resnet.py 24.5 KB
Newer Older
patil-suraj's avatar
patil-suraj committed
1
from functools import partial
Patrick von Platen's avatar
Patrick von Platen committed
2
3

import numpy as np
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import torch
import torch.nn as nn
import torch.nn.functional as F


def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")

patil-suraj's avatar
patil-suraj committed
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
def conv_transpose_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.ConvTranspose1d(*args, **kwargs)
    elif dims == 2:
        return nn.ConvTranspose2d(*args, **kwargs)
    elif dims == 3:
        return nn.ConvTranspose3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


class Upsample(nn.Module):
    """
    An upsampling layer with an optional convolution.

Patrick von Platen's avatar
Patrick von Platen committed
52
53
    :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
    applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
54
55
56
                 upsampling occurs in the inner-two dimensions.
    """

patil-suraj's avatar
patil-suraj committed
57
    def __init__(self, channels, use_conv=False, use_conv_transpose=False, dims=2, out_channels=None, name="conv"):
58
59
60
61
62
63
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        self.use_conv_transpose = use_conv_transpose
patil-suraj's avatar
patil-suraj committed
64
        self.name = name
65

patil-suraj's avatar
patil-suraj committed
66
        conv = None
67
        if use_conv_transpose:
patil-suraj's avatar
patil-suraj committed
68
            conv = conv_transpose_nd(dims, channels, self.out_channels, 4, 2, 1)
69
        elif use_conv:
patil-suraj's avatar
patil-suraj committed
70
71
72
73
74
75
            conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)

        if name == "conv":
            self.conv = conv
        else:
            self.Conv2d_0 = conv
76
77
78
79
80

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.use_conv_transpose:
            return self.conv(x)
patil-suraj's avatar
patil-suraj committed
81

82
83
84
85
        if self.dims == 3:
            x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
        else:
            x = F.interpolate(x, scale_factor=2.0, mode="nearest")
patil-suraj's avatar
patil-suraj committed
86

87
        if self.use_conv:
patil-suraj's avatar
patil-suraj committed
88
89
90
91
            if self.name == "conv":
                x = self.conv(x)
            else:
                x = self.Conv2d_0(x)
patil-suraj's avatar
patil-suraj committed
92

93
94
95
96
97
98
99
        return x


class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.

Patrick von Platen's avatar
Patrick von Platen committed
100
101
    :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
    applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
102
103
104
                 downsampling occurs in the inner-two dimensions.
    """

patil-suraj's avatar
patil-suraj committed
105
    def __init__(self, channels, use_conv=False, dims=2, out_channels=None, padding=1, name="conv"):
106
107
108
109
110
111
112
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        self.padding = padding
        stride = 2 if dims != 3 else (1, 2, 2)
patil-suraj's avatar
patil-suraj committed
113
114
        self.name = name

115
        if use_conv:
patil-suraj's avatar
patil-suraj committed
116
            conv = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding)
117
118
        else:
            assert self.channels == self.out_channels
patil-suraj's avatar
patil-suraj committed
119
120
121
122
            conv = avg_pool_nd(dims, kernel_size=stride, stride=stride)

        if name == "conv":
            self.conv = conv
patil-suraj's avatar
patil-suraj committed
123
124
        elif name == "Conv2d_0":
            self.Conv2d_0 = conv
patil-suraj's avatar
patil-suraj committed
125
126
        else:
            self.op = conv
127
128
129
130
131
132

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.use_conv and self.padding == 0 and self.dims == 2:
            pad = (0, 1, 0, 1)
            x = F.pad(x, pad, mode="constant", value=0)
patil-suraj's avatar
patil-suraj committed
133
134
135

        if self.name == "conv":
            return self.conv(x)
patil-suraj's avatar
patil-suraj committed
136
137
        elif self.name == "Conv2d_0":
            return self.Conv2d_0(x)
patil-suraj's avatar
patil-suraj committed
138
139
        else:
            return self.op(x)
140
141


