick von Platen's avatar
up  
Patrick von Platen committed
471
472
473
474
475
476
477
478
479
480

            self.in_layers = nn.Sequential(
                normalization(channels, swish=1.0),
                nn.Identity(),
                conv_nd(dims, channels, self.out_channels, 3, padding=1),
            )
            self.emb_layers = nn.Sequential(
                nn.SiLU(),
                linear(
                    emb_channels,
Patrick von Platen's avatar
Patrick von Platen committed
481
                    2 * self.out_channels if self.time_embedding_norm == "scale_shift" else self.out_channels,
Patrick von Platen's avatar
up  
Patrick von Platen committed
482
483
484
485
486
487
488
489
490
491
492
493
                ),
            )
            self.out_layers = nn.Sequential(
                normalization(self.out_channels, swish=0.0 if use_scale_shift_norm else 1.0),
                nn.SiLU() if use_scale_shift_norm else nn.Identity(),
                nn.Dropout(p=dropout),
                zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)),
            )
            if self.out_channels == in_channels:
                self.skip_connection = nn.Identity()
            else:
                self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
Patrick von Platen's avatar
Patrick von Platen committed
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
        elif self.overwrite_for_score_vde:
            in_ch = in_channels
            out_ch = out_channels

            eps = 1e-6
            num_groups = min(in_ch // 4, 32)
            num_groups_out = min(out_ch // 4, 32)
            temb_dim = temb_channels
#            output_scale_factor = np.sqrt(2.0)
#            non_linearity = "silu"
#            use_nin_shortcut = in_channels != out_channels or use_nin_shortcut = True

            self.GroupNorm_0 = nn.GroupNorm(num_groups=num_groups, num_channels=in_ch, eps=eps)
            self.up = up
            self.down = down
            self.fir_kernel = fir_kernel

            self.Conv_0 = conv2d(in_ch, out_ch, kernel_size=3, padding=1)
            if temb_dim is not None:
                self.Dense_0 = nn.Linear(temb_dim, out_ch)
                self.Dense_0.weight.data = variance_scaling()(self.Dense_0.weight.shape)
                nn.init.zeros_(self.Dense_0.bias)

            self.GroupNorm_1 = nn.GroupNorm(num_groups=num_groups_out, num_channels=out_ch, eps=eps)
            self.Dropout_0 = nn.Dropout(dropout)
            self.Conv_1 = conv2d(out_ch, out_ch, init_scale=0.0, kernel_size=3, padding=1)
            if in_ch != out_ch or up or down:
                # 1x1 convolution with DDPM initialization.
                self.Conv_2 = conv2d(in_ch, out_ch, kernel_size=1, padding=0)

#            self.skip_rescale = skip_rescale
            self.in_ch = in_ch
            self.out_ch = out_ch

            # TODO(Patrick) - move to main init
            self.upsample = functools.partial(upsample_2d, k=self.fir_kernel)
            self.downsample = functools.partial(downsample_2d, k=self.fir_kernel)

            self.is_overwritten = False
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

    def set_weights_grad_tts(self):
        self.conv1.weight.data = self.block1.block[0].weight.data
        self.conv1.bias.data = self.block1.block[0].bias.data
        self.norm1.weight.data = self.block1.block[1].weight.data
        self.norm1.bias.data = self.block1.block[1].bias.data

        self.conv2.weight.data = self.block2.block[0].weight.data
        self.conv2.bias.data = self.block2.block[0].bias.data
        self.norm2.weight.data = self.block2.block[1].weight.data
        self.norm2.bias.data = self.block2.block[1].bias.data

        self.temb_proj.weight.data = self.mlp[1].weight.data
        self.temb_proj.bias.data = self.mlp[1].bias.data

        if self.in_channels != self.out_channels:
            self.nin_shortcut.weight.data = self.res_conv.weight.data
            self.nin_shortcut.bias.data = self.res_conv.bias.data

