"docs/source/vscode:/vscode.git/clone" did not exist on "51e43b6143969ea6570d5873cdcf3e430ac9b73e"
resnet.py 37.1 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
import string
from abc import abstractmethod

import numpy as np
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
import torch.nn as nn
import torch.nn.functional as F


def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")

patil-suraj's avatar
patil-suraj committed
35

36
37
38
39
40
41
42
43
44
45
46
47
48
def conv_transpose_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.ConvTranspose1d(*args, **kwargs)
    elif dims == 2:
        return nn.ConvTranspose2d(*args, **kwargs)
    elif dims == 3:
        return nn.ConvTranspose3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


49
50
def Normalize(in_channels, num_groups=32, eps=1e-6):
    return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=eps, affine=True)
51
52
53
54
55
56
57
58
59
60


def nonlinearity(x, swish=1.0):
    # swish
    if swish == 1.0:
        return F.silu(x)
    else:
        return x * F.sigmoid(x * float(swish))


Patrick von Platen's avatar
Patrick von Platen committed
61
62
63
64
65
66
67
68
69
70
71
72
class TimestepBlock(nn.Module):
    """
    Any module where forward() takes timestep embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x, emb):
        """
        Apply the module to `x` given `emb` timestep embeddings.
        """


73
74
75
76
class Upsample(nn.Module):
    """
    An upsampling layer with an optional convolution.

Patrick von Platen's avatar
Patrick von Platen committed
77
78
    :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
    applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
79
80
81
                 upsampling occurs in the inner-two dimensions.
    """

patil-suraj's avatar
patil-suraj committed
82
    def __init__(self, channels, use_conv=False, use_conv_transpose=False, dims=2, out_channels=None):
83
84
85
86
87
88
89
90
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        self.use_conv_transpose = use_conv_transpose

        if use_conv_transpose:
patil-suraj's avatar
patil-suraj committed
91
            self.conv = conv_transpose_nd(dims, channels, self.out_channels, 4, 2, 1)
92
93
94
95
96
97
98
        elif use_conv:
            self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.use_conv_transpose:
            return self.conv(x)
patil-suraj's avatar
patil-suraj committed
99

100
101
102
103
        if self.dims == 3:
            x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
        else:
            x = F.interpolate(x, scale_factor=2.0, mode="nearest")
patil-suraj's avatar
patil-suraj committed
104

105
106
        if self.use_conv:
            x = self.conv(x)
patil-suraj's avatar
patil-suraj committed
107

108
109
110
111
112
113
114
        return x


class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.

Patrick von Platen's avatar
Patrick von Platen committed
115
116
    :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
    applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
117
118
119
                 downsampling occurs in the inner-two dimensions.
    """

patil-suraj's avatar
patil-suraj committed
120
    def __init__(self, channels, use_conv=False, dims=2, out_channels=None, padding=1, name="conv"):
121
122
123
124
125
126
127
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        self.padding = padding
        stride = 2 if dims != 3 else (1, 2, 2)
patil-suraj's avatar
patil-suraj committed
128
129
        self.name = name

130
        if use_conv:
patil-suraj's avatar
patil-suraj committed
131
            conv = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding)
132
133
        else:
            assert self.channels == self.out_channels
patil-suraj's avatar
patil-suraj committed
134
135
136
137
138
139
            conv = avg_pool_nd(dims, kernel_size=stride, stride=stride)

        if name == "conv":
            self.conv = conv
        else:
            self.op = conv
140
141
142
143
144
145

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.use_conv and self.padding == 0 and self.dims == 2:
            pad = (0, 1, 0, 1)
            x = F.pad(x, pad, mode="constant", value=0)
patil-suraj's avatar
patil-suraj committed
146
147
148
149
150

        if self.name == "conv":
            return self.conv(x)
        else:
            return self.op(x)
151
152