Patrick von Platen's avatar
Patrick von Platen committed
142
143
144
145
146
147
148
149
# TODO (patil-suraj): needs test
# class Upsample1d(nn.Module):
#    def __init__(self, dim):
#        super().__init__()
#        self.conv = nn.ConvTranspose1d(dim, dim, 4, 2, 1)
#
#    def forward(self, x):
#        return self.conv(x)
150
151


Patrick von Platen's avatar
update  
Patrick von Platen committed
152
# unet.py, unet_grad_tts.py, unet_ldm.py, unet_glide.py, unet_score_vde.py
Patrick von Platen's avatar
Patrick von Platen committed
153
# => All 2D-Resnets are included here now!
Patrick von Platen's avatar
Patrick von Platen committed
154
class ResnetBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
155
156
157
158
159
160
161
162
163
    def __init__(
        self,
        *,
        in_channels,
        out_channels=None,
        conv_shortcut=False,
        dropout=0.0,
        temb_channels=512,
        groups=32,
Patrick von Platen's avatar
Patrick von Platen committed
164
        groups_out=None,
Patrick von Platen's avatar
Patrick von Platen committed
165
166
167
        pre_norm=True,
        eps=1e-6,
        non_linearity="swish",
Patrick von Platen's avatar
Patrick von Platen committed
168
        time_embedding_norm="default",
Patrick von Platen's avatar
Patrick von Platen committed
169
        kernel=None,
Patrick von Platen's avatar
Patrick von Platen committed
170
171
        output_scale_factor=1.0,
        use_nin_shortcut=None,
Patrick von Platen's avatar
Patrick von Platen committed
172
173
        up=False,
        down=False,
Patrick von Platen's avatar
Patrick von Platen committed
174
        overwrite_for_grad_tts=False,
Patrick von Platen's avatar
up  
Patrick von Platen committed
175
        overwrite_for_ldm=False,
Patrick von Platen's avatar
Patrick von Platen committed
176
        overwrite_for_glide=False,
Patrick von Platen's avatar
Patrick von Platen committed
177
        overwrite_for_score_vde=False,
Patrick von Platen's avatar
Patrick von Platen committed
178
    ):
179
180
181
182
183
184
        super().__init__()
        self.pre_norm = pre_norm
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut
Patrick von Platen's avatar
Patrick von Platen committed
185
186
187
        self.time_embedding_norm = time_embedding_norm
        self.up = up
        self.down = down
Patrick von Platen's avatar
Patrick von Platen committed
188
189
190
191
192
        self.output_scale_factor = output_scale_factor

        if groups_out is None:
            groups_out = groups

193
        if self.pre_norm:
194
            self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
195
        else:
196
            self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps, affine=True)
197
198

        self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
Patrick von Platen's avatar
Patrick von Platen committed
199

200
        if time_embedding_norm == "default" and temb_channels > 0:
Patrick von Platen's avatar
Patrick von Platen committed
201
            self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
202
        elif time_embedding_norm == "scale_shift" and temb_channels > 0:
Patrick von Platen's avatar
Patrick von Platen committed
203
204
            self.temb_proj = torch.nn.Linear(temb_channels, 2 * out_channels)

205
        self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
206
207
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
Patrick von Platen's avatar
up  
Patrick von Platen committed
208

209
        if non_linearity == "swish":
210
            self.nonlinearity = lambda x: F.silu(x)
211
212
        elif non_linearity == "mish":
            self.nonlinearity = Mish()
Patrick von Platen's avatar
up  
Patrick von Platen committed
213
214
        elif non_linearity == "silu":
            self.nonlinearity = nn.SiLU()
215

