test_modeling_common.py 106 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import copy
Aryan's avatar
Aryan committed
17
import gc
18
import glob
19
import inspect
20
21
import json
import os
Aryan's avatar
Aryan committed
22
import re
23
import tempfile
24
import traceback
25
import unittest
26
import unittest.mock as mock
27
import uuid
28
29
from collections import defaultdict
from typing import Dict, List, Optional, Tuple, Union
30
31

import numpy as np
32
import pytest
33
import requests_mock
34
import safetensors.torch
35
import torch
36
import torch.nn as nn
YiYi Xu's avatar
YiYi Xu committed
37
from accelerate.utils.modeling import _get_proper_dtype, compute_module_sizes, dtype_byte_size
38
from huggingface_hub import ModelCard, delete_repo, snapshot_download, try_to_load_from_cache
39
from huggingface_hub.utils import HfHubHTTPError, is_jinja_available
40
from parameterized import parameterized
41

42
from diffusers.models import FluxTransformer2DModel, SD3Transformer2DModel, UNet2DConditionModel
43
44
45
46
47
48
from diffusers.models.attention_processor import (
    AttnProcessor,
    AttnProcessor2_0,
    AttnProcessorNPU,
    XFormersAttnProcessor,
)
hlky's avatar
hlky committed
49
from diffusers.models.auto_model import AutoModel
50
from diffusers.training_utils import EMAModel
51
52
53
from diffusers.utils import (
    SAFE_WEIGHTS_INDEX_NAME,
    WEIGHTS_INDEX_NAME,
54
    is_peft_available,
55
56
57
58
    is_torch_npu_available,
    is_xformers_available,
    logging,
)
59
from diffusers.utils.hub_utils import _add_variant
60
61
62
63
from diffusers.utils.torch_utils import get_torch_cuda_device_capability

from ..others.test_utils import TOKEN, USER, is_staging_test
from ..testing_utils import (
64
    CaptureLogger,
65
    _check_safetensors_serialization,
66
    backend_empty_cache,
67
68
69
    backend_max_memory_allocated,
    backend_reset_peak_memory_stats,
    backend_synchronize,
70
    check_if_dicts_are_equal,
71
    get_python_version,
72
    is_torch_compile,
Aryan's avatar
Aryan committed
73
    numpy_cosine_similarity_distance,
74
75
    require_peft_backend,
    require_peft_version_greater,
76
    require_torch_2,
77
    require_torch_accelerator,
Arsalan's avatar
Arsalan committed
78
    require_torch_accelerator_with_training,
79
    require_torch_multi_accelerator,
80
    require_torch_version_greater,
81
    run_test_in_subprocess,
82
    slow,
83
    torch_all_close,
Dhruv Nair's avatar
Dhruv Nair committed
84
    torch_device,
85
)
86
87


88
89
90
91
if is_peft_available():
    from peft.tuners.tuners_utils import BaseTunerLayer


92
93
94
95
96
97
98
99
100
def caculate_expected_num_shards(index_map_path):
    with open(index_map_path) as f:
        weight_map_dict = json.load(f)["weight_map"]
    first_key = list(weight_map_dict.keys())[0]
    weight_loc = weight_map_dict[first_key]  # e.g., diffusion_pytorch_model-00001-of-00002.safetensors
    expected_num_shards = int(weight_loc.split("-")[-1].split(".")[0])
    return expected_num_shards


101
102
103
104
105
106
107
108
109
110
def check_if_lora_correctly_set(model) -> bool:
    """
    Checks if the LoRA layers are correctly set with peft
    """
    for module in model.modules():
        if isinstance(module, BaseTunerLayer):
            return True
    return False


111
112
113
114
115
116
117
118
119
120
121
# Will be run via run_test_in_subprocess
def _test_from_save_pretrained_dynamo(in_queue, out_queue, timeout):
    error = None
    try:
        init_dict, model_class = in_queue.get(timeout=timeout)

        model = model_class(**init_dict)
        model.to(torch_device)
        model = torch.compile(model)

        with tempfile.TemporaryDirectory() as tmpdirname:
122
            model.save_pretrained(tmpdirname, safe_serialization=False)
123
124
125
126
127
128
129
130
131
132
            new_model = model_class.from_pretrained(tmpdirname)
            new_model.to(torch_device)

        assert new_model.__class__ == model_class
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()
133
134


135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
def named_persistent_module_tensors(
    module: nn.Module,
    recurse: bool = False,
):
    """
    A helper function that gathers all the tensors (parameters + persistent buffers) of a given module.

    Args:
        module (`torch.nn.Module`):
            The module we want the tensors on.
        recurse (`bool`, *optional`, defaults to `False`):
            Whether or not to go look in every submodule or just return the direct parameters and buffers.
    """
    yield from module.named_parameters(recurse=recurse)

    for named_buffer in module.named_buffers(recurse=recurse):
        name, _ = named_buffer
        # Get parent by splitting on dots and traversing the model
        parent = module
        if "." in name:
            parent_name = name.rsplit(".", 1)[0]
            for part in parent_name.split("."):
                parent = getattr(parent, part)
            name = name.split(".")[-1]
        if name not in parent._non_persistent_buffers_set:
            yield named_buffer


def compute_module_persistent_sizes(
    model: nn.Module,
    dtype: Optional[Union[str, torch.device]] = None,
    special_dtypes: Optional[Dict[str, Union[str, torch.device]]] = None,
):
    """
    Compute the size of each submodule of a given model (parameters + persistent buffers).
    """
    if dtype is not None:
        dtype = _get_proper_dtype(dtype)
        dtype_size = dtype_byte_size(dtype)
    if special_dtypes is not None:
        special_dtypes = {key: _get_proper_dtype(dtyp) for key, dtyp in special_dtypes.items()}
        special_dtypes_size = {key: dtype_byte_size(dtyp) for key, dtyp in special_dtypes.items()}
    module_sizes = defaultdict(int)

    module_list = []

    module_list = named_persistent_module_tensors(model, recurse=True)

    for name, tensor in module_list:
        if special_dtypes is not None and name in special_dtypes:
            size = tensor.numel() * special_dtypes_size[name]
        elif dtype is None:
            size = tensor.numel() * dtype_byte_size(tensor.dtype)
        elif str(tensor.dtype).startswith(("torch.uint", "torch.int", "torch.bool")):
            # According to the code in set_module_tensor_to_device, these types won't be converted
            # so use their original size here
            size = tensor.numel() * dtype_byte_size(tensor.dtype)
        else:
            size = tensor.numel() * min(dtype_size, dtype_byte_size(tensor.dtype))
        name_parts = name.split(".")
        for idx in range(len(name_parts) + 1):
            module_sizes[".".join(name_parts[:idx])] += size

    return module_sizes


Aryan's avatar
Aryan committed
201
202
203
204
205
206
207
208
209
210
def cast_maybe_tensor_dtype(maybe_tensor, current_dtype, target_dtype):
    if torch.is_tensor(maybe_tensor):
        return maybe_tensor.to(target_dtype) if maybe_tensor.dtype == current_dtype else maybe_tensor
    if isinstance(maybe_tensor, dict):
        return {k: cast_maybe_tensor_dtype(v, current_dtype, target_dtype) for k, v in maybe_tensor.items()}
    if isinstance(maybe_tensor, list):
        return [cast_maybe_tensor_dtype(v, current_dtype, target_dtype) for v in maybe_tensor]
    return maybe_tensor


211
class ModelUtilsTest(unittest.TestCase):
212
213
214
    def tearDown(self):
        super().tearDown()

215
216
    def test_missing_key_loading_warning_message(self):
        with self.assertLogs("diffusers.models.modeling_utils", level="WARNING") as logs:
217
218
219
            UNet2DConditionModel.from_pretrained("hf-internal-testing/stable-diffusion-broken", subfolder="unet")

        # make sure that error message states what keys are missing
220
        assert "conv_out.bias" in " ".join(logs.output)
221

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
    @parameterized.expand(
        [
            ("hf-internal-testing/tiny-stable-diffusion-pipe-variants-all-kinds", "unet", False),
            ("hf-internal-testing/tiny-stable-diffusion-pipe-variants-all-kinds", "unet", True),
            ("hf-internal-testing/tiny-sd-unet-with-sharded-ckpt", None, False),
            ("hf-internal-testing/tiny-sd-unet-with-sharded-ckpt", None, True),
        ]
    )
    def test_variant_sharded_ckpt_legacy_format_raises_warning(self, repo_id, subfolder, use_local):
        def load_model(path):
            kwargs = {"variant": "fp16"}
            if subfolder:
                kwargs["subfolder"] = subfolder
            return UNet2DConditionModel.from_pretrained(path, **kwargs)

        with self.assertWarns(FutureWarning) as warning:
            if use_local:
                with tempfile.TemporaryDirectory() as tmpdirname:
                    tmpdirname = snapshot_download(repo_id=repo_id)
                    _ = load_model(tmpdirname)
            else:
                _ = load_model(repo_id)

245
246
        warning_messages = " ".join(str(w.message) for w in warning.warnings)
        self.assertIn("This serialization format is now deprecated to standardize the serialization", warning_messages)
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

    # Local tests are already covered down below.
    @parameterized.expand(
        [
            ("hf-internal-testing/tiny-sd-unet-sharded-latest-format", None, "fp16"),
            ("hf-internal-testing/tiny-sd-unet-sharded-latest-format-subfolder", "unet", "fp16"),
            ("hf-internal-testing/tiny-sd-unet-sharded-no-variants", None, None),
            ("hf-internal-testing/tiny-sd-unet-sharded-no-variants-subfolder", "unet", None),
        ]
    )
    def test_variant_sharded_ckpt_loads_from_hub(self, repo_id, subfolder, variant=None):
        def load_model():
            kwargs = {}
            if variant:
                kwargs["variant"] = variant
            if subfolder:
                kwargs["subfolder"] = subfolder
            return UNet2DConditionModel.from_pretrained(repo_id, **kwargs)

        assert load_model()

268
269
270
271
272
    def test_cached_files_are_used_when_no_internet(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = {}
273
        response_mock.raise_for_status.side_effect = HfHubHTTPError("Server down", response=mock.Mock())
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
        response_mock.json.return_value = {}

        # Download this model to make sure it's in the cache.
        orig_model = UNet2DConditionModel.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet"
        )

        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("requests.request", return_value=response_mock):
            # Download this model to make sure it's in the cache.
            model = UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", local_files_only=True
            )

        for p1, p2 in zip(orig_model.parameters(), model.parameters()):
            if p1.data.ne(p2.data).sum() > 0:
                assert False, "Parameters not the same!"