Patrick von Platen's avatar
up  
Patrick von Platen committed
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
    def set_weights_ldm(self):
        self.norm1.weight.data = self.in_layers[0].weight.data
        self.norm1.bias.data = self.in_layers[0].bias.data

        self.conv1.weight.data = self.in_layers[-1].weight.data
        self.conv1.bias.data = self.in_layers[-1].bias.data

        self.temb_proj.weight.data = self.emb_layers[-1].weight.data
        self.temb_proj.bias.data = self.emb_layers[-1].bias.data

        self.norm2.weight.data = self.out_layers[0].weight.data
        self.norm2.bias.data = self.out_layers[0].bias.data

        self.conv2.weight.data = self.out_layers[-1].weight.data
        self.conv2.bias.data = self.out_layers[-1].bias.data

        if self.in_channels != self.out_channels:
            self.nin_shortcut.weight.data = self.skip_connection.weight.data
            self.nin_shortcut.bias.data = self.skip_connection.bias.data

Patrick von Platen's avatar
Patrick von Platen committed
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
    def set_weights_score_vde(self):
        self.conv1.weight.data = self.Conv_0.weight.data
        self.conv1.bias.data = self.Conv_0.bias.data
        self.norm1.weight.data = self.GroupNorm_0.weight.data
        self.norm1.bias.data = self.GroupNorm_0.bias.data

        self.conv2.weight.data = self.Conv_1.weight.data
        self.conv2.bias.data = self.Conv_1.bias.data
        self.norm2.weight.data = self.GroupNorm_1.weight.data
        self.norm2.bias.data = self.GroupNorm_1.bias.data

        self.temb_proj.weight.data = self.Dense_0.weight.data
        self.temb_proj.bias.data = self.Dense_0.bias.data

        if self.in_channels != self.out_channels or self.up or self.down:
            self.nin_shortcut.weight.data = self.Conv_2.weight.data
            self.nin_shortcut.bias.data = self.Conv_2.bias.data

Patrick von Platen's avatar
up  
Patrick von Platen committed
590
    def forward(self, x, temb, mask=1.0):
Patrick von Platen's avatar
Patrick von Platen committed
591
592
        # TODO(Patrick) eventually this class should be split into multiple classes
        # too many if else statements
593
594
595
        if self.overwrite_for_grad_tts and not self.is_overwritten:
            self.set_weights_grad_tts()
            self.is_overwritten = True
Patrick von Platen's avatar
up  
Patrick von Platen committed
596
597
598
        elif self.overwrite_for_ldm and not self.is_overwritten:
            self.set_weights_ldm()
            self.is_overwritten = True
Patrick von Platen's avatar
Patrick von Platen committed
599
600
601
        elif self.overwrite_for_score_vde and not self.is_overwritten:
            self.set_weights_score_vde()
            self.is_overwritten = True
602
603

        h = x
Patrick von Platen's avatar
up  
Patrick von Platen committed
604
        h = h * mask
605
606
607
608
        if self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)

Patrick von Platen's avatar
Patrick von Platen committed
609
610
611
612
613
614
        if self.upsample is not None:
            x = self.upsample(x)
            h = self.upsample(h)
        elif self.downsample is not None:
            x = self.downsample(x)
            h = self.downsample(h)
Patrick von Platen's avatar
Patrick von Platen committed
615

Patrick von Platen's avatar
Patrick von Platen committed
616
617
618
619
#        if self.up: or self.down:
#            x = self.x_upd(x)
#            h = self.h_upd(h)
#
620
621
622
623
624
        h = self.conv1(h)

        if not self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)
Patrick von Platen's avatar
up  
Patrick von Platen committed
625
        h = h * mask
626

Patrick von Platen's avatar
Patrick von Platen committed
627
        temb = self.temb_proj(self.nonlinearity(temb))[:, :, None, None]
Patrick von Platen's avatar
Patrick von Platen committed
628

Patrick von Platen's avatar
Patrick von Platen committed
629
630
        if self.time_embedding_norm == "scale_shift":
            scale, shift = torch.chunk(temb, 2, dim=1)
631
632

            h = self.norm2(h)
Patrick von Platen's avatar
Patrick von Platen committed
633
            h = h + h * scale + shift
634
            h = self.nonlinearity(h)
Patrick von Platen's avatar
Patrick von Platen committed
635
636
637
638
639
640
        elif self.time_embedding_norm == "default":
            h = h + temb
            h = h * mask
            if self.pre_norm:
                h = self.norm2(h)
                h = self.nonlinearity(h)
641
642
643
644
645
646
647

        h = self.dropout(h)
        h = self.conv2(h)

        if not self.pre_norm:
            h = self.norm2(h)
            h = self.nonlinearity(h)
Patrick von Platen's avatar
up  
Patrick von Platen committed
648
        h = h * mask
649