Patrick von Platen's avatar
Patrick von Platen committed
216
        self.upsample = self.downsample = None
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
        if self.up:
            if kernel == "fir":
                fir_kernel = (1, 3, 3, 1)
                self.upsample = lambda x: upsample_2d(x, k=fir_kernel)
            elif kernel == "sde_vp":
                self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
            else:
                self.upsample = Upsample(in_channels, use_conv=False, dims=2)
        elif self.down:
            if kernel == "fir":
                fir_kernel = (1, 3, 3, 1)
                self.downsample = lambda x: downsample_2d(x, k=fir_kernel)
            elif kernel == "sde_vp":
                self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2)
            else:
                self.downsample = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op")
Patrick von Platen's avatar
Patrick von Platen committed
233

234
        self.use_nin_shortcut = self.in_channels != self.out_channels if use_nin_shortcut is None else use_nin_shortcut
Patrick von Platen's avatar
Patrick von Platen committed
235

236
        self.nin_shortcut = None
Patrick von Platen's avatar
Patrick von Platen committed
237
        if self.use_nin_shortcut:
Patrick von Platen's avatar
Patrick von Platen committed
238
            self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
239

Patrick von Platen's avatar
Patrick von Platen committed
240
        # TODO(SURAJ, PATRICK): ALL OF THE FOLLOWING OF THE INIT METHOD CAN BE DELETED ONCE WEIGHTS ARE CONVERTED
241
        self.is_overwritten = False
Patrick von Platen's avatar
Patrick von Platen committed
242
        self.overwrite_for_glide = overwrite_for_glide
243
        self.overwrite_for_grad_tts = overwrite_for_grad_tts
Patrick von Platen's avatar
Patrick von Platen committed
244
        self.overwrite_for_ldm = overwrite_for_ldm or overwrite_for_glide
Patrick von Platen's avatar
Patrick von Platen committed
245
        self.overwrite_for_score_vde = overwrite_for_score_vde
246
247
248
249
250
251
252
253
254
255
256
257
258
        if self.overwrite_for_grad_tts:
            dim = in_channels
            dim_out = out_channels
            time_emb_dim = temb_channels
            self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out))
            self.pre_norm = pre_norm

            self.block1 = Block(dim, dim_out, groups=groups)
            self.block2 = Block(dim_out, dim_out, groups=groups)
            if dim != dim_out:
                self.res_conv = torch.nn.Conv2d(dim, dim_out, 1)
            else:
                self.res_conv = torch.nn.Identity()
Patrick von Platen's avatar
up  
Patrick von Platen committed
259
260
261
262
263
        elif self.overwrite_for_ldm:
            dims = 2
            channels = in_channels
            emb_channels = temb_channels
            use_scale_shift_norm = False
Patrick von Platen's avatar
Patrick von Platen committed
264
            non_linearity = "silu"
Patrick von Platen's avatar
up  
Patrick von Platen committed
265
266
267
268
269
270
271
272
273
274

            self.in_layers = nn.Sequential(
                normalization(channels, swish=1.0),
                nn.Identity(),
                conv_nd(dims, channels, self.out_channels, 3, padding=1),
            )
            self.emb_layers = nn.Sequential(
                nn.SiLU(),
                linear(
                    emb_channels,
Patrick von Platen's avatar
Patrick von Platen committed
275
                    2 * self.out_channels if self.time_embedding_norm == "scale_shift" else self.out_channels,
Patrick von Platen's avatar
up  
Patrick von Platen committed
276
277
278
279
280
281
282
283
284
285
286
287
                ),
            )
            self.out_layers = nn.Sequential(
                normalization(self.out_channels, swish=0.0 if use_scale_shift_norm else 1.0),
                nn.SiLU() if use_scale_shift_norm else nn.Identity(),
                nn.Dropout(p=dropout),
                zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)),
            )
            if self.out_channels == in_channels:
                self.skip_connection = nn.Identity()
            else:
                self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
Patrick von Platen's avatar
Patrick von Platen committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
        elif self.overwrite_for_score_vde:
            in_ch = in_channels
            out_ch = out_channels