292
293
294
295
296
    def test_local_files_only_with_sharded_checkpoint(self):
        repo_id = "hf-internal-testing/tiny-flux-sharded"
        error_response = mock.Mock(
            status_code=500,
            headers={},
297
            raise_for_status=mock.Mock(side_effect=HfHubHTTPError("Server down", response=mock.Mock())),
298
299
            json=mock.Mock(return_value={}),
        )
300
301
        client_mock = mock.Mock()
        client_mock.get.return_value = error_response
302
303
304
305

        with tempfile.TemporaryDirectory() as tmpdir:
            model = FluxTransformer2DModel.from_pretrained(repo_id, subfolder="transformer", cache_dir=tmpdir)

306
            with mock.patch("huggingface_hub.hf_api.get_session", return_value=client_mock):
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
                # Should fail with local_files_only=False (network required)
                # We would make a network call with model_info
                with self.assertRaises(OSError):
                    FluxTransformer2DModel.from_pretrained(
                        repo_id, subfolder="transformer", cache_dir=tmpdir, local_files_only=False
                    )

                # Should succeed with local_files_only=True (uses cache)
                # model_info call skipped
                local_model = FluxTransformer2DModel.from_pretrained(
                    repo_id, subfolder="transformer", cache_dir=tmpdir, local_files_only=True
                )

            assert all(torch.equal(p1, p2) for p1, p2 in zip(model.parameters(), local_model.parameters())), (
                "Model parameters don't match!"
            )

            # Remove a shard file
            cached_shard_file = try_to_load_from_cache(
                repo_id, filename="transformer/diffusion_pytorch_model-00001-of-00002.safetensors", cache_dir=tmpdir
            )
            os.remove(cached_shard_file)

            # Attempting to load from cache should raise an error
            with self.assertRaises(OSError) as context:
                FluxTransformer2DModel.from_pretrained(
                    repo_id, subfolder="transformer", cache_dir=tmpdir, local_files_only=True
                )

            # Verify error mentions the missing shard
            error_msg = str(context.exception)
            assert cached_shard_file in error_msg or "required according to the checkpoint index" in error_msg, (
                f"Expected error about missing shard, got: {error_msg}"
            )

342
    @unittest.skip("Flaky behaviour on CI. Re-enable after migrating to new runners")
343
    @unittest.skipIf(torch_device == "mps", reason="Test not supported for MPS.")
344
    def test_one_request_upon_cached(self):
345
        use_safetensors = False
346
347
348
349

        with tempfile.TemporaryDirectory() as tmpdirname:
            with requests_mock.mock(real_http=True) as m:
                UNet2DConditionModel.from_pretrained(
350
351
352
353
                    "hf-internal-testing/tiny-stable-diffusion-torch",
                    subfolder="unet",
                    cache_dir=tmpdirname,
                    use_safetensors=use_safetensors,
354
355
356
                )

            download_requests = [r.method for r in m.request_history]
357
358
359
            assert download_requests.count("HEAD") == 3, (
                "3 HEAD requests one for config, one for model, and one for shard index file."
            )
360
361
362
363
            assert download_requests.count("GET") == 2, "2 GET requests one for config, one for model"

            with requests_mock.mock(real_http=True) as m:
                UNet2DConditionModel.from_pretrained(
364
365
366
367
                    "hf-internal-testing/tiny-stable-diffusion-torch",
                    subfolder="unet",
                    cache_dir=tmpdirname,
                    use_safetensors=use_safetensors,
368
369
370
                )

            cache_requests = [r.method for r in m.request_history]
371
372
373
            assert "HEAD" == cache_requests[0] and len(cache_requests) == 2, (
                "We should call only `model_info` to check for commit hash and  knowing if shard index is present."
            )
374

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    def test_weight_overwrite(self):
        with tempfile.TemporaryDirectory() as tmpdirname, self.assertRaises(ValueError) as error_context:
            UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch",
                subfolder="unet",
                cache_dir=tmpdirname,
                in_channels=9,
            )

        # make sure that error message states what keys are missing
        assert "Cannot load" in str(error_context.exception)

        with tempfile.TemporaryDirectory() as tmpdirname:
            model = UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch",
                subfolder="unet",
                cache_dir=tmpdirname,
                in_channels=9,
                low_cpu_mem_usage=False,
                ignore_mismatched_sizes=True,
            )

        assert model.config.in_channels == 9

399
    @require_torch_accelerator
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
    def test_keep_modules_in_fp32(self):
        r"""
        A simple tests to check if the modules under `_keep_in_fp32_modules` are kept in fp32 when we load the model in fp16/bf16
        Also ensures if inference works.
        """
        fp32_modules = SD3Transformer2DModel._keep_in_fp32_modules

        for torch_dtype in [torch.bfloat16, torch.float16]:
            SD3Transformer2DModel._keep_in_fp32_modules = ["proj_out"]

            model = SD3Transformer2DModel.from_pretrained(
                "hf-internal-testing/tiny-sd3-pipe", subfolder="transformer", torch_dtype=torch_dtype
            ).to(torch_device)

            for name, module in model.named_modules():
                if isinstance(module, torch.nn.Linear):
                    if name in model._keep_in_fp32_modules:
                        self.assertTrue(module.weight.dtype == torch.float32)
                    else:
                        self.assertTrue(module.weight.dtype == torch_dtype)

        def get_dummy_inputs():
            batch_size = 2
            num_channels = 4
            height = width = embedding_dim = 32
            pooled_embedding_dim = embedding_dim * 2
            sequence_length = 154

            hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device)
            encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
            pooled_prompt_embeds = torch.randn((batch_size, pooled_embedding_dim)).to(torch_device)
            timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)

            return {
                "hidden_states": hidden_states,
                "encoder_hidden_states": encoder_hidden_states,
                "pooled_projections": pooled_prompt_embeds,
                "timestep": timestep,
            }

        # test if inference works.
        with torch.no_grad() and torch.amp.autocast(torch_device, dtype=torch_dtype):
            input_dict_for_transformer = get_dummy_inputs()
            model_inputs = {
                k: v.to(device=torch_device) for k, v in input_dict_for_transformer.items() if not isinstance(v, bool)
            }
            model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs})
            _ = model(**model_inputs)

        SD3Transformer2DModel._keep_in_fp32_modules = fp32_modules

451

452
class UNetTesterMixin:
453
454
455
456
457
458
    @staticmethod
    def _accepts_norm_num_groups(model_class):
        model_sig = inspect.signature(model_class.__init__)
        accepts_norm_groups = "norm_num_groups" in model_sig.parameters
        return accepts_norm_groups

459
    def test_forward_with_norm_groups(self):
460
461
        if not self._accepts_norm_num_groups(self.model_class):
            pytest.skip(f"Test not supported for {self.model_class.__name__}")
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["norm_num_groups"] = 16
        init_dict["block_out_channels"] = (16, 32)

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.to_tuple()[0]

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")


482
class ModelTesterMixin:
483
484
    main_input_name = None  # overwrite in model specific tester class
    base_precision = 1e-3
Will Berman's avatar
Will Berman committed
485
    forward_requires_fresh_args = False
486
    model_split_percents = [0.5, 0.7, 0.9]
487
    uses_custom_attn_processor = False
488
489
490
491
492
493
494
495
496
497
498
499
500
501

    def check_device_map_is_respected(self, model, device_map):
        for param_name, param in model.named_parameters():
            # Find device in device_map
            while len(param_name) > 0 and param_name not in device_map:
                param_name = ".".join(param_name.split(".")[:-1])
            if param_name not in device_map:
                raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")

            param_device = device_map[param_name]
            if param_device in ["cpu", "disk"]:
                self.assertEqual(param.device, torch.device("meta"))
            else:
                self.assertEqual(param.device, torch.device(param_device))
502

503
    def test_from_save_pretrained(self, expected_max_diff=5e-5):
Will Berman's avatar
Will Berman committed
504
505
506
507
508
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
509

510
511
        if hasattr(model, "set_default_attn_processor"):
            model.set_default_attn_processor()
512
513
514
515
        model.to(torch_device)
        model.eval()

        with tempfile.TemporaryDirectory() as tmpdirname:
516
            model.save_pretrained(tmpdirname, safe_serialization=False)
517
            new_model = self.model_class.from_pretrained(tmpdirname)
518
519
            if hasattr(new_model, "set_default_attn_processor"):
                new_model.set_default_attn_processor()
520
521
522
            new_model.to(torch_device)

        with torch.no_grad():
Will Berman's avatar
Will Berman committed
523
524
525
526
527
            if self.forward_requires_fresh_args:
                image = model(**self.inputs_dict(0))
            else:
                image = model(**inputs_dict)

528
            if isinstance(image, dict):
529
                image = image.to_tuple()[0]
530

Will Berman's avatar
Will Berman committed
531
532
533
534
            if self.forward_requires_fresh_args:
                new_image = new_model(**self.inputs_dict(0))
            else:
                new_image = new_model(**inputs_dict)
535
536

            if isinstance(new_image, dict):
537
                new_image = new_image.to_tuple()[0]
538

539
540
        max_diff = (image - new_image).abs().max().item()
        self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
541

542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
    def test_getattr_is_correct(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)

        # save some things to test
        model.dummy_attribute = 5
        model.register_to_config(test_attribute=5)

        logger = logging.get_logger("diffusers.models.modeling_utils")
        # 30 for warning
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            assert hasattr(model, "dummy_attribute")
            assert getattr(model, "dummy_attribute") == 5
            assert model.dummy_attribute == 5

        # no warning should be thrown
        assert cap_logger.out == ""

        logger = logging.get_logger("diffusers.models.modeling_utils")
        # 30 for warning
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            assert hasattr(model, "save_pretrained")
            fn = model.save_pretrained
            fn_1 = getattr(model, "save_pretrained")

            assert fn == fn_1
        # no warning should be thrown
        assert cap_logger.out == ""

        # warning should be thrown
        with self.assertWarns(FutureWarning):
            assert model.test_attribute == 5

        with self.assertWarns(FutureWarning):
            assert getattr(model, "test_attribute") == 5

        with self.assertRaises(AttributeError) as error:
            model.does_not_exist

        assert str(error.exception) == f"'{type(model).__name__}' object has no attribute 'does_not_exist'"

585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
    @unittest.skipIf(
        torch_device != "npu" or not is_torch_npu_available(),
        reason="torch npu flash attention is only available with NPU and `torch_npu` installed",
    )
    def test_set_torch_npu_flash_attn_processor_determinism(self):
        torch.use_deterministic_algorithms(False)
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
        model.to(torch_device)

        if not hasattr(model, "set_attn_processor"):
            # If not has `set_attn_processor`, skip test
            return

        model.set_default_attn_processor()
        assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output = model(**self.inputs_dict(0))[0]
            else:
                output = model(**inputs_dict)[0]

        model.enable_npu_flash_attention()
        assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output_2 = model(**self.inputs_dict(0))[0]
            else:
                output_2 = model(**inputs_dict)[0]

        model.set_attn_processor(AttnProcessorNPU())
        assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output_3 = model(**self.inputs_dict(0))[0]
            else:
                output_3 = model(**inputs_dict)[0]

        torch.use_deterministic_algorithms(True)

        assert torch.allclose(output, output_2, atol=self.base_precision)
        assert torch.allclose(output, output_3, atol=self.base_precision)
        assert torch.allclose(output_2, output_3, atol=self.base_precision)