Patrick von Platen's avatar
Patrick von Platen committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# class UNetUpsample(nn.Module):
#    def __init__(self, in_channels, with_conv):
#        super().__init__()
#        self.with_conv = with_conv
#        if self.with_conv:
#            self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
#
#    def forward(self, x):
#        x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
#        if self.with_conv:
#            x = self.conv(x)
#        return x
#
#
# class GlideUpsample(nn.Module):
#    """
# An upsampling layer with an optional convolution. # # :param channels: channels in the inputs and outputs. :param
Patrick von Platen's avatar
up  
Patrick von Platen committed
170
171
# use_conv: a bool determining if a convolution is # applied. :param dims: determines if the signal is 1D, 2D, or 3D. If
# 3D, then # upsampling occurs in the inner-two dimensions. #"""
Patrick von Platen's avatar
Patrick von Platen committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#
#    def __init__(self, channels, use_conv, dims=2, out_channels=None):
#        super().__init__()
#        self.channels = channels
#        self.out_channels = out_channels or channels
#        self.use_conv = use_conv
#        self.dims = dims
#        if use_conv:
#            self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)
#
#    def forward(self, x):
#        assert x.shape[1] == self.channels
#        if self.dims == 3:
#            x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
#        else:
#            x = F.interpolate(x, scale_factor=2, mode="nearest")
#        if self.use_conv:
#            x = self.conv(x)
#        return x
#
#
# class LDMUpsample(nn.Module):
#    """
# An upsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param #
Patrick von Platen's avatar
up  
Patrick von Platen committed
196
197
# use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. # If
# 3D, then # upsampling occurs in the inner-two dimensions. #"""
Patrick von Platen's avatar
Patrick von Platen committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#
#    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
#        super().__init__()
#        self.channels = channels
#        self.out_channels = out_channels or channels
#        self.use_conv = use_conv
#        self.dims = dims
#        if use_conv:
#            self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
#
#    def forward(self, x):
#        assert x.shape[1] == self.channels
#        if self.dims == 3:
#            x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
#        else:
#            x = F.interpolate(x, scale_factor=2, mode="nearest")
#        if self.use_conv:
#            x = self.conv(x)
#        return x
#
#
# class GradTTSUpsample(torch.nn.Module):
#    def __init__(self, dim):
#        super(Upsample, self).__init__()
#        self.conv = torch.nn.ConvTranspose2d(dim, dim, 4, 2, 1)
#
#    def forward(self, x):
#        return self.conv(x)
#
#
# TODO (patil-suraj): needs test
# class Upsample1d(nn.Module):
#    def __init__(self, dim):
#        super().__init__()
#        self.conv = nn.ConvTranspose1d(dim, dim, 4, 2, 1)
#
#    def forward(self, x):
#        return self.conv(x)
236
237


Patrick von Platen's avatar
Patrick von Platen committed
238
# RESNETS
Patrick von Platen's avatar
Patrick von Platen committed
239

Patrick von Platen's avatar
Patrick von Platen committed
240
241
# unet_glide.py & unet_ldm.py
class ResBlock(TimestepBlock):
242
    """
Patrick von Platen's avatar
Patrick von Platen committed
243
244
245
246
247
248
249
250
251
    A residual block that can optionally change the number of channels.

    :param channels: the number of input channels. :param emb_channels: the number of timestep embedding channels.
    :param dropout: the rate of dropout. :param out_channels: if specified, the number of out channels. :param
    use_conv: if True and out_channels is specified, use a spatial
        convolution instead of a smaller 1x1 convolution to change the channels in the skip connection.
    :param dims: determines if the signal is 1D, 2D, or 3D. :param use_checkpoint: if True, use gradient checkpointing
    on this module. :param up: if True, use this block for upsampling. :param down: if True, use this block for
    downsampling.
252
253
    """

Patrick von Platen's avatar
Patrick von Platen committed
254
255
256
257
258
259
260
261
262
263
264
265
266
    def __init__(
        self,
        channels,
        emb_channels,
        dropout,
        out_channels=None,
        use_conv=False,
        use_scale_shift_norm=False,
        dims=2,
        use_checkpoint=False,
        up=False,
        down=False,
    ):
267
268
        super().__init__()
        self.channels = channels
Patrick von Platen's avatar
Patrick von Platen committed
269
270
        self.emb_channels = emb_channels
        self.dropout = dropout
271
272
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
Patrick von Platen's avatar
Patrick von Platen committed
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        self.use_checkpoint = use_checkpoint
        self.use_scale_shift_norm = use_scale_shift_norm