            eps = 1e-6
            num_groups = min(in_ch // 4, 32)
            num_groups_out = min(out_ch // 4, 32)
            temb_dim = temb_channels

            self.GroupNorm_0 = nn.GroupNorm(num_groups=num_groups, num_channels=in_ch, eps=eps)
            self.up = up
            self.down = down
            self.Conv_0 = conv2d(in_ch, out_ch, kernel_size=3, padding=1)
            if temb_dim is not None:
                self.Dense_0 = nn.Linear(temb_dim, out_ch)
                self.Dense_0.weight.data = variance_scaling()(self.Dense_0.weight.shape)
                nn.init.zeros_(self.Dense_0.bias)

            self.GroupNorm_1 = nn.GroupNorm(num_groups=num_groups_out, num_channels=out_ch, eps=eps)
            self.Dropout_0 = nn.Dropout(dropout)
            self.Conv_1 = conv2d(out_ch, out_ch, init_scale=0.0, kernel_size=3, padding=1)
            if in_ch != out_ch or up or down:
                # 1x1 convolution with DDPM initialization.
                self.Conv_2 = conv2d(in_ch, out_ch, kernel_size=1, padding=0)

            self.in_ch = in_ch
            self.out_ch = out_ch

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    def set_weights_grad_tts(self):
        self.conv1.weight.data = self.block1.block[0].weight.data
        self.conv1.bias.data = self.block1.block[0].bias.data
        self.norm1.weight.data = self.block1.block[1].weight.data
        self.norm1.bias.data = self.block1.block[1].bias.data

        self.conv2.weight.data = self.block2.block[0].weight.data
        self.conv2.bias.data = self.block2.block[0].bias.data
        self.norm2.weight.data = self.block2.block[1].weight.data
        self.norm2.bias.data = self.block2.block[1].bias.data

        self.temb_proj.weight.data = self.mlp[1].weight.data
        self.temb_proj.bias.data = self.mlp[1].bias.data

        if self.in_channels != self.out_channels:
            self.nin_shortcut.weight.data = self.res_conv.weight.data
            self.nin_shortcut.bias.data = self.res_conv.bias.data

Patrick von Platen's avatar
up  
Patrick von Platen committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
    def set_weights_ldm(self):
        self.norm1.weight.data = self.in_layers[0].weight.data
        self.norm1.bias.data = self.in_layers[0].bias.data

        self.conv1.weight.data = self.in_layers[-1].weight.data
        self.conv1.bias.data = self.in_layers[-1].bias.data

        self.temb_proj.weight.data = self.emb_layers[-1].weight.data
        self.temb_proj.bias.data = self.emb_layers[-1].bias.data

        self.norm2.weight.data = self.out_layers[0].weight.data
        self.norm2.bias.data = self.out_layers[0].bias.data

        self.conv2.weight.data = self.out_layers[-1].weight.data
        self.conv2.bias.data = self.out_layers[-1].bias.data

        if self.in_channels != self.out_channels:
            self.nin_shortcut.weight.data = self.skip_connection.weight.data
            self.nin_shortcut.bias.data = self.skip_connection.bias.data

Patrick von Platen's avatar
Patrick von Platen committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
    def set_weights_score_vde(self):
        self.conv1.weight.data = self.Conv_0.weight.data
        self.conv1.bias.data = self.Conv_0.bias.data
        self.norm1.weight.data = self.GroupNorm_0.weight.data
        self.norm1.bias.data = self.GroupNorm_0.bias.data

        self.conv2.weight.data = self.Conv_1.weight.data
        self.conv2.bias.data = self.Conv_1.bias.data
        self.norm2.weight.data = self.GroupNorm_1.weight.data
        self.norm2.bias.data = self.GroupNorm_1.bias.data

        self.temb_proj.weight.data = self.Dense_0.weight.data
        self.temb_proj.bias.data = self.Dense_0.bias.data

        if self.in_channels != self.out_channels or self.up or self.down:
            self.nin_shortcut.weight.data = self.Conv_2.weight.data
            self.nin_shortcut.bias.data = self.Conv_2.bias.data