Dhruv Nair's avatar
Dhruv Nair committed
632
633
634
635
636
637
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_set_xformers_attn_processor_for_determinism(self):
        torch.use_deterministic_algorithms(False)
Will Berman's avatar
Will Berman committed
638
639
640
641
642
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
Dhruv Nair's avatar
Dhruv Nair committed
643
644
645
646
        model.to(torch_device)

        if not hasattr(model, "set_attn_processor"):
            # If not has `set_attn_processor`, skip test
Dhruv Nair's avatar
Dhruv Nair committed
647
648
649
650
            return

        if not hasattr(model, "set_default_attn_processor"):
            # If not has `set_attn_processor`, skip test
Dhruv Nair's avatar
Dhruv Nair committed
651
652
653
654
655
            return

        model.set_default_attn_processor()
        assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
656
657
658
659
            if self.forward_requires_fresh_args:
                output = model(**self.inputs_dict(0))[0]
            else:
                output = model(**inputs_dict)[0]
Dhruv Nair's avatar
Dhruv Nair committed
660
661
662
663

        model.enable_xformers_memory_efficient_attention()
        assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
664
665
666
667
            if self.forward_requires_fresh_args:
                output_2 = model(**self.inputs_dict(0))[0]
            else:
                output_2 = model(**inputs_dict)[0]
Dhruv Nair's avatar
Dhruv Nair committed
668

669
670
671
        model.set_attn_processor(XFormersAttnProcessor())
        assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
672
673
674
675
            if self.forward_requires_fresh_args:
                output_3 = model(**self.inputs_dict(0))[0]
            else:
                output_3 = model(**inputs_dict)[0]
676
677
678

        torch.use_deterministic_algorithms(True)

Dhruv Nair's avatar
Dhruv Nair committed
679
        assert torch.allclose(output, output_2, atol=self.base_precision)
680
681
        assert torch.allclose(output, output_3, atol=self.base_precision)
        assert torch.allclose(output_2, output_3, atol=self.base_precision)
Dhruv Nair's avatar
Dhruv Nair committed
682

683
    @require_torch_accelerator
684
    def test_set_attn_processor_for_determinism(self):
685
686
687
        if self.uses_custom_attn_processor:
            return

688
        torch.use_deterministic_algorithms(False)
Will Berman's avatar
Will Berman committed
689
690
691
692
693
694
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)

695
696
697
698
699
700
701
702
        model.to(torch_device)

        if not hasattr(model, "set_attn_processor"):
            # If not has `set_attn_processor`, skip test
            return

        assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
703
704
705
706
            if self.forward_requires_fresh_args:
                output_1 = model(**self.inputs_dict(0))[0]
            else:
                output_1 = model(**inputs_dict)[0]
707
708
709
710

        model.set_default_attn_processor()
        assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
711
712
713
714
            if self.forward_requires_fresh_args:
                output_2 = model(**self.inputs_dict(0))[0]
            else:
                output_2 = model(**inputs_dict)[0]
715
716
717
718

        model.set_attn_processor(AttnProcessor2_0())
        assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
719
720
721
722
            if self.forward_requires_fresh_args:
                output_4 = model(**self.inputs_dict(0))[0]
            else:
                output_4 = model(**inputs_dict)[0]
723
724
725
726

        model.set_attn_processor(AttnProcessor())
        assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
727
728
729
730
            if self.forward_requires_fresh_args:
                output_5 = model(**self.inputs_dict(0))[0]
            else:
                output_5 = model(**inputs_dict)[0]
731
732
733
734
735
736
737
738

        torch.use_deterministic_algorithms(True)

        # make sure that outputs match
        assert torch.allclose(output_2, output_1, atol=self.base_precision)
        assert torch.allclose(output_2, output_4, atol=self.base_precision)
        assert torch.allclose(output_2, output_5, atol=self.base_precision)

739
    def test_from_save_pretrained_variant(self, expected_max_diff=5e-5):
Will Berman's avatar
Will Berman committed
740
741
742
743
744
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
745

746
747
        if hasattr(model, "set_default_attn_processor"):
            model.set_default_attn_processor()
748

749
750
751
752
        model.to(torch_device)
        model.eval()

        with tempfile.TemporaryDirectory() as tmpdirname:
753
            model.save_pretrained(tmpdirname, variant="fp16", safe_serialization=False)
754
            new_model = self.model_class.from_pretrained(tmpdirname, variant="fp16")
755
756
            if hasattr(new_model, "set_default_attn_processor"):
                new_model.set_default_attn_processor()
757
758
759
760
761
762
763
764
765
766
767

            # non-variant cannot be loaded
            with self.assertRaises(OSError) as error_context:
                self.model_class.from_pretrained(tmpdirname)

            # make sure that error message states what keys are missing
            assert "Error no file named diffusion_pytorch_model.bin found in directory" in str(error_context.exception)

            new_model.to(torch_device)

        with torch.no_grad():
Will Berman's avatar
Will Berman committed
768
769
770
771
            if self.forward_requires_fresh_args:
                image = model(**self.inputs_dict(0))
            else:
                image = model(**inputs_dict)
772
            if isinstance(image, dict):
773
                image = image.to_tuple()[0]
774

Will Berman's avatar
Will Berman committed
775
776
777
778
            if self.forward_requires_fresh_args:
                new_image = new_model(**self.inputs_dict(0))
            else:
                new_image = new_model(**inputs_dict)
779
780

            if isinstance(new_image, dict):
781
                new_image = new_image.to_tuple()[0]
782

783
784
        max_diff = (image - new_image).abs().max().item()
        self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
785

786
    @is_torch_compile
787
    @require_torch_2
788
789
790
791
    @unittest.skipIf(
        get_python_version == (3, 12),
        reason="Torch Dynamo isn't yet supported for Python 3.12.",
    )
792
    def test_from_save_pretrained_dynamo(self):
793
794
795
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        inputs = [init_dict, self.model_class]
        run_test_in_subprocess(test_case=self, target_func=_test_from_save_pretrained_dynamo, inputs=inputs)
796

797
798
799
800
801
802
803
804
805
806
807
808
    def test_from_save_pretrained_dtype(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        for dtype in [torch.float32, torch.float16, torch.bfloat16]:
            if torch_device == "mps" and dtype == torch.bfloat16:
                continue
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.to(dtype)
809
                model.save_pretrained(tmpdirname, safe_serialization=False)
810
                new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=True, torch_dtype=dtype)
811
                assert new_model.dtype == dtype
812
813
814
815
816
817
818
819
                if (
                    hasattr(self.model_class, "_keep_in_fp32_modules")
                    and self.model_class._keep_in_fp32_modules is None
                ):
                    new_model = self.model_class.from_pretrained(
                        tmpdirname, low_cpu_mem_usage=False, torch_dtype=dtype
                    )
                    assert new_model.dtype == dtype
820

821
    def test_determinism(self, expected_max_diff=1e-5):
Will Berman's avatar
Will Berman committed
822
823
824
825
826
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
827
828
        model.to(torch_device)
        model.eval()
829

830
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
831
832
833
834
            if self.forward_requires_fresh_args:
                first = model(**self.inputs_dict(0))
            else:
                first = model(**inputs_dict)
835
            if isinstance(first, dict):
836
                first = first.to_tuple()[0]
837

Will Berman's avatar
Will Berman committed
838
839
840
841
            if self.forward_requires_fresh_args:
                second = model(**self.inputs_dict(0))
            else:
                second = model(**inputs_dict)
842
            if isinstance(second, dict):
843
                second = second.to_tuple()[0]
844
845
846
847
848
849

        out_1 = first.cpu().numpy()
        out_2 = second.cpu().numpy()
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
850
        self.assertLessEqual(max_diff, expected_max_diff)
851

852
    def test_output(self, expected_output_shape=None):
853
854
855
856
857
858
859
860
861
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
862
                output = output.to_tuple()[0]
863
864

        self.assertIsNotNone(output)
865

866
867
        # input & output have to have the same shape
        input_tensor = inputs_dict[self.main_input_name]
868
869
870
871
872
873

        if expected_output_shape is None:
            expected_shape = input_tensor.shape
            self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
        else:
            self.assertEqual(output.shape, expected_output_shape, "Input and output shapes do not match")
874

875
    def test_model_from_pretrained(self):
876
877
878
879
880
881
882
883
884
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        # test if the model can be loaded from the config
        # and has all the expected shape
        with tempfile.TemporaryDirectory() as tmpdirname:
885
            model.save_pretrained(tmpdirname, safe_serialization=False)
886
            new_model = self.model_class.from_pretrained(tmpdirname)
887
888
889
            new_model.to(torch_device)
            new_model.eval()

890
        # check if all parameters shape are the same
891
892
893
894
895
896
897
898
899
        for param_name in model.state_dict().keys():
            param_1 = model.state_dict()[param_name]
            param_2 = new_model.state_dict()[param_name]
            self.assertEqual(param_1.shape, param_2.shape)

        with torch.no_grad():
            output_1 = model(**inputs_dict)

            if isinstance(output_1, dict):
900
                output_1 = output_1.to_tuple()[0]
901
902
903
904

            output_2 = new_model(**inputs_dict)

            if isinstance(output_2, dict):
905
                output_2 = output_2.to_tuple()[0]
906
907
908

        self.assertEqual(output_1.shape, output_2.shape)

Arsalan's avatar
Arsalan committed
909
    @require_torch_accelerator_with_training
910
911
912
913
914
915
916
917
918
    def test_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        output = model(**inputs_dict)

        if isinstance(output, dict):
919
            output = output.to_tuple()[0]
920

921
922
        input_tensor = inputs_dict[self.main_input_name]
        noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
923
924
925
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()

Arsalan's avatar
Arsalan committed
926
    @require_torch_accelerator_with_training
927
928
929
930
931
932
    def test_ema_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
933
        ema_model = EMAModel(model.parameters())
934
935
936
937

        output = model(**inputs_dict)

        if isinstance(output, dict):
938
            output = output.to_tuple()[0]
939

940
941
        input_tensor = inputs_dict[self.main_input_name]
        noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
942
943
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
944
        ema_model.step(model.parameters())
945

946
    def test_outputs_equivalence(self):
947
        def set_nan_tensor_to_zero(t):
948
949
950
951
952
            # Temporary fallback until `aten::_index_put_impl_` is implemented in mps
            # Track progress in https://github.com/pytorch/pytorch/issues/77764
            device = t.device
            if device.type == "mps":
                t = t.to("cpu")
953
            t[t != t] = 0
954
            return t.to(device)
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977

        def recursive_check(tuple_object, dict_object):
            if isinstance(tuple_object, (List, Tuple)):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif isinstance(tuple_object, Dict):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif tuple_object is None:
                return
            else:
                self.assertTrue(
                    torch.allclose(
                        set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                    ),
                    msg=(
                        "Tuple and dict output are not equal. Difference:"
                        f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                        f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                        f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                    ),
                )