Patrick von Platen's avatar
up  
Patrick von Platen committed
650
        x = x * mask
Patrick von Platen's avatar
Patrick von Platen committed
651
        if self.nin_shortcut is not None:
Patrick von Platen's avatar
Patrick von Platen committed
652
            x = self.nin_shortcut(x)
653
654
655
656

        return x + h


Patrick von Platen's avatar
finish  
Patrick von Platen committed
657
# TODO(Patrick) - just there to convert the weights; can delete afterward
658
659
660
661
662
class Block(torch.nn.Module):
    def __init__(self, dim, dim_out, groups=8):
        super(Block, self).__init__()
        self.block = torch.nn.Sequential(
            torch.nn.Conv2d(dim, dim_out, 3, padding=1), torch.nn.GroupNorm(groups, dim_out), Mish()
Patrick von Platen's avatar
Patrick von Platen committed
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
        )


# unet_score_estimation.py
class ResnetBlockBigGANpp(nn.Module):
    def __init__(
        self,
        act,
        in_ch,
        out_ch=None,
        temb_dim=None,
        up=False,
        down=False,
        dropout=0.1,
        fir_kernel=(1, 3, 3, 1),
        skip_rescale=True,
        init_scale=0.0,
    ):
        super().__init__()

        out_ch = out_ch if out_ch else in_ch
        self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6)
        self.up = up
        self.down = down
        self.fir_kernel = fir_kernel

patil-suraj's avatar
patil-suraj committed
689
        self.Conv_0 = conv2d(in_ch, out_ch, kernel_size=3, padding=1)
Patrick von Platen's avatar
Patrick von Platen committed
690
691
        if temb_dim is not None:
            self.Dense_0 = nn.Linear(temb_dim, out_ch)
patil-suraj's avatar
patil-suraj committed
692
            self.Dense_0.weight.data = variance_scaling()(self.Dense_0.weight.shape)
Patrick von Platen's avatar
Patrick von Platen committed
693
694
695
696
            nn.init.zeros_(self.Dense_0.bias)

        self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6)
        self.Dropout_0 = nn.Dropout(dropout)
patil-suraj's avatar
patil-suraj committed
697
        self.Conv_1 = conv2d(out_ch, out_ch, init_scale=init_scale, kernel_size=3, padding=1)
Patrick von Platen's avatar
Patrick von Platen committed
698
        if in_ch != out_ch or up or down:
patil-suraj's avatar
style  
patil-suraj committed
699
            # 1x1 convolution with DDPM initialization.
patil-suraj's avatar
patil-suraj committed
700
            self.Conv_2 = conv2d(in_ch, out_ch, kernel_size=1, padding=0)
Patrick von Platen's avatar
Patrick von Platen committed
701
702
703
704
705
706
707
708
709
710

        self.skip_rescale = skip_rescale
        self.act = act
        self.in_ch = in_ch
        self.out_ch = out_ch

    def forward(self, x, temb=None):
        h = self.act(self.GroupNorm_0(x))

        if self.up:
711
712
            h = upsample_2d(h, self.fir_kernel, factor=2)
            x = upsample_2d(x, self.fir_kernel, factor=2)
Patrick von Platen's avatar
Patrick von Platen committed
713
        elif self.down:
714
715
            h = downsample_2d(h, self.fir_kernel, factor=2)
            x = downsample_2d(x, self.fir_kernel, factor=2)
Patrick von Platen's avatar
Patrick von Platen committed
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733

        h = self.Conv_0(h)
        # Add bias to each feature map conditioned on the time embedding
        if temb is not None:
            h += self.Dense_0(self.act(temb))[:, :, None, None]
        h = self.act(self.GroupNorm_1(h))
        h = self.Dropout_0(h)
        h = self.Conv_1(h)

        if self.in_ch != self.out_ch or self.up or self.down:
            x = self.Conv_2(x)

        if not self.skip_rescale:
            return x + h
        else:
            return (x + h) / np.sqrt(2.0)