        self.in_layers = nn.Sequential(
            normalization(channels, swish=1.0),
            nn.Identity(),
            conv_nd(dims, channels, self.out_channels, 3, padding=1),
        )

        self.updown = up or down

        if up:
            self.h_upd = Upsample(channels, use_conv=False, dims=dims)
            self.x_upd = Upsample(channels, use_conv=False, dims=dims)
        elif down:
            self.h_upd = Downsample(channels, use_conv=False, dims=dims, padding=1, name="op")
            self.x_upd = Downsample(channels, use_conv=False, dims=dims, padding=1, name="op")
        else:
            self.h_upd = self.x_upd = nn.Identity()

        self.emb_layers = nn.Sequential(
            nn.SiLU(),
            linear(
                emb_channels,
                2 * self.out_channels if use_scale_shift_norm else self.out_channels,
            ),
        )
        self.out_layers = nn.Sequential(
            normalization(self.out_channels, swish=0.0 if use_scale_shift_norm else 1.0),
            nn.SiLU() if use_scale_shift_norm else nn.Identity(),
            nn.Dropout(p=dropout),
            zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)),
        )

        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        elif use_conv:
            self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
        else:
            self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)

    def forward(self, x, emb):
        """
        Apply the block to a Tensor, conditioned on a timestep embedding.

        :param x: an [N x C x ...] Tensor of features. :param emb: an [N x emb_channels] Tensor of timestep embeddings.
        :return: an [N x C x ...] Tensor of outputs.
        """
        if self.updown:
            in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
            h = in_rest(x)
            h = self.h_upd(h)
            x = self.x_upd(x)
            h = in_conv(h)
        else:
            h = self.in_layers(x)
        emb_out = self.emb_layers(emb).type(h.dtype)
        while len(emb_out.shape) < len(h.shape):
            emb_out = emb_out[..., None]
        if self.use_scale_shift_norm:
            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
            scale, shift = torch.chunk(emb_out, 2, dim=1)
            h = out_norm(h) * (1 + scale) + shift
            h = out_rest(h)
        else:
            h = h + emb_out
            h = self.out_layers(h)
        return self.skip_connection(x) + h
341

Patrick von Platen's avatar
Patrick von Platen committed
342
343

# unet.py
344
class OLD_ResnetBlock(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
    def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512):
        super().__init__()
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut

        self.norm1 = Normalize(in_channels)
        self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
        self.norm2 = Normalize(out_channels)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
            else:
                self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)

    def forward(self, x, temb):
        h = x
        h = self.norm1(h)
        h = nonlinearity(h)
        h = self.conv1(h)

        h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]

        h = self.norm2(h)
        h = nonlinearity(h)
        h = self.dropout(h)
        h = self.conv2(h)

        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                x = self.conv_shortcut(x)
            else:
                x = self.nin_shortcut(x)

        return x + h


386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
class ResnetBlock(nn.Module):
    def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, temb_channels=512, groups=32, pre_norm=True, eps=1e-6, non_linearity="swish", overwrite_for_grad_tts=False):
        super().__init__()
        self.pre_norm = pre_norm
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut

        if self.pre_norm:
            self.norm1 = Normalize(in_channels, num_groups=groups, eps=eps)
        else:
            self.norm1 = Normalize(out_channels, num_groups=groups, eps=eps)

        self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
        self.norm2 = Normalize(out_channels, num_groups=groups, eps=eps)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
        if non_linearity == "swish":
            self.nonlinearity = nonlinearity
        elif non_linearity == "mish":
            self.nonlinearity = Mish()

        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
            else:
                self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)

        self.is_overwritten = False
        self.overwrite_for_grad_tts = overwrite_for_grad_tts
        if self.overwrite_for_grad_tts:
            dim = in_channels
            dim_out = out_channels
            time_emb_dim = temb_channels
            self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out))
            self.pre_norm = pre_norm

            self.block1 = Block(dim, dim_out, groups=groups)
            self.block2 = Block(dim_out, dim_out, groups=groups)
            if dim != dim_out:
                self.res_conv = torch.nn.Conv2d(dim, dim_out, 1)
            else:
                self.res_conv = torch.nn.Identity()