Will Berman's avatar
Will Berman committed
978
979
980
981
982
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
983
984
985
986

        model.to(torch_device)
        model.eval()

987
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
988
989
990
991
992
993
            if self.forward_requires_fresh_args:
                outputs_dict = model(**self.inputs_dict(0))
                outputs_tuple = model(**self.inputs_dict(0), return_dict=False)
            else:
                outputs_dict = model(**inputs_dict)
                outputs_tuple = model(**inputs_dict, return_dict=False)
994
995

        recursive_check(outputs_tuple, outputs_dict)
996

Arsalan's avatar
Arsalan committed
997
    @require_torch_accelerator_with_training
998
    def test_enable_disable_gradient_checkpointing(self):
999
        # Skip test if model does not support gradient checkpointing
1000
        if not self.model_class._supports_gradient_checkpointing:
1001
            pytest.skip("Gradient checkpointing is not supported.")
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015

        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        # at init model should have gradient checkpointing disabled
        model = self.model_class(**init_dict)
        self.assertFalse(model.is_gradient_checkpointing)

        # check enable works
        model.enable_gradient_checkpointing()
        self.assertTrue(model.is_gradient_checkpointing)

        # check disable works
        model.disable_gradient_checkpointing()
        self.assertFalse(model.is_gradient_checkpointing)
1016

1017
    @require_torch_accelerator_with_training
1018
    def test_effective_gradient_checkpointing(self, loss_tolerance=1e-5, param_grad_tol=5e-5, skip: set[str] = {}):
1019
        # Skip test if model does not support gradient checkpointing
1020
        if not self.model_class._supports_gradient_checkpointing:
1021
            pytest.skip("Gradient checkpointing is not supported.")
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065

        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        inputs_dict_copy = copy.deepcopy(inputs_dict)
        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)

        assert not model.is_gradient_checkpointing and model.training

        out = model(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model.zero_grad()

        labels = torch.randn_like(out)
        loss = (out - labels).mean()
        loss.backward()

        # re-instantiate the model now enabling gradient checkpointing
        torch.manual_seed(0)
        model_2 = self.model_class(**init_dict)
        # clone model
        model_2.load_state_dict(model.state_dict())
        model_2.to(torch_device)
        model_2.enable_gradient_checkpointing()

        assert model_2.is_gradient_checkpointing and model_2.training

        out_2 = model_2(**inputs_dict_copy).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model_2.zero_grad()
        loss_2 = (out_2 - labels).mean()
        loss_2.backward()

        # compare the output and parameters gradients
        self.assertTrue((loss - loss_2).abs() < loss_tolerance)
        named_params = dict(model.named_parameters())
        named_params_2 = dict(model_2.named_parameters())

        for name, param in named_params.items():
            if "post_quant_conv" in name:
                continue
1066
1067
            if name in skip:
                continue
1068
1069
1070
1071
            # TODO(aryan): remove the below lines after looking into easyanimate transformer a little more
            # It currently errors out the gradient checkpointing test because the gradients for attn2.to_out is None
            if param.grad is None:
                continue
1072
1073
1074
1075
1076
1077
            self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=param_grad_tol))

    @unittest.skipIf(torch_device == "mps", "This test is not supported for MPS devices.")
    def test_gradient_checkpointing_is_applied(
        self, expected_set=None, attention_head_dim=None, num_attention_heads=None, block_out_channels=None
    ):
1078
        # Skip test if model does not support gradient checkpointing
1079
        if not self.model_class._supports_gradient_checkpointing:
1080
            pytest.skip("Gradient checkpointing is not supported.")
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094

        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        if attention_head_dim is not None:
            init_dict["attention_head_dim"] = attention_head_dim
        if num_attention_heads is not None:
            init_dict["num_attention_heads"] = num_attention_heads
        if block_out_channels is not None:
            init_dict["block_out_channels"] = block_out_channels

        model_class_copy = copy.copy(self.model_class)
        model = model_class_copy(**init_dict)
        model.enable_gradient_checkpointing()

1095
1096
1097
1098
1099
1100
        modules_with_gc_enabled = {}
        for submodule in model.modules():
            if hasattr(submodule, "gradient_checkpointing"):
                self.assertTrue(submodule.gradient_checkpointing)
                modules_with_gc_enabled[submodule.__class__.__name__] = True

1101
1102
1103
        assert set(modules_with_gc_enabled.keys()) == expected_set
        assert all(modules_with_gc_enabled.values()), "All modules should be enabled"

1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
    def test_deprecated_kwargs(self):
        has_kwarg_in_model_class = "kwargs" in inspect.signature(self.model_class.__init__).parameters
        has_deprecated_kwarg = len(self.model_class._deprecated_kwargs) > 0

        if has_kwarg_in_model_class and not has_deprecated_kwarg:
            raise ValueError(
                f"{self.model_class} has `**kwargs` in its __init__ method but has not defined any deprecated kwargs"
                " under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if there are"
                " no deprecated arguments or add the deprecated argument with `_deprecated_kwargs ="
                " [<deprecated_argument>]`"
            )

        if not has_kwarg_in_model_class and has_deprecated_kwarg:
            raise ValueError(
                f"{self.model_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated kwargs"
                " under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs` argument to"
                f" {self.model_class}.__init__ if there are deprecated arguments or remove the deprecated argument"
                " from `_deprecated_kwargs = [<deprecated_argument>]`"
            )
1123

1124
    @parameterized.expand([(4, 4, True), (4, 8, False), (8, 4, False)])
1125
1126
    @torch.no_grad()
    @unittest.skipIf(not is_peft_available(), "Only with PEFT")
1127
    def test_save_load_lora_adapter(self, rank, lora_alpha, use_dora=False):
1128
1129
1130
1131
1132
1133
1134
1135
1136
        from peft import LoraConfig
        from peft.utils import get_peft_model_state_dict

        from diffusers.loaders.peft import PeftAdapterMixin

        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)

        if not issubclass(model.__class__, PeftAdapterMixin):
1137
            pytest.skip(f"PEFT is not supported for this model ({model.__class__.__name__}).")
1138
1139
1140
1141
1142

        torch.manual_seed(0)
        output_no_lora = model(**inputs_dict, return_dict=False)[0]

        denoiser_lora_config = LoraConfig(
1143
1144
            r=rank,
            lora_alpha=lora_alpha,
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
            target_modules=["to_q", "to_k", "to_v", "to_out.0"],
            init_lora_weights=False,
            use_dora=use_dora,
        )
        model.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

        torch.manual_seed(0)
        outputs_with_lora = model(**inputs_dict, return_dict=False)[0]

        self.assertFalse(torch.allclose(output_no_lora, outputs_with_lora, atol=1e-4, rtol=1e-4))

        with tempfile.TemporaryDirectory() as tmpdir:
            model.save_lora_adapter(tmpdir)
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))

            state_dict_loaded = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))

            model.unload_lora()
            self.assertFalse(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

            model.load_lora_adapter(tmpdir, prefix=None, use_safetensors=True)
            state_dict_retrieved = get_peft_model_state_dict(model, adapter_name="default_0")

            for k in state_dict_loaded:
                loaded_v = state_dict_loaded[k]
                retrieved_v = state_dict_retrieved[k].to(loaded_v.device)
                self.assertTrue(torch.allclose(loaded_v, retrieved_v))

            self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

        torch.manual_seed(0)
        outputs_with_lora_2 = model(**inputs_dict, return_dict=False)[0]

        self.assertFalse(torch.allclose(output_no_lora, outputs_with_lora_2, atol=1e-4, rtol=1e-4))
        self.assertTrue(torch.allclose(outputs_with_lora, outputs_with_lora_2, atol=1e-4, rtol=1e-4))

    @unittest.skipIf(not is_peft_available(), "Only with PEFT")
1183
    def test_lora_wrong_adapter_name_raises_error(self):
1184
1185
1186
1187
1188
1189
1190
1191
        from peft import LoraConfig

        from diffusers.loaders.peft import PeftAdapterMixin

        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)

        if not issubclass(model.__class__, PeftAdapterMixin):
1192
            pytest.skip(f"PEFT is not supported for this model ({model.__class__.__name__}).")
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

        denoiser_lora_config = LoraConfig(
            r=4,
            lora_alpha=4,
            target_modules=["to_q", "to_k", "to_v", "to_out.0"],
            init_lora_weights=False,
            use_dora=False,
        )
        model.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

        with tempfile.TemporaryDirectory() as tmpdir:
            wrong_name = "foo"
            with self.assertRaises(ValueError) as err_context:
                model.save_lora_adapter(tmpdir, adapter_name=wrong_name)

            self.assertTrue(f"Adapter name {wrong_name} not found in the model." in str(err_context.exception))

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
    @parameterized.expand([(4, 4, True), (4, 8, False), (8, 4, False)])
    @torch.no_grad()
    @unittest.skipIf(not is_peft_available(), "Only with PEFT")
    def test_lora_adapter_metadata_is_loaded_correctly(self, rank, lora_alpha, use_dora):
        from peft import LoraConfig

        from diffusers.loaders.peft import PeftAdapterMixin

        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)

        if not issubclass(model.__class__, PeftAdapterMixin):
1223
            pytest.skip(f"PEFT is not supported for this model ({model.__class__.__name__}).")
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259

        denoiser_lora_config = LoraConfig(
            r=rank,
            lora_alpha=lora_alpha,
            target_modules=["to_q", "to_k", "to_v", "to_out.0"],
            init_lora_weights=False,
            use_dora=use_dora,
        )
        model.add_adapter(denoiser_lora_config)
        metadata = model.peft_config["default"].to_dict()
        self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

        with tempfile.TemporaryDirectory() as tmpdir:
            model.save_lora_adapter(tmpdir)
            model_file = os.path.join(tmpdir, "pytorch_lora_weights.safetensors")
            self.assertTrue(os.path.isfile(model_file))

            model.unload_lora()
            self.assertFalse(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

            model.load_lora_adapter(tmpdir, prefix=None, use_safetensors=True)
            parsed_metadata = model.peft_config["default_0"].to_dict()
            check_if_dicts_are_equal(metadata, parsed_metadata)

    @torch.no_grad()
    @unittest.skipIf(not is_peft_available(), "Only with PEFT")
    def test_lora_adapter_wrong_metadata_raises_error(self):
        from peft import LoraConfig

        from diffusers.loaders.lora_base import LORA_ADAPTER_METADATA_KEY
        from diffusers.loaders.peft import PeftAdapterMixin