734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
# unet_rl.py
class ResidualTemporalBlock(nn.Module):
    def __init__(self, inp_channels, out_channels, embed_dim, horizon, kernel_size=5):
        super().__init__()

        self.blocks = nn.ModuleList(
            [
                Conv1dBlock(inp_channels, out_channels, kernel_size),
                Conv1dBlock(out_channels, out_channels, kernel_size),
            ]
        )

        self.time_mlp = nn.Sequential(
            nn.Mish(),
            nn.Linear(embed_dim, out_channels),
            RearrangeDim(),
            #            Rearrange("batch t -> batch t 1"),
        )

        self.residual_conv = (
            nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity()
        )

    def forward(self, x, t):
        """
        x : [ batch_size x inp_channels x horizon ] t : [ batch_size x embed_dim ] returns: out : [ batch_size x
        out_channels x horizon ]
        """
        out = self.blocks[0](x) + self.time_mlp(t)
        out = self.blocks[1](out)
        return out + self.residual_conv(x)


Patrick von Platen's avatar
Patrick von Platen committed
767
768
769
770
# HELPER Modules


def normalization(channels, swish=0.0):
771
    """
Patrick von Platen's avatar
Patrick von Platen committed
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
    Make a standard normalization layer, with an optional swish activation.

    :param channels: number of input channels. :return: an nn.Module for normalization.
    """
    return GroupNorm32(num_channels=channels, num_groups=32, swish=swish)


class GroupNorm32(nn.GroupNorm):
    def __init__(self, num_groups, num_channels, swish, eps=1e-5):
        super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps)
        self.swish = swish

    def forward(self, x):
        y = super().forward(x.float()).to(x.dtype)
        if self.swish == 1.0:
            y = F.silu(y)
        elif self.swish:
            y = y * F.sigmoid(y * float(self.swish))
        return y


def linear(*args, **kwargs):
    """
    Create a linear module.
    """
    return nn.Linear(*args, **kwargs)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
803
    """
Patrick von Platen's avatar
Patrick von Platen committed
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
    for p in module.parameters():
        p.detach().zero_()
    return module


class Mish(torch.nn.Module):
    def forward(self, x):
        return x * torch.tanh(torch.nn.functional.softplus(x))


class Conv1dBlock(nn.Module):
    """
    Conv1d --> GroupNorm --> Mish
    """

    def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
820
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
821
822
823
824
825
826
827
828
829
830

        self.block = nn.Sequential(
            nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2),
            RearrangeDim(),
            #            Rearrange("batch channels horizon -> batch channels 1 horizon"),
            nn.GroupNorm(n_groups, out_channels),
            RearrangeDim(),
            #            Rearrange("batch channels 1 horizon -> batch channels horizon"),
            nn.Mish(),
        )
831
832

    def forward(self, x):
Patrick von Platen's avatar
Patrick von Platen committed
833
834
835
836
837
838
839
840
841
842
843
844
845
846
        return self.block(x)


class RearrangeDim(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, tensor):
        if len(tensor.shape) == 2:
            return tensor[:, :, None]
        if len(tensor.shape) == 3:
            return tensor[:, :, None, :]
        elif len(tensor.shape) == 4:
            return tensor[:, :, 0, :]
847
        else:
Patrick von Platen's avatar
Patrick von Platen committed
848
849
850
            raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.")