#        num_groups = 8
#        self.pre_norm = False
#        eps = 1e-5
#        non_linearity = "mish"

    def set_weights_grad_tts(self):
        self.conv1.weight.data = self.block1.block[0].weight.data
        self.conv1.bias.data = self.block1.block[0].bias.data
        self.norm1.weight.data = self.block1.block[1].weight.data
        self.norm1.bias.data = self.block1.block[1].bias.data

        self.conv2.weight.data = self.block2.block[0].weight.data
        self.conv2.bias.data = self.block2.block[0].bias.data
        self.norm2.weight.data = self.block2.block[1].weight.data
        self.norm2.bias.data = self.block2.block[1].bias.data

        self.temb_proj.weight.data = self.mlp[1].weight.data
        self.temb_proj.bias.data = self.mlp[1].bias.data

        if self.in_channels != self.out_channels:
            self.nin_shortcut.weight.data = self.res_conv.weight.data
            self.nin_shortcut.bias.data = self.res_conv.bias.data

    def forward(self, x, temb, mask=None):
        if not self.pre_norm:
            temp = mask
            mask = temb
            temb = temp

        if self.overwrite_for_grad_tts and not self.is_overwritten:
            self.set_weights_grad_tts()
            self.is_overwritten = True

        h = x
        h = h * mask if mask is not None else h
        if self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)

        h = self.conv1(h)

        if not self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)
        h = h * mask if mask is not None else h

        h = h + self.temb_proj(self.nonlinearity(temb))[:, :, None, None]

        h = h * mask if mask is not None else h
        if self.pre_norm:
            h = self.norm2(h)
            h = self.nonlinearity(h)

        h = self.dropout(h)
        h = self.conv2(h)

        if not self.pre_norm:
            h = self.norm2(h)
            h = self.nonlinearity(h)
        h = h * mask if mask is not None else h

        x = x * mask if mask is not None else x
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                x = self.conv_shortcut(x)
            else:
                x = self.nin_shortcut(x)

        return x + h


Patrick von Platen's avatar
Patrick von Platen committed
503
504
# unet_grad_tts.py
class ResnetBlockGradTTS(torch.nn.Module):
505
    def __init__(self, dim, dim_out, time_emb_dim, groups=8, eps=1e-6, overwrite=True, conv_shortcut=False, pre_norm=True):
Patrick von Platen's avatar
Patrick von Platen committed
506
507
        super(ResnetBlockGradTTS, self).__init__()
        self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out))
508
        self.pre_norm = pre_norm
Patrick von Platen's avatar
Patrick von Platen committed
509
510
511
512
513

        self.block1 = Block(dim, dim_out, groups=groups)
        self.block2 = Block(dim_out, dim_out, groups=groups)
        if dim != dim_out:
            self.res_conv = torch.nn.Conv2d(dim, dim_out, 1)
514
        else:
Patrick von Platen's avatar
Patrick von Platen committed
515
516
            self.res_conv = torch.nn.Identity()

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
        self.overwrite = overwrite
        if self.overwrite:
            in_channels = dim
            out_channels = dim_out
            temb_channels = time_emb_dim

            # To set via init
            self.pre_norm = False
            eps = 1e-5

            self.in_channels = in_channels
            out_channels = in_channels if out_channels is None else out_channels
            self.out_channels = out_channels
            self.use_conv_shortcut = conv_shortcut

            if self.pre_norm:
                self.norm1 = Normalize(in_channels, num_groups=groups, eps=eps)
            else:
                self.norm1 = Normalize(out_channels, num_groups=groups, eps=eps)

            self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
            self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
            self.norm2 = Normalize(out_channels, num_groups=groups, eps=eps)
            dropout = 0.0
            self.dropout = torch.nn.Dropout(dropout)
            self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
            if self.in_channels != self.out_channels:
                if self.use_conv_shortcut:
                    self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
                else:
                    self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)

            self.nonlinearity = Mish()

        self.is_overwritten = False

    def set_weights(self):
        self.conv1.weight.data = self.block1.block[0].weight.data
        self.conv1.bias.data = self.block1.block[0].bias.data
        self.norm1.weight.data = self.block1.block[1].weight.data
        self.norm1.bias.data = self.block1.block[1].bias.data

        self.conv2.weight.data = self.block2.block[0].weight.data
        self.conv2.bias.data = self.block2.block[0].bias.data
        self.norm2.weight.data = self.block2.block[1].weight.data
        self.norm2.bias.data = self.block2.block[1].bias.data

        self.temb_proj.weight.data = self.mlp[1].weight.data
        self.temb_proj.bias.data = self.mlp[1].bias.data

        if self.in_channels != self.out_channels:
            self.nin_shortcut.weight.data = self.res_conv.weight.data
            self.nin_shortcut.bias.data = self.res_conv.bias.data