        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)

        if not issubclass(model.__class__, PeftAdapterMixin):
1260
            pytest.skip(f"PEFT is not supported for this model ({model.__class__.__name__}).")
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294

        denoiser_lora_config = LoraConfig(
            r=4,
            lora_alpha=4,
            target_modules=["to_q", "to_k", "to_v", "to_out.0"],
            init_lora_weights=False,
            use_dora=False,
        )
        model.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

        with tempfile.TemporaryDirectory() as tmpdir:
            model.save_lora_adapter(tmpdir)
            model_file = os.path.join(tmpdir, "pytorch_lora_weights.safetensors")
            self.assertTrue(os.path.isfile(model_file))

            # Perturb the metadata in the state dict.
            loaded_state_dict = safetensors.torch.load_file(model_file)
            metadata = {"format": "pt"}
            lora_adapter_metadata = denoiser_lora_config.to_dict()
            lora_adapter_metadata.update({"foo": 1, "bar": 2})
            for key, value in lora_adapter_metadata.items():
                if isinstance(value, set):
                    lora_adapter_metadata[key] = list(value)
            metadata[LORA_ADAPTER_METADATA_KEY] = json.dumps(lora_adapter_metadata, indent=2, sort_keys=True)
            safetensors.torch.save_file(loaded_state_dict, model_file, metadata=metadata)

            model.unload_lora()
            self.assertFalse(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

            with self.assertRaises(TypeError) as err_context:
                model.load_lora_adapter(tmpdir, prefix=None, use_safetensors=True)
            self.assertTrue("`LoraConfig` class could not be instantiated" in str(err_context.exception))

1295
    @require_torch_accelerator
1296
    def test_cpu_offload(self):
1297
1298
        if self.model_class._no_split_modules is None:
            pytest.skip("Test not supported for this model as `_no_split_modules` is not set.")
1299
1300
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1301

1302
1303
1304
1305
1306
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

YiYi Xu's avatar
YiYi Xu committed
1307
        model_size = compute_module_sizes(model)[""]
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
        # We test several splits of sizes to make sure it works.
        max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir)

            for max_size in max_gpu_sizes:
                max_memory = {0: max_size, "cpu": model_size * 2}
                new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                # Making sure part of the model will actually end up offloaded
                self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
                torch.manual_seed(0)
                new_output = new_model(**inputs_dict)

                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1325
    @require_torch_accelerator
1326
    def test_disk_offload_without_safetensors(self):
1327
1328
        if self.model_class._no_split_modules is None:
            pytest.skip("Test not supported for this model as `_no_split_modules` is not set.")
1329
1330
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1331

1332
1333
1334
1335
1336
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

YiYi Xu's avatar
YiYi Xu committed
1337
        model_size = compute_module_sizes(model)[""]
1338
1339
1340
1341
        max_size = int(self.model_split_percents[0] * model_size)
        # Force disk offload by setting very small CPU memory
        max_memory = {0: max_size, "cpu": int(0.1 * max_size)}

1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir, safe_serialization=False)
            with self.assertRaises(ValueError):
                # This errors out because it's missing an offload folder
                new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

            new_model = self.model_class.from_pretrained(
                tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
            )

            self.check_device_map_is_respected(new_model, new_model.hf_device_map)
            torch.manual_seed(0)
            new_output = new_model(**inputs_dict)

            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1358
    @require_torch_accelerator
1359
    def test_disk_offload_with_safetensors(self):
1360
1361
        if self.model_class._no_split_modules is None:
            pytest.skip("Test not supported for this model as `_no_split_modules` is not set.")
1362
1363
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1364

1365
1366
1367
1368
1369
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

YiYi Xu's avatar
YiYi Xu committed
1370
        model_size = compute_module_sizes(model)[""]
1371
1372
1373
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir)

1374
            max_size = int(self.model_split_percents[0] * model_size)
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
            max_memory = {0: max_size, "cpu": max_size}
            new_model = self.model_class.from_pretrained(
                tmp_dir, device_map="auto", offload_folder=tmp_dir, max_memory=max_memory
            )

            self.check_device_map_is_respected(new_model, new_model.hf_device_map)
            torch.manual_seed(0)
            new_output = new_model(**inputs_dict)

            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1386
    @require_torch_multi_accelerator
1387
    def test_model_parallelism(self):
1388
1389
        if self.model_class._no_split_modules is None:
            pytest.skip("Test not supported for this model as `_no_split_modules` is not set.")
1390
1391
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1392

1393
1394
1395
1396
1397
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

YiYi Xu's avatar
YiYi Xu committed
1398
        model_size = compute_module_sizes(model)[""]
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
        # We test several splits of sizes to make sure it works.
        max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir)

            for max_size in max_gpu_sizes:
                max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
                new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                # Making sure part of the model will actually end up offloaded
                self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)

                torch.manual_seed(0)
                new_output = new_model(**inputs_dict)

                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1417
    @require_torch_accelerator
1418
    def test_sharded_checkpoints(self):
1419
        torch.manual_seed(0)
1420
1421
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1422
1423
1424
1425
        model = model.to(torch_device)

        base_output = model(**inputs_dict)

1426
        model_size = compute_module_persistent_sizes(model)[""]
1427
1428
1429
1430
1431
1432
1433
1434
        max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB")
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))

            # Now check if the right number of shards exists. First, let's get the number of shards.
            # Since this number can be dependent on the model being tested, it's important that we calculate it
            # instead of hardcoding it.
1435
            expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))
1436
1437
1438
            actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
            self.assertTrue(actual_num_shards == expected_num_shards)

1439
            new_model = self.model_class.from_pretrained(tmp_dir).eval()
1440
            new_model = new_model.to(torch_device)
1441
1442

            torch.manual_seed(0)
1443
1444
            if "generator" in inputs_dict:
                _, inputs_dict = self.prepare_init_args_and_inputs_for_common()
1445
            new_output = new_model(**inputs_dict)
1446

1447
1448
            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1449
    @require_torch_accelerator
1450
1451
1452
1453
1454
1455
1456
1457
    def test_sharded_checkpoints_with_variant(self):
        torch.manual_seed(0)
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
        model = model.to(torch_device)

        base_output = model(**inputs_dict)

1458
        model_size = compute_module_persistent_sizes(model)[""]
1459
1460
1461
1462
1463
1464
1465
        max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
        variant = "fp16"
        with tempfile.TemporaryDirectory() as tmp_dir:
            # It doesn't matter if the actual model is in fp16 or not. Just adding the variant and
            # testing if loading works with the variant when the checkpoint is sharded should be
            # enough.
            model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB", variant=variant)
1466

1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
            index_filename = _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, index_filename)))

            # Now check if the right number of shards exists. First, let's get the number of shards.
            # Since this number can be dependent on the model being tested, it's important that we calculate it
            # instead of hardcoding it.
            expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, index_filename))
            actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
            self.assertTrue(actual_num_shards == expected_num_shards)

            new_model = self.model_class.from_pretrained(tmp_dir, variant=variant).eval()
            new_model = new_model.to(torch_device)

            torch.manual_seed(0)
            if "generator" in inputs_dict:
                _, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            new_output = new_model(**inputs_dict)

            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
    @require_torch_accelerator
    def test_sharded_checkpoints_with_parallel_loading(self):
        torch.manual_seed(0)
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
        model = model.to(torch_device)

        base_output = model(**inputs_dict)

        model_size = compute_module_persistent_sizes(model)[""]
        max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB")
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))

            # Now check if the right number of shards exists. First, let's get the number of shards.
            # Since this number can be dependent on the model being tested, it's important that we calculate it
            # instead of hardcoding it.
            expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))
            actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
            self.assertTrue(actual_num_shards == expected_num_shards)

            # Load with parallel loading
            os.environ["HF_ENABLE_PARALLEL_LOADING"] = "yes"
            new_model = self.model_class.from_pretrained(tmp_dir).eval()
            new_model = new_model.to(torch_device)

            torch.manual_seed(0)
            if "generator" in inputs_dict:
                _, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            new_output = new_model(**inputs_dict)
            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
            # set to no.
            os.environ["HF_ENABLE_PARALLEL_LOADING"] = "no"

1522
    @require_torch_accelerator
1523
    def test_sharded_checkpoints_device_map(self):
1524
1525
        if self.model_class._no_split_modules is None:
            pytest.skip("Test not supported for this model as `_no_split_modules` is not set.")
1526
1527
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1528
1529
1530
1531
1532
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

1533
        model_size = compute_module_persistent_sizes(model)[""]
1534
1535
1536
1537
1538
1539
1540
1541
        max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB")
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))

            # Now check if the right number of shards exists. First, let's get the number of shards.
            # Since this number can be dependent on the model being tested, it's important that we calculate it
            # instead of hardcoding it.
1542
            expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))
1543
1544
1545
1546
1547
1548
            actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
            self.assertTrue(actual_num_shards == expected_num_shards)

            new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto")

            torch.manual_seed(0)
1549
1550
            if "generator" in inputs_dict:
                _, inputs_dict = self.prepare_init_args_and_inputs_for_common()
1551
1552
1553
            new_output = new_model(**inputs_dict)
            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1554
1555
1556
1557
1558
1559
1560
1561
    # This test is okay without a GPU because we're not running any execution. We're just serializing
    # and check if the resultant files are following an expected format.
    def test_variant_sharded_ckpt_right_format(self):
        for use_safe in [True, False]:
            extension = ".safetensors" if use_safe else ".bin"
            config, _ = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**config).eval()

1562
            model_size = compute_module_persistent_sizes(model)[""]
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
            max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
            variant = "fp16"
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(
                    tmp_dir, variant=variant, max_shard_size=f"{max_shard_size}KB", safe_serialization=use_safe
                )
                index_variant = _add_variant(SAFE_WEIGHTS_INDEX_NAME if use_safe else WEIGHTS_INDEX_NAME, variant)
                self.assertTrue(os.path.exists(os.path.join(tmp_dir, index_variant)))

                # Now check if the right number of shards exists. First, let's get the number of shards.
                # Since this number can be dependent on the model being tested, it's important that we calculate it
                # instead of hardcoding it.
                expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, index_variant))
                actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(extension)])
                self.assertTrue(actual_num_shards == expected_num_shards)

                # Check if the variant is present as a substring in the checkpoints.
                shard_files = [
                    file
                    for file in os.listdir(tmp_dir)
                    if file.endswith(extension) or ("index" in file and "json" in file)
                ]
                assert all(variant in f for f in shard_files)

                # Check if the sharded checkpoints were serialized in the right format.
                shard_files = [file for file in os.listdir(tmp_dir) if file.endswith(extension)]
                # Example: diffusion_pytorch_model.fp16-00001-of-00002.safetensors
                assert all(f.split(".")[1].split("-")[0] == variant for f in shard_files)