Patrick von Platen's avatar
up  
Patrick von Platen committed
372
    def forward(self, x, temb, mask=1.0):
Patrick von Platen's avatar
Patrick von Platen committed
373
374
        # TODO(Patrick) eventually this class should be split into multiple classes
        # too many if else statements
375
376
377
        if self.overwrite_for_grad_tts and not self.is_overwritten:
            self.set_weights_grad_tts()
            self.is_overwritten = True
Patrick von Platen's avatar
up  
Patrick von Platen committed
378
379
380
        elif self.overwrite_for_ldm and not self.is_overwritten:
            self.set_weights_ldm()
            self.is_overwritten = True
Patrick von Platen's avatar
Patrick von Platen committed
381
382
383
        elif self.overwrite_for_score_vde and not self.is_overwritten:
            self.set_weights_score_vde()
            self.is_overwritten = True
384
385

        h = x
Patrick von Platen's avatar
up  
Patrick von Platen committed
386
        h = h * mask
387
388
389
390
        if self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)

Patrick von Platen's avatar
Patrick von Platen committed
391
392
393
394
395
396
        if self.upsample is not None:
            x = self.upsample(x)
            h = self.upsample(h)
        elif self.downsample is not None:
            x = self.downsample(x)
            h = self.downsample(h)
Patrick von Platen's avatar
Patrick von Platen committed
397

398
399
400
401
402
        h = self.conv1(h)

        if not self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)
Patrick von Platen's avatar
up  
Patrick von Platen committed
403
        h = h * mask
404

405
406
407
408
        if temb is not None:
            temb = self.temb_proj(self.nonlinearity(temb))[:, :, None, None]
        else:
            temb = 0
Patrick von Platen's avatar
Patrick von Platen committed
409

Patrick von Platen's avatar
Patrick von Platen committed
410
411
        if self.time_embedding_norm == "scale_shift":
            scale, shift = torch.chunk(temb, 2, dim=1)
412
413

            h = self.norm2(h)
Patrick von Platen's avatar
Patrick von Platen committed
414
            h = h + h * scale + shift
415
            h = self.nonlinearity(h)
Patrick von Platen's avatar
Patrick von Platen committed
416
417
418
419
420
421
        elif self.time_embedding_norm == "default":
            h = h + temb
            h = h * mask
            if self.pre_norm:
                h = self.norm2(h)
                h = self.nonlinearity(h)
422
423
424
425
426
427
428

        h = self.dropout(h)
        h = self.conv2(h)

        if not self.pre_norm:
            h = self.norm2(h)
            h = self.nonlinearity(h)
Patrick von Platen's avatar
up  
Patrick von Platen committed
429
        h = h * mask
430

Patrick von Platen's avatar
up  
Patrick von Platen committed
431
        x = x * mask
Patrick von Platen's avatar
Patrick von Platen committed
432
        if self.nin_shortcut is not None:
Patrick von Platen's avatar
Patrick von Platen committed
433
            x = self.nin_shortcut(x)
434

435
        return (x + h) / self.output_scale_factor
436
437


Patrick von Platen's avatar
finish  
Patrick von Platen committed
438
# TODO(Patrick) - just there to convert the weights; can delete afterward
439
440
441
442
443
class Block(torch.nn.Module):
    def __init__(self, dim, dim_out, groups=8):
        super(Block, self).__init__()
        self.block = torch.nn.Sequential(
            torch.nn.Conv2d(dim, dim_out, 3, padding=1), torch.nn.GroupNorm(groups, dim_out), Mish()
Patrick von Platen's avatar
Patrick von Platen committed
444
445
446
        )