Patrick von Platen's avatar
Patrick von Platen committed
571
572
573
574
575
    def forward(self, x, mask, time_emb):
        h = self.block1(x, mask)
        h += self.mlp(time_emb).unsqueeze(-1).unsqueeze(-1)
        h = self.block2(h, mask)
        output = h + self.res_conv(x * mask)
576
577

        output = self.forward_2(x, time_emb, mask=mask)
Patrick von Platen's avatar
Patrick von Platen committed
578
579
        return output

580
581
582
583
    def forward_2(self, x, temb, mask=None):
        if not self.is_overwritten:
            self.set_weights()
            self.is_overwritten = True
Patrick von Platen's avatar
Patrick von Platen committed
584

585
586
        if mask is None:
            mask = torch.ones_like(x)
Patrick von Platen's avatar
Patrick von Platen committed
587

588
        h = x
Patrick von Platen's avatar
Patrick von Platen committed
589

590
591
592
593
        h = h * mask
        if self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)
Patrick von Platen's avatar
Patrick von Platen committed
594

595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
        h = self.conv1(h)

        if not self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)
        h = h * mask

        h = h + self.temb_proj(self.nonlinearity(temb))[:, :, None, None]

        h = h * mask
        if self.pre_norm:
            h = self.norm2(h)
            h = self.nonlinearity(h)

        h = self.dropout(h)
        h = self.conv2(h)

        if not self.pre_norm:
            h = self.norm2(h)
            h = self.nonlinearity(h)
        h = h * mask

        x = x * mask
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                x = self.conv_shortcut(x)
            else:
                x = self.nin_shortcut(x)

        return x + h


class Block(torch.nn.Module):
    def __init__(self, dim, dim_out, groups=8):
        super(Block, self).__init__()
        self.block = torch.nn.Sequential(
            torch.nn.Conv2d(dim, dim_out, 3, padding=1), torch.nn.GroupNorm(groups, dim_out), Mish()
Patrick von Platen's avatar
Patrick von Platen committed
632
633
        )

634
635
636
    def forward(self, x, mask):
        output = self.block(x * mask)
        return output * mask
Patrick von Platen's avatar
Patrick von Platen committed
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769


# unet_score_estimation.py
class ResnetBlockBigGANpp(nn.Module):
    def __init__(
        self,
        act,
        in_ch,
        out_ch=None,
        temb_dim=None,
        up=False,
        down=False,
        dropout=0.1,
        fir=False,
        fir_kernel=(1, 3, 3, 1),
        skip_rescale=True,
        init_scale=0.0,
    ):
        super().__init__()

        out_ch = out_ch if out_ch else in_ch
        self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6)
        self.up = up
        self.down = down
        self.fir = fir
        self.fir_kernel = fir_kernel

        self.Conv_0 = conv3x3(in_ch, out_ch)
        if temb_dim is not None:
            self.Dense_0 = nn.Linear(temb_dim, out_ch)
            self.Dense_0.weight.data = default_init()(self.Dense_0.weight.shape)
            nn.init.zeros_(self.Dense_0.bias)

        self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6)
        self.Dropout_0 = nn.Dropout(dropout)
        self.Conv_1 = conv3x3(out_ch, out_ch, init_scale=init_scale)
        if in_ch != out_ch or up or down:
            self.Conv_2 = conv1x1(in_ch, out_ch)

        self.skip_rescale = skip_rescale
        self.act = act
        self.in_ch = in_ch
        self.out_ch = out_ch

    def forward(self, x, temb=None):
        h = self.act(self.GroupNorm_0(x))