1592
1593
1594
    def test_layerwise_casting_training(self):
        def test_fn(storage_dtype, compute_dtype):
            if torch.device(torch_device).type == "cpu" and compute_dtype == torch.bfloat16:
1595
                pytest.skip("Skipping test because CPU doesn't go well with bfloat16.")
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

            model = self.model_class(**init_dict)
            model = model.to(torch_device, dtype=compute_dtype)
            model.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)
            model.train()

            inputs_dict = cast_maybe_tensor_dtype(inputs_dict, torch.float32, compute_dtype)
            with torch.amp.autocast(device_type=torch.device(torch_device).type):
                output = model(**inputs_dict)

                if isinstance(output, dict):
                    output = output.to_tuple()[0]

                input_tensor = inputs_dict[self.main_input_name]
                noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
                noise = cast_maybe_tensor_dtype(noise, torch.float32, compute_dtype)
                loss = torch.nn.functional.mse_loss(output, noise)

            loss.backward()

        test_fn(torch.float16, torch.float32)
        test_fn(torch.float8_e4m3fn, torch.float32)
        test_fn(torch.float8_e5m2, torch.float32)
        test_fn(torch.float8_e4m3fn, torch.bfloat16)

1622
    @torch.no_grad()
Aryan's avatar
Aryan committed
1623
    def test_layerwise_casting_inference(self):
1624
1625
        from diffusers.hooks._common import _GO_LC_SUPPORTED_PYTORCH_LAYERS
        from diffusers.hooks.layerwise_casting import DEFAULT_SKIP_MODULES_PATTERN
Aryan's avatar
Aryan committed
1626
1627
1628

        torch.manual_seed(0)
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
1629
1630
1631
1632
        model = self.model_class(**config)
        model.eval()
        model.to(torch_device)
        base_slice = model(**inputs_dict)[0].detach().flatten().cpu().numpy()
Aryan's avatar
Aryan committed
1633
1634
1635
1636
1637
1638

        def check_linear_dtype(module, storage_dtype, compute_dtype):
            patterns_to_check = DEFAULT_SKIP_MODULES_PATTERN
            if getattr(module, "_skip_layerwise_casting_patterns", None) is not None:
                patterns_to_check += tuple(module._skip_layerwise_casting_patterns)
            for name, submodule in module.named_modules():
1639
                if not isinstance(submodule, _GO_LC_SUPPORTED_PYTORCH_LAYERS):
Aryan's avatar
Aryan committed
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
                    continue
                dtype_to_check = storage_dtype
                if any(re.search(pattern, name) for pattern in patterns_to_check):
                    dtype_to_check = compute_dtype
                if getattr(submodule, "weight", None) is not None:
                    self.assertEqual(submodule.weight.dtype, dtype_to_check)
                if getattr(submodule, "bias", None) is not None:
                    self.assertEqual(submodule.bias.dtype, dtype_to_check)

        def test_layerwise_casting(storage_dtype, compute_dtype):
            torch.manual_seed(0)
            config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            inputs_dict = cast_maybe_tensor_dtype(inputs_dict, torch.float32, compute_dtype)
            model = self.model_class(**config).eval()
            model = model.to(torch_device, dtype=compute_dtype)
            model.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)

            check_linear_dtype(model, storage_dtype, compute_dtype)
            output = model(**inputs_dict)[0].float().flatten().detach().cpu().numpy()

            # The precision test is not very important for fast tests. In most cases, the outputs will not be the same.
            # We just want to make sure that the layerwise casting is working as expected.
            self.assertTrue(numpy_cosine_similarity_distance(base_slice, output) < 1.0)

        test_layerwise_casting(torch.float16, torch.float32)
        test_layerwise_casting(torch.float8_e4m3fn, torch.float32)
        test_layerwise_casting(torch.float8_e5m2, torch.float32)
        test_layerwise_casting(torch.float8_e4m3fn, torch.bfloat16)

1669
    @require_torch_accelerator
1670
    @torch.no_grad()
Aryan's avatar
Aryan committed
1671
1672
    def test_layerwise_casting_memory(self):
        MB_TOLERANCE = 0.2
1673
        LEAST_COMPUTE_CAPABILITY = 8.0
Aryan's avatar
Aryan committed
1674
1675
1676

        def reset_memory_stats():
            gc.collect()
1677
1678
1679
            backend_synchronize(torch_device)
            backend_empty_cache(torch_device)
            backend_reset_peak_memory_stats(torch_device)
Aryan's avatar
Aryan committed
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

        def get_memory_usage(storage_dtype, compute_dtype):
            torch.manual_seed(0)
            config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            inputs_dict = cast_maybe_tensor_dtype(inputs_dict, torch.float32, compute_dtype)
            model = self.model_class(**config).eval()
            model = model.to(torch_device, dtype=compute_dtype)
            model.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)

            reset_memory_stats()
            model(**inputs_dict)
            model_memory_footprint = model.get_memory_footprint()
1692
            peak_inference_memory_allocated_mb = backend_max_memory_allocated(torch_device) / 1024**2
Aryan's avatar
Aryan committed
1693
1694
1695
1696
1697
1698
1699
1700
1701

            return model_memory_footprint, peak_inference_memory_allocated_mb

        fp32_memory_footprint, fp32_max_memory = get_memory_usage(torch.float32, torch.float32)
        fp8_e4m3_fp32_memory_footprint, fp8_e4m3_fp32_max_memory = get_memory_usage(torch.float8_e4m3fn, torch.float32)
        fp8_e4m3_bf16_memory_footprint, fp8_e4m3_bf16_max_memory = get_memory_usage(
            torch.float8_e4m3fn, torch.bfloat16
        )

1702
        compute_capability = get_torch_cuda_device_capability() if torch_device == "cuda" else None
Aryan's avatar
Aryan committed
1703
        self.assertTrue(fp8_e4m3_bf16_memory_footprint < fp8_e4m3_fp32_memory_footprint < fp32_memory_footprint)
1704
1705
1706
1707
        # NOTE: the following assertion would fail on our CI (running Tesla T4) due to bf16 using more memory than fp32.
        # On other devices, such as DGX (Ampere) and Audace (Ada), the test passes. So, we conditionally check it.
        if compute_capability and compute_capability >= LEAST_COMPUTE_CAPABILITY:
            self.assertTrue(fp8_e4m3_bf16_max_memory < fp8_e4m3_fp32_max_memory)
Aryan's avatar
Aryan committed
1708
1709
1710
1711
1712
1713
1714
1715
        # On this dummy test case with a small model, sometimes fp8_e4m3_fp32 max memory usage is higher than fp32 by a few
        # bytes. This only happens for some models, so we allow a small tolerance.
        # For any real model being tested, the order would be fp8_e4m3_bf16 < fp8_e4m3_fp32 < fp32.
        self.assertTrue(
            fp8_e4m3_fp32_max_memory < fp32_max_memory
            or abs(fp8_e4m3_fp32_max_memory - fp32_max_memory) < MB_TOLERANCE
        )

1716
    @parameterized.expand([False, True])
1717
    @require_torch_accelerator
1718
    def test_group_offloading(self, record_stream):
1719
1720
1721
        if not self.model_class._supports_group_offloading:
            pytest.skip("Model does not support group offloading.")

Aryan's avatar
Aryan committed
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        torch.manual_seed(0)

        @torch.no_grad()
        def run_forward(model):
            self.assertTrue(
                all(
                    module._diffusers_hook.get_hook("group_offloading") is not None
                    for module in model.modules()
                    if hasattr(module, "_diffusers_hook")
                )
            )
            model.eval()
            return model(**inputs_dict)[0]

        model = self.model_class(**init_dict)

        model.to(torch_device)
        output_without_group_offloading = run_forward(model)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1)
        output_with_group_offloading1 = run_forward(model)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, non_blocking=True)
        output_with_group_offloading2 = run_forward(model)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.enable_group_offload(torch_device, offload_type="leaf_level")
        output_with_group_offloading3 = run_forward(model)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
1759
1760
1761
        model.enable_group_offload(
            torch_device, offload_type="leaf_level", use_stream=True, record_stream=record_stream
        )
Aryan's avatar
Aryan committed
1762
1763
1764
1765
1766
1767
1768
        output_with_group_offloading4 = run_forward(model)

        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading1, atol=1e-5))
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading2, atol=1e-5))
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading3, atol=1e-5))
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading4, atol=1e-5))

1769
1770
1771
1772
    @parameterized.expand([(False, "block_level"), (True, "leaf_level")])
    @require_torch_accelerator
    @torch.no_grad()
    def test_group_offloading_with_layerwise_casting(self, record_stream, offload_type):
1773
1774
1775
        if not self.model_class._supports_group_offloading:
            pytest.skip("Model does not support group offloading.")

1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
        torch.manual_seed(0)
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)

        model.to(torch_device)
        model.eval()
        _ = model(**inputs_dict)[0]

        torch.manual_seed(0)
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        storage_dtype, compute_dtype = torch.float16, torch.float32
        inputs_dict = cast_maybe_tensor_dtype(inputs_dict, torch.float32, compute_dtype)
        model = self.model_class(**init_dict)
        model.eval()
        additional_kwargs = {} if offload_type == "leaf_level" else {"num_blocks_per_group": 1}
        model.enable_group_offload(
            torch_device, offload_type=offload_type, use_stream=True, record_stream=record_stream, **additional_kwargs
        )
        model.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)
        _ = model(**inputs_dict)[0]

1797
    @parameterized.expand([("block_level", False), ("leaf_level", True)])
1798
1799
    @require_torch_accelerator
    @torch.no_grad()
1800
1801
    @torch.inference_mode()
    def test_group_offloading_with_disk(self, offload_type, record_stream, atol=1e-5):
1802
1803
1804
        if not self.model_class._supports_group_offloading:
            pytest.skip("Model does not support group offloading.")

1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
        def _has_generator_arg(model):
            sig = inspect.signature(model.forward)
            params = sig.parameters
            return "generator" in params

        def _run_forward(model, inputs_dict):
            accepts_generator = _has_generator_arg(model)
            if accepts_generator:
                inputs_dict["generator"] = torch.manual_seed(0)
            torch.manual_seed(0)
            return model(**inputs_dict)[0]

1817
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
1818
        torch.manual_seed(0)
1819
        model = self.model_class(**init_dict)
1820

1821
        model.eval()
1822
1823
1824
1825
1826
1827
1828
1829
1830
        model.to(torch_device)
        output_without_group_offloading = _run_forward(model, inputs_dict)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.eval()

        num_blocks_per_group = None if offload_type == "leaf_level" else 1
        additional_kwargs = {} if offload_type == "leaf_level" else {"num_blocks_per_group": num_blocks_per_group}
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
        with tempfile.TemporaryDirectory() as tmpdir:
            model.enable_group_offload(
                torch_device,
                offload_type=offload_type,
                offload_to_disk_path=tmpdir,
                use_stream=True,
                record_stream=record_stream,
                **additional_kwargs,
            )
            has_safetensors = glob.glob(f"{tmpdir}/*.safetensors")
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
            self.assertTrue(has_safetensors, "No safetensors found in the directory.")