447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# unet_rl.py
class ResidualTemporalBlock(nn.Module):
    def __init__(self, inp_channels, out_channels, embed_dim, horizon, kernel_size=5):
        super().__init__()

        self.blocks = nn.ModuleList(
            [
                Conv1dBlock(inp_channels, out_channels, kernel_size),
                Conv1dBlock(out_channels, out_channels, kernel_size),
            ]
        )

        self.time_mlp = nn.Sequential(
            nn.Mish(),
            nn.Linear(embed_dim, out_channels),
            RearrangeDim(),
            #            Rearrange("batch t -> batch t 1"),
        )

        self.residual_conv = (
            nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity()
        )

    def forward(self, x, t):
        """
        x : [ batch_size x inp_channels x horizon ] t : [ batch_size x embed_dim ] returns: out : [ batch_size x
        out_channels x horizon ]
        """
        out = self.blocks[0](x) + self.time_mlp(t)
        out = self.blocks[1](out)
        return out + self.residual_conv(x)


Patrick von Platen's avatar
Patrick von Platen committed
480
481
482
483
# HELPER Modules


def normalization(channels, swish=0.0):
484
    """
Patrick von Platen's avatar
Patrick von Platen committed
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
    Make a standard normalization layer, with an optional swish activation.

    :param channels: number of input channels. :return: an nn.Module for normalization.
    """
    return GroupNorm32(num_channels=channels, num_groups=32, swish=swish)


class GroupNorm32(nn.GroupNorm):
    def __init__(self, num_groups, num_channels, swish, eps=1e-5):
        super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps)
        self.swish = swish

    def forward(self, x):
        y = super().forward(x.float()).to(x.dtype)
        if self.swish == 1.0:
            y = F.silu(y)
        elif self.swish:
            y = y * F.sigmoid(y * float(self.swish))
        return y


def linear(*args, **kwargs):
    """
    Create a linear module.
    """
    return nn.Linear(*args, **kwargs)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
516
    """
Patrick von Platen's avatar
Patrick von Platen committed
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
    for p in module.parameters():
        p.detach().zero_()
    return module


class Mish(torch.nn.Module):
    def forward(self, x):
        return x * torch.tanh(torch.nn.functional.softplus(x))


class Conv1dBlock(nn.Module):
    """
    Conv1d --> GroupNorm --> Mish
    """

    def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
533
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
534
535
536
537
538
539
540
541
542
543

        self.block = nn.Sequential(
            nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2),
            RearrangeDim(),
            #            Rearrange("batch channels horizon -> batch channels 1 horizon"),
            nn.GroupNorm(n_groups, out_channels),
            RearrangeDim(),
            #            Rearrange("batch channels 1 horizon -> batch channels horizon"),
            nn.Mish(),
        )
544
545

    def forward(self, x):
Patrick von Platen's avatar
Patrick von Platen committed
546
547
548
549
550
551
552
553
554
555
556
557
558
559
        return self.block(x)


class RearrangeDim(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, tensor):
        if len(tensor.shape) == 2:
            return tensor[:, :, None]
        if len(tensor.shape) == 3:
            return tensor[:, :, None, :]
        elif len(tensor.shape) == 4:
            return tensor[:, :, 0, :]
560
        else:
Patrick von Platen's avatar
Patrick von Platen committed
561
562
563
            raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.")


patil-suraj's avatar
patil-suraj committed
564
565
def conv2d(in_planes, out_planes, kernel_size=3, stride=1, bias=True, init_scale=1.0, padding=1):
    """nXn convolution with DDPM initialization."""
patil-suraj's avatar
style  
patil-suraj committed
566
    conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias)
patil-suraj's avatar
patil-suraj committed
567
    conv.weight.data = variance_scaling(init_scale)(conv.weight.data.shape)
Patrick von Platen's avatar
Patrick von Platen committed
568
569
570
571
    nn.init.zeros_(conv.bias)
    return conv