        if self.up:
            if self.fir:
                h = upsample_2d(h, self.fir_kernel, factor=2)
                x = upsample_2d(x, self.fir_kernel, factor=2)
            else:
                h = naive_upsample_2d(h, factor=2)
                x = naive_upsample_2d(x, factor=2)
        elif self.down:
            if self.fir:
                h = downsample_2d(h, self.fir_kernel, factor=2)
                x = downsample_2d(x, self.fir_kernel, factor=2)
            else:
                h = naive_downsample_2d(h, factor=2)
                x = naive_downsample_2d(x, factor=2)

        h = self.Conv_0(h)
        # Add bias to each feature map conditioned on the time embedding
        if temb is not None:
            h += self.Dense_0(self.act(temb))[:, :, None, None]
        h = self.act(self.GroupNorm_1(h))
        h = self.Dropout_0(h)
        h = self.Conv_1(h)

        if self.in_ch != self.out_ch or self.up or self.down:
            x = self.Conv_2(x)

        if not self.skip_rescale:
            return x + h
        else:
            return (x + h) / np.sqrt(2.0)


# unet_score_estimation.py
class ResnetBlockDDPMpp(nn.Module):
    """ResBlock adapted from DDPM."""

    def __init__(
        self,
        act,
        in_ch,
        out_ch=None,
        temb_dim=None,
        conv_shortcut=False,
        dropout=0.1,
        skip_rescale=False,
        init_scale=0.0,
    ):
        super().__init__()
        out_ch = out_ch if out_ch else in_ch
        self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6)
        self.Conv_0 = conv3x3(in_ch, out_ch)
        if temb_dim is not None:
            self.Dense_0 = nn.Linear(temb_dim, out_ch)
            self.Dense_0.weight.data = default_init()(self.Dense_0.weight.data.shape)
            nn.init.zeros_(self.Dense_0.bias)
        self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6)
        self.Dropout_0 = nn.Dropout(dropout)
        self.Conv_1 = conv3x3(out_ch, out_ch, init_scale=init_scale)
        if in_ch != out_ch:
            if conv_shortcut:
                self.Conv_2 = conv3x3(in_ch, out_ch)
            else:
                self.NIN_0 = NIN(in_ch, out_ch)

        self.skip_rescale = skip_rescale
        self.act = act
        self.out_ch = out_ch
        self.conv_shortcut = conv_shortcut

    def forward(self, x, temb=None):
        h = self.act(self.GroupNorm_0(x))
        h = self.Conv_0(h)
        if temb is not None:
            h += self.Dense_0(self.act(temb))[:, :, None, None]
        h = self.act(self.GroupNorm_1(h))
        h = self.Dropout_0(h)
        h = self.Conv_1(h)
        if x.shape[1] != self.out_ch:
            if self.conv_shortcut:
                x = self.Conv_2(x)
            else:
                x = self.NIN_0(x)
        if not self.skip_rescale:
            return x + h
        else:
            return (x + h) / np.sqrt(2.0)
770
771


772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
# unet_rl.py
class ResidualTemporalBlock(nn.Module):
    def __init__(self, inp_channels, out_channels, embed_dim, horizon, kernel_size=5):
        super().__init__()

        self.blocks = nn.ModuleList(
            [
                Conv1dBlock(inp_channels, out_channels, kernel_size),
                Conv1dBlock(out_channels, out_channels, kernel_size),
            ]
        )

        self.time_mlp = nn.Sequential(
            nn.Mish(),
            nn.Linear(embed_dim, out_channels),
            RearrangeDim(),
            #            Rearrange("batch t -> batch t 1"),
        )

        self.residual_conv = (
            nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity()
        )

    def forward(self, x, t):
        """
        x : [ batch_size x inp_channels x horizon ] t : [ batch_size x embed_dim ] returns: out : [ batch_size x
        out_channels x horizon ]
        """
        out = self.blocks[0](x) + self.time_mlp(t)
        out = self.blocks[1](out)
        return out + self.residual_conv(x)


Patrick von Platen's avatar
Patrick von Platen committed
805
806
807
808
# HELPER Modules


def normalization(channels, swish=0.0):
809
    """
Patrick von Platen's avatar
Patrick von Platen committed
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
    Make a standard normalization layer, with an optional swish activation.