            # For "leaf-level", there is a prefetching hook which makes this check a bit non-deterministic
            # in nature. So, skip it.
            if offload_type != "leaf_level":
                is_correct, extra_files, missing_files = _check_safetensors_serialization(
                    module=model,
                    offload_to_disk_path=tmpdir,
                    offload_type=offload_type,
                    num_blocks_per_group=num_blocks_per_group,
                )
                if not is_correct:
                    if extra_files:
                        raise ValueError(f"Found extra files: {', '.join(extra_files)}")
                    elif missing_files:
                        raise ValueError(f"Following files are missing: {', '.join(missing_files)}")

            output_with_group_offloading = _run_forward(model, inputs_dict)
            self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading, atol=atol))
1860

hlky's avatar
hlky committed
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
    def test_auto_model(self, expected_max_diff=5e-5):
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)

        model = model.eval()
        model = model.to(torch_device)

        if hasattr(model, "set_default_attn_processor"):
            model.set_default_attn_processor()

        with tempfile.TemporaryDirectory(ignore_cleanup_errors=True) as tmpdirname:
            model.save_pretrained(tmpdirname, safe_serialization=False)

            auto_model = AutoModel.from_pretrained(tmpdirname)
            if hasattr(auto_model, "set_default_attn_processor"):
                auto_model.set_default_attn_processor()

        auto_model = auto_model.eval()
        auto_model = auto_model.to(torch_device)

        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output_original = model(**self.inputs_dict(0))
                output_auto = auto_model(**self.inputs_dict(0))
            else:
                output_original = model(**inputs_dict)
                output_auto = auto_model(**inputs_dict)

            if isinstance(output_original, dict):
                output_original = output_original.to_tuple()[0]
            if isinstance(output_auto, dict):
                output_auto = output_auto.to_tuple()[0]

        max_diff = (output_original - output_auto).abs().max().item()
        self.assertLessEqual(
            max_diff,
            expected_max_diff,
            f"AutoModel forward pass diff: {max_diff} exceeds threshold {expected_max_diff}",
        )

1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
    @parameterized.expand(
        [
            (-1, "You can't pass device_map as a negative int"),
            ("foo", "When passing device_map as a string, the value needs to be a device name"),
        ]
    )
    def test_wrong_device_map_raises_error(self, device_map, msg_substring):
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        with tempfile.TemporaryDirectory() as tmpdir:
            model.save_pretrained(tmpdir)
            with self.assertRaises(ValueError) as err_ctx:
                _ = self.model_class.from_pretrained(tmpdir, device_map=device_map)

        assert msg_substring in str(err_ctx.exception)

1920
1921
    @parameterized.expand([0, torch_device, torch.device(torch_device)])
    @require_torch_accelerator
1922
1923
1924
1925
1926
1927
1928
1929
    def test_passing_non_dict_device_map_works(self, device_map):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).eval()
        with tempfile.TemporaryDirectory() as tmpdir:
            model.save_pretrained(tmpdir)
            loaded_model = self.model_class.from_pretrained(tmpdir, device_map=device_map)
            _ = loaded_model(**inputs_dict)

1930
1931
    @parameterized.expand([("", torch_device), ("", torch.device(torch_device))])
    @require_torch_accelerator
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
    def test_passing_dict_device_map_works(self, name, device):
        # There are other valid dict-based `device_map` values too. It's best to refer to
        # the docs for those: https://huggingface.co/docs/accelerate/en/concept_guides/big_model_inference#the-devicemap.
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).eval()
        device_map = {name: device}
        with tempfile.TemporaryDirectory() as tmpdir:
            model.save_pretrained(tmpdir)
            loaded_model = self.model_class.from_pretrained(tmpdir, device_map=device_map)
            _ = loaded_model(**inputs_dict)

1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010

@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
    identifier = uuid.uuid4()
    repo_id = f"test-model-{identifier}"
    org_repo_id = f"valid_org/{repo_id}-org"

    def test_push_to_hub(self):
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        model.push_to_hub(self.repo_id, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.repo_id)

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(self.repo_id, token=TOKEN)

    def test_push_to_hub_in_organization(self):
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        model.push_to_hub(self.org_repo_id, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id)
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.org_repo_id)

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, push_to_hub=True, token=TOKEN, repo_id=self.org_repo_id)

        new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id)
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(self.org_repo_id, token=TOKEN)
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033

    @unittest.skipIf(
        not is_jinja_available(),
        reason="Model card tests cannot be performed without Jinja installed.",
    )
    def test_push_to_hub_library_name(self):
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        model.push_to_hub(self.repo_id, token=TOKEN)

        model_card = ModelCard.load(f"{USER}/{self.repo_id}", token=TOKEN).data
        assert model_card.library_name == "diffusers"

        # Reset repo
        delete_repo(self.repo_id, token=TOKEN)
2034
2035


2036
@require_torch_accelerator
2037
2038
2039
@require_torch_2
@is_torch_compile
@slow
2040
@require_torch_version_greater("2.7.1")
2041
class TorchCompileTesterMixin:
2042
2043
    different_shapes_for_compilation = None

2044
2045
2046
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
2047
        torch.compiler.reset()
2048
2049
2050
2051
2052
2053
        gc.collect()
        backend_empty_cache(torch_device)

    def tearDown(self):
        # clean up the VRAM after each test in case of CUDA runtime errors
        super().tearDown()
2054
        torch.compiler.reset()
2055
2056
2057
2058
2059
2060
2061
        gc.collect()
        backend_empty_cache(torch_device)

    def test_torch_compile_recompilation_and_graph_break(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict).to(torch_device)
2062
        model.eval()
2063
2064
        model = torch.compile(model, fullgraph=True)

2065
2066
2067
2068
2069
        with (
            torch._inductor.utils.fresh_inductor_cache(),
            torch._dynamo.config.patch(error_on_recompile=True),
            torch.no_grad(),
        ):
2070
2071
            _ = model(**inputs_dict)
            _ = model(**inputs_dict)
2072
2073
2074
2075
2076
2077
2078
2079

    def test_torch_compile_repeated_blocks(self):
        if self.model_class._repeated_blocks is None:
            pytest.skip("Skipping test as the model class doesn't have `_repeated_blocks` set.")

        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict).to(torch_device)
2080
        model.eval()
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
        model.compile_repeated_blocks(fullgraph=True)

        recompile_limit = 1
        if self.model_class.__name__ == "UNet2DConditionModel":
            recompile_limit = 2

        with (
            torch._inductor.utils.fresh_inductor_cache(),
            torch._dynamo.config.patch(recompile_limit=recompile_limit),
            torch.no_grad(),
        ):
            _ = model(**inputs_dict)
            _ = model(**inputs_dict)
2094

2095
    def test_compile_with_group_offloading(self):
2096
2097
2098
        if not self.model_class._supports_group_offloading:
            pytest.skip("Model does not support group offloading.")

2099
2100
2101
2102
2103
2104
2105
        torch._dynamo.config.cache_size_limit = 10000

        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.eval()
        # TODO: Can test for other group offloading kwargs later if needed.
        group_offload_kwargs = {
2106
            "onload_device": torch_device,
2107
2108
2109
2110
2111
2112
2113
2114
            "offload_device": "cpu",
            "offload_type": "block_level",
            "num_blocks_per_group": 1,
            "use_stream": True,
            "non_blocking": True,
        }
        model.enable_group_offload(**group_offload_kwargs)
        model.compile()
2115

2116
2117
2118
2119
        with torch.no_grad():
            _ = model(**inputs_dict)
            _ = model(**inputs_dict)

2120
2121
2122
2123
2124
2125
2126
    def test_compile_on_different_shapes(self):
        if self.different_shapes_for_compilation is None:
            pytest.skip(f"Skipping as `different_shapes_for_compilation` is not set for {self.__class__.__name__}.")
        torch.fx.experimental._config.use_duck_shape = False

        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)
2127
        model.eval()
2128
2129
2130
2131
2132
2133
2134
        model = torch.compile(model, fullgraph=True, dynamic=True)

        for height, width in self.different_shapes_for_compilation:
            with torch._dynamo.config.patch(error_on_recompile=True), torch.no_grad():
                inputs_dict = self.prepare_dummy_input(height=height, width=width)
                _ = model(**inputs_dict)

2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
    def test_compile_works_with_aot(self):
        from torch._inductor.package import load_package

        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict).to(torch_device)
        exported_model = torch.export.export(model, args=(), kwargs=inputs_dict)

        with tempfile.TemporaryDirectory() as tmpdir:
            package_path = os.path.join(tmpdir, f"{self.model_class.__name__}.pt2")
            _ = torch._inductor.aoti_compile_and_package(exported_model, package_path=package_path)
            assert os.path.exists(package_path)
            loaded_binary = load_package(package_path, run_single_threaded=True)

        model.forward = loaded_binary

        with torch.no_grad():
            _ = model(**inputs_dict)
            _ = model(**inputs_dict)

2155

2156
2157
2158
2159
2160
@slow
@require_torch_2
@require_torch_accelerator
@require_peft_backend
@require_peft_version_greater("0.14.0")
2161
@require_torch_version_greater("2.7.1")
2162
@is_torch_compile
2163
class LoraHotSwappingForModelTesterMixin:
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
    """Test that hotswapping does not result in recompilation on the model directly.

    We're not extensively testing the hotswapping functionality since it is implemented in PEFT and is extensively
    tested there. The goal of this test is specifically to ensure that hotswapping with diffusers does not require
    recompilation.

    See
    https://github.com/huggingface/peft/blob/eaab05e18d51fb4cce20a73c9acd82a00c013b83/tests/test_gpu_examples.py#L4252
    for the analogous PEFT test.

    """

2176
2177
    different_shapes_for_compilation = None

2178
2179
2180
2181
    def tearDown(self):
        # It is critical that the dynamo cache is reset for each test. Otherwise, if the test re-uses the same model,
        # there will be recompilation errors, as torch caches the model when run in the same process.
        super().tearDown()
2182
        torch.compiler.reset()
2183
2184
2185
        gc.collect()
        backend_empty_cache(torch_device)

2186
    def get_lora_config(self, lora_rank, lora_alpha, target_modules):
2187
2188
2189
        # from diffusers test_models_unet_2d_condition.py
        from peft import LoraConfig

2190
        lora_config = LoraConfig(
2191
2192
2193
2194
2195
2196
            r=lora_rank,
            lora_alpha=lora_alpha,
            target_modules=target_modules,
            init_lora_weights=False,
            use_dora=False,
        )
2197
        return lora_config
2198

2199
2200
2201
2202
2203
    def get_linear_module_name_other_than_attn(self, model):
        linear_names = [
            name for name, module in model.named_modules() if isinstance(module, nn.Linear) and "to_" not in name
        ]
        return linear_names[0]
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214

    def check_model_hotswap(self, do_compile, rank0, rank1, target_modules0, target_modules1=None):
        """
        Check that hotswapping works on a small unet.