patil-suraj's avatar
patil-suraj committed
851
852
def conv2d(in_planes, out_planes, kernel_size=3, stride=1, bias=True, init_scale=1.0, padding=1):
    """nXn convolution with DDPM initialization."""
patil-suraj's avatar
style  
patil-suraj committed
853
    conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias)
patil-suraj's avatar
patil-suraj committed
854
    conv.weight.data = variance_scaling(init_scale)(conv.weight.data.shape)
Patrick von Platen's avatar
Patrick von Platen committed
855
856
857
858
    nn.init.zeros_(conv.bias)
    return conv


patil-suraj's avatar
patil-suraj committed
859
def variance_scaling(scale=1.0, in_axis=1, out_axis=0, dtype=torch.float32, device="cpu"):
Patrick von Platen's avatar
Patrick von Platen committed
860
    """Ported from JAX."""
patil-suraj's avatar
patil-suraj committed
861
    scale = 1e-10 if scale == 0 else scale
Patrick von Platen's avatar
Patrick von Platen committed
862
863
864
865
866
867
868
869
870

    def _compute_fans(shape, in_axis=1, out_axis=0):
        receptive_field_size = np.prod(shape) / shape[in_axis] / shape[out_axis]
        fan_in = shape[in_axis] * receptive_field_size
        fan_out = shape[out_axis] * receptive_field_size
        return fan_in, fan_out

    def init(shape, dtype=dtype, device=device):
        fan_in, fan_out = _compute_fans(shape, in_axis, out_axis)
patil-suraj's avatar
patil-suraj committed
871
        denominator = (fan_in + fan_out) / 2
Patrick von Platen's avatar
Patrick von Platen committed
872
        variance = scale / denominator
patil-suraj's avatar
patil-suraj committed
873
        return (torch.rand(*shape, dtype=dtype, device=device) * 2.0 - 1.0) * np.sqrt(3 * variance)
874

Patrick von Platen's avatar
Patrick von Platen committed
875
    return init
876
877


Patrick von Platen's avatar
Patrick von Platen committed
878
879
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
    return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
880
881


Patrick von Platen's avatar
Patrick von Platen committed
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
    _, channel, in_h, in_w = input.shape
    input = input.reshape(-1, in_h, in_w, 1)

    _, in_h, in_w, minor = input.shape
    kernel_h, kernel_w = kernel.shape

    out = input.view(-1, in_h, 1, in_w, 1, minor)
    out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
    out = out.view(-1, in_h * up_y, in_w * up_x, minor)

    out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
    out = out[
        :,
        max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
        max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
        :,
    ]

    out = out.permute(0, 3, 1, 2)
    out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
    w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
    out = F.conv2d(out, w)
    out = out.reshape(
        -1,
        minor,
        in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
        in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
    )
    out = out.permute(0, 2, 3, 1)
    out = out[:, ::down_y, ::down_x, :]

    out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
    out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1

    return out.view(-1, channel, out_h, out_w)


def upsample_2d(x, k=None, factor=2, gain=1):
    r"""Upsample a batch of 2D images with the given filter.

    Args:
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
    filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
    `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a:
    multiple of the upsampling factor.
        x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
          C]`.
        k: FIR filter of the shape `[firH, firW]` or `[firN]`
          (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
        factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).

    Returns:
        Tensor of the shape `[N, C, H * factor, W * factor]`
    """
    assert isinstance(factor, int) and factor >= 1
    if k is None:
        k = [1] * factor
    k = _setup_kernel(k) * (gain * (factor**2))
    p = k.shape[0] - factor
    return upfirdn2d(x, torch.tensor(k, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2))


def downsample_2d(x, k=None, factor=2, gain=1):
    r"""Downsample a batch of 2D images with the given filter.

    Args:
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
    given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
    specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
    shape is a multiple of the downsampling factor.
        x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
          C]`.
        k: FIR filter of the shape `[firH, firW]` or `[firN]`
          (separable). The default is `[1] * factor`, which corresponds to average pooling.
        factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).

    Returns:
        Tensor of the shape `[N, C, H // factor, W // factor]`
    """

    assert isinstance(factor, int) and factor >= 1
    if k is None:
        k = [1] * factor
    k = _setup_kernel(k) * gain
    p = k.shape[0] - factor
    return upfirdn2d(x, torch.tensor(k, device=x.device), down=factor, pad=((p + 1) // 2, p // 2))


def _setup_kernel(k):
    k = np.asarray(k, dtype=np.float32)
    if k.ndim == 1:
        k = np.outer(k, k)
    k /= np.sum(k)
    assert k.ndim == 2
    assert k.shape[0] == k.shape[1]
    return k