    :param channels: number of input channels. :return: an nn.Module for normalization.
    """
    return GroupNorm32(num_channels=channels, num_groups=32, swish=swish)


class GroupNorm32(nn.GroupNorm):
    def __init__(self, num_groups, num_channels, swish, eps=1e-5):
        super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps)
        self.swish = swish

    def forward(self, x):
        y = super().forward(x.float()).to(x.dtype)
        if self.swish == 1.0:
            y = F.silu(y)
        elif self.swish:
            y = y * F.sigmoid(y * float(self.swish))
        return y


def linear(*args, **kwargs):
    """
    Create a linear module.
    """
    return nn.Linear(*args, **kwargs)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
841
    """
Patrick von Platen's avatar
Patrick von Platen committed
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
    for p in module.parameters():
        p.detach().zero_()
    return module


class Mish(torch.nn.Module):
    def forward(self, x):
        return x * torch.tanh(torch.nn.functional.softplus(x))


class Conv1dBlock(nn.Module):
    """
    Conv1d --> GroupNorm --> Mish
    """

    def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
858
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
859
860
861
862
863
864
865
866
867
868

        self.block = nn.Sequential(
            nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2),
            RearrangeDim(),
            #            Rearrange("batch channels horizon -> batch channels 1 horizon"),
            nn.GroupNorm(n_groups, out_channels),
            RearrangeDim(),
            #            Rearrange("batch channels 1 horizon -> batch channels horizon"),
            nn.Mish(),
        )
869
870

    def forward(self, x):
Patrick von Platen's avatar
Patrick von Platen committed
871
872
873
874
875
876
877
878
879
880
881
882
883
884
        return self.block(x)


class RearrangeDim(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, tensor):
        if len(tensor.shape) == 2:
            return tensor[:, :, None]
        if len(tensor.shape) == 3:
            return tensor[:, :, None, :]
        elif len(tensor.shape) == 4:
            return tensor[:, :, 0, :]
885
        else:
Patrick von Platen's avatar
Patrick von Platen committed
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
            raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.")


def conv1x1(in_planes, out_planes, stride=1, bias=True, init_scale=1.0, padding=0):
    """1x1 convolution with DDPM initialization."""
    conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=padding, bias=bias)
    conv.weight.data = default_init(init_scale)(conv.weight.data.shape)
    nn.init.zeros_(conv.bias)
    return conv


def conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1.0, padding=1):
    """3x3 convolution with DDPM initialization."""
    conv = nn.Conv2d(
        in_planes, out_planes, kernel_size=3, stride=stride, padding=padding, dilation=dilation, bias=bias
    )
    conv.weight.data = default_init(init_scale)(conv.weight.data.shape)
    nn.init.zeros_(conv.bias)
    return conv


def default_init(scale=1.0):
    """The same initialization used in DDPM."""
    scale = 1e-10 if scale == 0 else scale
    return variance_scaling(scale, "fan_avg", "uniform")


def variance_scaling(scale, mode, distribution, in_axis=1, out_axis=0, dtype=torch.float32, device="cpu"):
    """Ported from JAX."""

    def _compute_fans(shape, in_axis=1, out_axis=0):
        receptive_field_size = np.prod(shape) / shape[in_axis] / shape[out_axis]
        fan_in = shape[in_axis] * receptive_field_size
        fan_out = shape[out_axis] * receptive_field_size
        return fan_in, fan_out

    def init(shape, dtype=dtype, device=device):
        fan_in, fan_out = _compute_fans(shape, in_axis, out_axis)
        if mode == "fan_in":
            denominator = fan_in
        elif mode == "fan_out":
            denominator = fan_out
        elif mode == "fan_avg":
            denominator = (fan_in + fan_out) / 2
        else:
            raise ValueError("invalid mode for variance scaling initializer: {}".format(mode))
        variance = scale / denominator
        if distribution == "normal":
            return torch.randn(*shape, dtype=dtype, device=device) * np.sqrt(variance)
        elif distribution == "uniform":
            return (torch.rand(*shape, dtype=dtype, device=device) * 2.0 - 1.0) * np.sqrt(3 * variance)
        else:
            raise ValueError("invalid distribution for variance scaling initializer")
939

Patrick von Platen's avatar
Patrick von Platen committed
940
    return init
941
942


Patrick von Platen's avatar
Patrick von Platen committed
943
944
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
    return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
945
946


Patrick von Platen's avatar
Patrick von Platen committed
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
    _, channel, in_h, in_w = input.shape
    input = input.reshape(-1, in_h, in_w, 1)