        Steps:
        - create 2 LoRA adapters and save them
        - load the first adapter
        - hotswap the second adapter
        - check that the outputs are correct
        - optionally compile the model
2215
        - optionally check if recompilations happen on different shapes
2216
2217
2218
2219
2220

        Note: We set rank == alpha here because save_lora_adapter does not save the alpha scalings, thus the test would
        fail if the values are different. Since rank != alpha does not matter for the purpose of this test, this is
        fine.
        """
2221
        different_shapes = self.different_shapes_for_compilation
2222
        # create 2 adapters with different ranks and alphas
2223
2224
2225
2226
        torch.manual_seed(0)
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)

2227
2228
2229
2230
        alpha0, alpha1 = rank0, rank1
        max_rank = max([rank0, rank1])
        if target_modules1 is None:
            target_modules1 = target_modules0[:]
2231
2232
        lora_config0 = self.get_lora_config(rank0, alpha0, target_modules0)
        lora_config1 = self.get_lora_config(rank1, alpha1, target_modules1)
2233

2234
        model.add_adapter(lora_config0, adapter_name="adapter0")
2235
        with torch.inference_mode():
2236
2237
            torch.manual_seed(0)
            output0_before = model(**inputs_dict)["sample"]
2238

2239
2240
        model.add_adapter(lora_config1, adapter_name="adapter1")
        model.set_adapter("adapter1")
2241
        with torch.inference_mode():
2242
2243
            torch.manual_seed(0)
            output1_before = model(**inputs_dict)["sample"]
2244
2245
2246
2247
2248
2249
2250
2251
2252

        # sanity checks:
        tol = 5e-3
        assert not torch.allclose(output0_before, output1_before, atol=tol, rtol=tol)
        assert not (output0_before == 0).all()
        assert not (output1_before == 0).all()

        with tempfile.TemporaryDirectory() as tmp_dirname:
            # save the adapter checkpoints
2253
2254
2255
            model.save_lora_adapter(os.path.join(tmp_dirname, "0"), safe_serialization=True, adapter_name="adapter0")
            model.save_lora_adapter(os.path.join(tmp_dirname, "1"), safe_serialization=True, adapter_name="adapter1")
            del model
2256
2257

            # load the first adapter
2258
2259
2260
2261
            torch.manual_seed(0)
            init_dict, _ = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict).to(torch_device)

2262
2263
            if do_compile or (rank0 != rank1):
                # no need to prepare if the model is not compiled or if the ranks are identical
2264
                model.enable_lora_hotswap(target_rank=max_rank)
2265
2266
2267

            file_name0 = os.path.join(os.path.join(tmp_dirname, "0"), "pytorch_lora_weights.safetensors")
            file_name1 = os.path.join(os.path.join(tmp_dirname, "1"), "pytorch_lora_weights.safetensors")
2268
            model.load_lora_adapter(file_name0, safe_serialization=True, adapter_name="adapter0", prefix=None)
2269
2270

            if do_compile:
2271
                model = torch.compile(model, mode="reduce-overhead", dynamic=different_shapes is not None)
2272
2273

            with torch.inference_mode():
2274
2275
2276
2277
2278
2279
2280
2281
                # additionally check if dynamic compilation works.
                if different_shapes is not None:
                    for height, width in different_shapes:
                        new_inputs_dict = self.prepare_dummy_input(height=height, width=width)
                        _ = model(**new_inputs_dict)
                else:
                    output0_after = model(**inputs_dict)["sample"]
                    assert torch.allclose(output0_before, output0_after, atol=tol, rtol=tol)
2282
2283

            # hotswap the 2nd adapter
2284
            model.load_lora_adapter(file_name1, adapter_name="adapter0", hotswap=True, prefix=None)
2285
2286
2287

            # we need to call forward to potentially trigger recompilation
            with torch.inference_mode():
2288
2289
2290
2291
2292
2293
2294
                if different_shapes is not None:
                    for height, width in different_shapes:
                        new_inputs_dict = self.prepare_dummy_input(height=height, width=width)
                        _ = model(**new_inputs_dict)
                else:
                    output1_after = model(**inputs_dict)["sample"]
                    assert torch.allclose(output1_before, output1_after, atol=tol, rtol=tol)
2295
2296
2297
2298
2299

            # check error when not passing valid adapter name
            name = "does-not-exist"
            msg = f"Trying to hotswap LoRA adapter '{name}' but there is no existing adapter by that name"
            with self.assertRaisesRegex(ValueError, msg):
2300
                model.load_lora_adapter(file_name1, adapter_name=name, hotswap=True, prefix=None)
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_model(self, rank0, rank1):
        self.check_model_hotswap(
            do_compile=False, rank0=rank0, rank1=rank1, target_modules0=["to_q", "to_k", "to_v", "to_out.0"]
        )

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_compiled_model_linear(self, rank0, rank1):
        # It's important to add this context to raise an error on recompilation
        target_modules = ["to_q", "to_k", "to_v", "to_out.0"]
2312
        with torch._dynamo.config.patch(error_on_recompile=True), torch._inductor.utils.fresh_inductor_cache():
2313
2314
2315
2316
            self.check_model_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_compiled_model_conv2d(self, rank0, rank1):
2317
        if "unet" not in self.model_class.__name__.lower():
2318
            pytest.skip("Test only applies to UNet.")
2319

2320
2321
        # It's important to add this context to raise an error on recompilation
        target_modules = ["conv", "conv1", "conv2"]
2322
        with torch._dynamo.config.patch(error_on_recompile=True), torch._inductor.utils.fresh_inductor_cache():
2323
2324
2325
2326
            self.check_model_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_compiled_model_both_linear_and_conv2d(self, rank0, rank1):
2327
        if "unet" not in self.model_class.__name__.lower():
2328
            pytest.skip("Test only applies to UNet.")
2329

2330
2331
        # It's important to add this context to raise an error on recompilation
        target_modules = ["to_q", "conv"]
2332
        with torch._dynamo.config.patch(error_on_recompile=True), torch._inductor.utils.fresh_inductor_cache():
2333
2334
            self.check_model_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)

2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_compiled_model_both_linear_and_other(self, rank0, rank1):
        # In `test_hotswapping_compiled_model_both_linear_and_conv2d()`, we check if we can do hotswapping
        # with `torch.compile()` for models that have both linear and conv layers. In this test, we check
        # if we can target a linear layer from the transformer blocks and another linear layer from non-attention
        # block.
        target_modules = ["to_q"]
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)

        target_modules.append(self.get_linear_module_name_other_than_attn(model))
        del model

        # It's important to add this context to raise an error on recompilation
        with torch._dynamo.config.patch(error_on_recompile=True):
            self.check_model_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)

2352
2353
    def test_enable_lora_hotswap_called_after_adapter_added_raises(self):
        # ensure that enable_lora_hotswap is called before loading the first adapter
2354
2355
2356
2357
2358
        lora_config = self.get_lora_config(8, 8, target_modules=["to_q"])
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)
        model.add_adapter(lora_config)

2359
2360
        msg = re.escape("Call `enable_lora_hotswap` before loading the first adapter.")
        with self.assertRaisesRegex(RuntimeError, msg):
2361
            model.enable_lora_hotswap(target_rank=32)
2362
2363
2364
2365
2366

    def test_enable_lora_hotswap_called_after_adapter_added_warning(self):
        # ensure that enable_lora_hotswap is called before loading the first adapter
        from diffusers.loaders.peft import logger

2367
2368
2369
2370
        lora_config = self.get_lora_config(8, 8, target_modules=["to_q"])
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)
        model.add_adapter(lora_config)
2371
2372
2373
2374
        msg = (
            "It is recommended to call `enable_lora_hotswap` before loading the first adapter to avoid recompilation."
        )
        with self.assertLogs(logger=logger, level="WARNING") as cm:
2375
            model.enable_lora_hotswap(target_rank=32, check_compiled="warn")
2376
2377
2378
2379
            assert any(msg in log for log in cm.output)

    def test_enable_lora_hotswap_called_after_adapter_added_ignore(self):
        # check possibility to ignore the error/warning
2380
2381
        from diffusers.loaders.peft import logger

2382
2383
2384
2385
        lora_config = self.get_lora_config(8, 8, target_modules=["to_q"])
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)
        model.add_adapter(lora_config)
2386
2387
2388
        # note: assertNoLogs requires Python 3.10+
        with self.assertNoLogs(logger, level="WARNING"):
            model.enable_lora_hotswap(target_rank=32, check_compiled="ignore")
2389
2390
2391

    def test_enable_lora_hotswap_wrong_check_compiled_argument_raises(self):
        # check that wrong argument value raises an error
2392
2393
2394
2395
        lora_config = self.get_lora_config(8, 8, target_modules=["to_q"])
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)
        model.add_adapter(lora_config)
2396
2397
        msg = re.escape("check_compiles should be one of 'error', 'warn', or 'ignore', got 'wrong-argument' instead.")
        with self.assertRaisesRegex(ValueError, msg):
2398
            model.enable_lora_hotswap(target_rank=32, check_compiled="wrong-argument")
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412

    def test_hotswap_second_adapter_targets_more_layers_raises(self):
        # check the error and log
        from diffusers.loaders.peft import logger

        # at the moment, PEFT requires the 2nd adapter to target the same or a subset of layers
        target_modules0 = ["to_q"]
        target_modules1 = ["to_q", "to_k"]
        with self.assertRaises(RuntimeError):  # peft raises RuntimeError
            with self.assertLogs(logger=logger, level="ERROR") as cm:
                self.check_model_hotswap(
                    do_compile=True, rank0=8, rank1=8, target_modules0=target_modules0, target_modules1=target_modules1
                )
                assert any("Hotswapping adapter0 was unsuccessful" in log for log in cm.output)
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])
    @require_torch_version_greater("2.7.1")
    def test_hotswapping_compile_on_different_shapes(self, rank0, rank1):
        different_shapes_for_compilation = self.different_shapes_for_compilation
        if different_shapes_for_compilation is None:
            pytest.skip(f"Skipping as `different_shapes_for_compilation` is not set for {self.__class__.__name__}.")
        # Specifying `use_duck_shape=False` instructs the compiler if it should use the same symbolic
        # variable to represent input sizes that are the same. For more details,
        # check out this [comment](https://github.com/huggingface/diffusers/pull/11327#discussion_r2047659790).
        torch.fx.experimental._config.use_duck_shape = False

        target_modules = ["to_q", "to_k", "to_v", "to_out.0"]
        with torch._dynamo.config.patch(error_on_recompile=True):
            self.check_model_hotswap(
                do_compile=True,
                rank0=rank0,
                rank1=rank1,
                target_modules0=target_modules,
            )