patil-suraj's avatar
patil-suraj committed
572
def variance_scaling(scale=1.0, in_axis=1, out_axis=0, dtype=torch.float32, device="cpu"):
Patrick von Platen's avatar
Patrick von Platen committed
573
    """Ported from JAX."""
patil-suraj's avatar
patil-suraj committed
574
    scale = 1e-10 if scale == 0 else scale
Patrick von Platen's avatar
Patrick von Platen committed
575
576
577
578
579
580
581
582
583

    def _compute_fans(shape, in_axis=1, out_axis=0):
        receptive_field_size = np.prod(shape) / shape[in_axis] / shape[out_axis]
        fan_in = shape[in_axis] * receptive_field_size
        fan_out = shape[out_axis] * receptive_field_size
        return fan_in, fan_out

    def init(shape, dtype=dtype, device=device):
        fan_in, fan_out = _compute_fans(shape, in_axis, out_axis)
patil-suraj's avatar
patil-suraj committed
584
        denominator = (fan_in + fan_out) / 2
Patrick von Platen's avatar
Patrick von Platen committed
585
        variance = scale / denominator
patil-suraj's avatar
patil-suraj committed
586
        return (torch.rand(*shape, dtype=dtype, device=device) * 2.0 - 1.0) * np.sqrt(3 * variance)
587

Patrick von Platen's avatar
Patrick von Platen committed
588
    return init
589
590


Patrick von Platen's avatar
Patrick von Platen committed
591
592
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
    return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
593
594


Patrick von Platen's avatar
Patrick von Platen committed
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
    _, channel, in_h, in_w = input.shape
    input = input.reshape(-1, in_h, in_w, 1)

    _, in_h, in_w, minor = input.shape
    kernel_h, kernel_w = kernel.shape

    out = input.view(-1, in_h, 1, in_w, 1, minor)
    out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
    out = out.view(-1, in_h * up_y, in_w * up_x, minor)

    out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
    out = out[
        :,
        max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
        max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
        :,
    ]

    out = out.permute(0, 3, 1, 2)
    out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
    w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
    out = F.conv2d(out, w)
    out = out.reshape(
        -1,
        minor,
        in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
        in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
    )
    out = out.permute(0, 2, 3, 1)
    out = out[:, ::down_y, ::down_x, :]

    out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
    out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1

    return out.view(-1, channel, out_h, out_w)


def upsample_2d(x, k=None, factor=2, gain=1):
    r"""Upsample a batch of 2D images with the given filter.

    Args:
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
    filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
    `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a:
    multiple of the upsampling factor.
        x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
          C]`.
        k: FIR filter of the shape `[firH, firW]` or `[firN]`
          (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
        factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).

    Returns:
        Tensor of the shape `[N, C, H * factor, W * factor]`
    """
    assert isinstance(factor, int) and factor >= 1
    if k is None:
        k = [1] * factor
    k = _setup_kernel(k) * (gain * (factor**2))
    p = k.shape[0] - factor
    return upfirdn2d(x, torch.tensor(k, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2))


def downsample_2d(x, k=None, factor=2, gain=1):
    r"""Downsample a batch of 2D images with the given filter.

    Args:
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
    given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
    specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
    shape is a multiple of the downsampling factor.
        x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
          C]`.
        k: FIR filter of the shape `[firH, firW]` or `[firN]`
          (separable). The default is `[1] * factor`, which corresponds to average pooling.
        factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).

    Returns:
        Tensor of the shape `[N, C, H // factor, W // factor]`
    """

    assert isinstance(factor, int) and factor >= 1
    if k is None:
        k = [1] * factor
    k = _setup_kernel(k) * gain
    p = k.shape[0] - factor
    return upfirdn2d(x, torch.tensor(k, device=x.device), down=factor, pad=((p + 1) // 2, p // 2))


def _setup_kernel(k):
    k = np.asarray(k, dtype=np.float32)
    if k.ndim == 1:
        k = np.outer(k, k)
    k /= np.sum(k)
    assert k.ndim == 2
    assert k.shape[0] == k.shape[1]
    return k