    _, in_h, in_w, minor = input.shape
    kernel_h, kernel_w = kernel.shape

    out = input.view(-1, in_h, 1, in_w, 1, minor)
    out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
    out = out.view(-1, in_h * up_y, in_w * up_x, minor)

    out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
    out = out[
        :,
        max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
        max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
        :,
    ]

    out = out.permute(0, 3, 1, 2)
    out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
    w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
    out = F.conv2d(out, w)
    out = out.reshape(
        -1,
        minor,
        in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
        in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
    )
    out = out.permute(0, 2, 3, 1)
    out = out[:, ::down_y, ::down_x, :]

    out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
    out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1

    return out.view(-1, channel, out_h, out_w)


def upsample_2d(x, k=None, factor=2, gain=1):
    r"""Upsample a batch of 2D images with the given filter.

    Args:
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
    filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
    `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a:
    multiple of the upsampling factor.
        x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
          C]`.
        k: FIR filter of the shape `[firH, firW]` or `[firN]`
          (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
        factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).

    Returns:
        Tensor of the shape `[N, C, H * factor, W * factor]`
    """
    assert isinstance(factor, int) and factor >= 1
    if k is None:
        k = [1] * factor
    k = _setup_kernel(k) * (gain * (factor**2))
    p = k.shape[0] - factor
    return upfirdn2d(x, torch.tensor(k, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2))


def downsample_2d(x, k=None, factor=2, gain=1):
    r"""Downsample a batch of 2D images with the given filter.

    Args:
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
    given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
    specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
    shape is a multiple of the downsampling factor.
        x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
          C]`.
        k: FIR filter of the shape `[firH, firW]` or `[firN]`
          (separable). The default is `[1] * factor`, which corresponds to average pooling.
        factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).

    Returns:
        Tensor of the shape `[N, C, H // factor, W // factor]`
    """

    assert isinstance(factor, int) and factor >= 1
    if k is None:
        k = [1] * factor
    k = _setup_kernel(k) * gain
    p = k.shape[0] - factor
    return upfirdn2d(x, torch.tensor(k, device=x.device), down=factor, pad=((p + 1) // 2, p // 2))


def naive_upsample_2d(x, factor=2):
    _N, C, H, W = x.shape
    x = torch.reshape(x, (-1, C, H, 1, W, 1))
    x = x.repeat(1, 1, 1, factor, 1, factor)
    return torch.reshape(x, (-1, C, H * factor, W * factor))


def naive_downsample_2d(x, factor=2):
    _N, C, H, W = x.shape
    x = torch.reshape(x, (-1, C, H // factor, factor, W // factor, factor))
    return torch.mean(x, dim=(3, 5))


class NIN(nn.Module):
    def __init__(self, in_dim, num_units, init_scale=0.1):
1051
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
1052
1053
        self.W = nn.Parameter(default_init(scale=init_scale)((in_dim, num_units)), requires_grad=True)
        self.b = nn.Parameter(torch.zeros(num_units), requires_grad=True)
1054
1055

    def forward(self, x):
Patrick von Platen's avatar
Patrick von Platen committed
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
        x = x.permute(0, 2, 3, 1)
        y = contract_inner(x, self.W) + self.b
        return y.permute(0, 3, 1, 2)


def _setup_kernel(k):
    k = np.asarray(k, dtype=np.float32)
    if k.ndim == 1:
        k = np.outer(k, k)
    k /= np.sum(k)
    assert k.ndim == 2
    assert k.shape[0] == k.shape[1]
    return k


def contract_inner(x, y):
    """tensordot(x, y, 1)."""
    x_chars = list(string.ascii_lowercase[: len(x.shape)])
    y_chars = list(string.ascii_lowercase[len(x.shape) : len(y.shape) + len(x.shape)])
    y_chars[0] = x_chars[-1]  # first axis of y and last of x get summed
    out_chars = x_chars[:-1] + y_chars[1:]
    return _einsum(x_chars, y_chars, out_chars, x, y)


def _einsum(a, b, c, x, y):
    einsum_str = "{},{}->{}".format("".join(a), "".join(b), "".join(c))
    return torch.einsum(einsum_str, x, y)