Unverified Commit e5c43b8a authored by Dhruv Nair's avatar Dhruv Nair Committed by GitHub
Browse files

[CI] Fix Fast GPU tests on PR (#10912)



* update

* update

* update

* update

* update

---------
Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
parent 9a8e8db7
......@@ -11,6 +11,8 @@ on:
- "src/diffusers/loaders/lora_base.py"
- "src/diffusers/loaders/lora_pipeline.py"
- "src/diffusers/loaders/peft.py"
- "tests/pipelines/test_pipelines_common.py"
- "tests/models/test_modeling_common.py"
workflow_dispatch:
concurrency:
......
......@@ -1169,17 +1169,16 @@ class ModelTesterMixin:
base_output = model(**inputs_dict)
model_size = compute_module_sizes(model)[""]
max_size = int(self.model_split_percents[0] * model_size)
# Force disk offload by setting very small CPU memory
max_memory = {0: max_size, "cpu": int(0.1 * max_size)}
with tempfile.TemporaryDirectory() as tmp_dir:
model.cpu().save_pretrained(tmp_dir, safe_serialization=False)
with self.assertRaises(ValueError):
max_size = int(self.model_split_percents[0] * model_size)
max_memory = {0: max_size, "cpu": max_size}
# This errors out because it's missing an offload folder
new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
max_size = int(self.model_split_percents[0] * model_size)
max_memory = {0: max_size, "cpu": max_size}
new_model = self.model_class.from_pretrained(
tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
)
......
......@@ -30,6 +30,7 @@ class OmniGenTransformerTests(ModelTesterMixin, unittest.TestCase):
model_class = OmniGenTransformer2DModel
main_input_name = "hidden_states"
uses_custom_attn_processor = True
model_split_percents = [0.1, 0.1, 0.1]
@property
def dummy_input(self):
......@@ -73,9 +74,9 @@ class OmniGenTransformerTests(ModelTesterMixin, unittest.TestCase):
"num_attention_heads": 4,
"num_key_value_heads": 4,
"intermediate_size": 32,
"num_layers": 1,
"num_layers": 20,
"pad_token_id": 0,
"vocab_size": 100,
"vocab_size": 1000,
"in_channels": 4,
"time_step_dim": 4,
"rope_scaling": {"long_factor": list(range(1, 3)), "short_factor": list(range(1, 3))},
......
......@@ -33,6 +33,7 @@ enable_full_determinism()
class SD3TransformerTests(ModelTesterMixin, unittest.TestCase):
model_class = SD3Transformer2DModel
main_input_name = "hidden_states"
model_split_percents = [0.8, 0.8, 0.9]
@property
def dummy_input(self):
......@@ -67,7 +68,7 @@ class SD3TransformerTests(ModelTesterMixin, unittest.TestCase):
"sample_size": 32,
"patch_size": 1,
"in_channels": 4,
"num_layers": 1,
"num_layers": 4,
"attention_head_dim": 8,
"num_attention_heads": 4,
"caption_projection_dim": 32,
......@@ -107,6 +108,7 @@ class SD3TransformerTests(ModelTesterMixin, unittest.TestCase):
class SD35TransformerTests(ModelTesterMixin, unittest.TestCase):
model_class = SD3Transformer2DModel
main_input_name = "hidden_states"
model_split_percents = [0.8, 0.8, 0.9]
@property
def dummy_input(self):
......@@ -141,7 +143,7 @@ class SD35TransformerTests(ModelTesterMixin, unittest.TestCase):
"sample_size": 32,
"patch_size": 1,
"in_channels": 4,
"num_layers": 2,
"num_layers": 4,
"attention_head_dim": 8,
"num_attention_heads": 4,
"caption_projection_dim": 32,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment