test_modeling_common.py 69.8 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import copy
Aryan's avatar
Aryan committed
17
import gc
18
import inspect
19
20
import json
import os
Aryan's avatar
Aryan committed
21
import re
22
import tempfile
23
import traceback
24
import unittest
25
import unittest.mock as mock
26
import uuid
27
28
from collections import defaultdict
from typing import Dict, List, Optional, Tuple, Union
29
30

import numpy as np
31
import requests_mock
32
import torch
33
import torch.nn as nn
YiYi Xu's avatar
YiYi Xu committed
34
from accelerate.utils.modeling import _get_proper_dtype, compute_module_sizes, dtype_byte_size
35
from huggingface_hub import ModelCard, delete_repo, snapshot_download
36
from huggingface_hub.utils import is_jinja_available
37
from parameterized import parameterized
38
from requests.exceptions import HTTPError
39

40
from diffusers.models import SD3Transformer2DModel, UNet2DConditionModel
41
42
43
44
45
46
from diffusers.models.attention_processor import (
    AttnProcessor,
    AttnProcessor2_0,
    AttnProcessorNPU,
    XFormersAttnProcessor,
)
47
from diffusers.training_utils import EMAModel
48
49
50
from diffusers.utils import (
    SAFE_WEIGHTS_INDEX_NAME,
    WEIGHTS_INDEX_NAME,
51
    is_peft_available,
52
53
54
55
    is_torch_npu_available,
    is_xformers_available,
    logging,
)
56
from diffusers.utils.hub_utils import _add_variant
57
58
from diffusers.utils.testing_utils import (
    CaptureLogger,
59
    get_python_version,
60
    is_torch_compile,
Aryan's avatar
Aryan committed
61
    numpy_cosine_similarity_distance,
62
    require_torch_2,
63
    require_torch_accelerator,
Arsalan's avatar
Arsalan committed
64
    require_torch_accelerator_with_training,
Aryan's avatar
Aryan committed
65
    require_torch_gpu,
66
    require_torch_multi_gpu,
67
    run_test_in_subprocess,
68
    torch_all_close,
Dhruv Nair's avatar
Dhruv Nair committed
69
    torch_device,
70
)
71
from diffusers.utils.torch_utils import get_torch_cuda_device_capability
72
73

from ..others.test_utils import TOKEN, USER, is_staging_test
74
75


76
77
78
79
if is_peft_available():
    from peft.tuners.tuners_utils import BaseTunerLayer


80
81
82
83
84
85
86
87
88
def caculate_expected_num_shards(index_map_path):
    with open(index_map_path) as f:
        weight_map_dict = json.load(f)["weight_map"]
    first_key = list(weight_map_dict.keys())[0]
    weight_loc = weight_map_dict[first_key]  # e.g., diffusion_pytorch_model-00001-of-00002.safetensors
    expected_num_shards = int(weight_loc.split("-")[-1].split(".")[0])
    return expected_num_shards


89
90
91
92
93
94
95
96
97
98
def check_if_lora_correctly_set(model) -> bool:
    """
    Checks if the LoRA layers are correctly set with peft
    """
    for module in model.modules():
        if isinstance(module, BaseTunerLayer):
            return True
    return False


99
100
101
102
103
104
105
106
107
108
109
# Will be run via run_test_in_subprocess
def _test_from_save_pretrained_dynamo(in_queue, out_queue, timeout):
    error = None
    try:
        init_dict, model_class = in_queue.get(timeout=timeout)

        model = model_class(**init_dict)
        model.to(torch_device)
        model = torch.compile(model)

        with tempfile.TemporaryDirectory() as tmpdirname:
110
            model.save_pretrained(tmpdirname, safe_serialization=False)
111
112
113
114
115
116
117
118
119
120
            new_model = model_class.from_pretrained(tmpdirname)
            new_model.to(torch_device)

        assert new_model.__class__ == model_class
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()
121
122


123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
def named_persistent_module_tensors(
    module: nn.Module,
    recurse: bool = False,
):
    """
    A helper function that gathers all the tensors (parameters + persistent buffers) of a given module.

    Args:
        module (`torch.nn.Module`):
            The module we want the tensors on.
        recurse (`bool`, *optional`, defaults to `False`):
            Whether or not to go look in every submodule or just return the direct parameters and buffers.
    """
    yield from module.named_parameters(recurse=recurse)

    for named_buffer in module.named_buffers(recurse=recurse):
        name, _ = named_buffer
        # Get parent by splitting on dots and traversing the model
        parent = module
        if "." in name:
            parent_name = name.rsplit(".", 1)[0]
            for part in parent_name.split("."):
                parent = getattr(parent, part)
            name = name.split(".")[-1]
        if name not in parent._non_persistent_buffers_set:
            yield named_buffer


def compute_module_persistent_sizes(
    model: nn.Module,
    dtype: Optional[Union[str, torch.device]] = None,
    special_dtypes: Optional[Dict[str, Union[str, torch.device]]] = None,
):
    """
    Compute the size of each submodule of a given model (parameters + persistent buffers).
    """
    if dtype is not None:
        dtype = _get_proper_dtype(dtype)
        dtype_size = dtype_byte_size(dtype)
    if special_dtypes is not None:
        special_dtypes = {key: _get_proper_dtype(dtyp) for key, dtyp in special_dtypes.items()}
        special_dtypes_size = {key: dtype_byte_size(dtyp) for key, dtyp in special_dtypes.items()}
    module_sizes = defaultdict(int)

    module_list = []

    module_list = named_persistent_module_tensors(model, recurse=True)

    for name, tensor in module_list:
        if special_dtypes is not None and name in special_dtypes:
            size = tensor.numel() * special_dtypes_size[name]
        elif dtype is None:
            size = tensor.numel() * dtype_byte_size(tensor.dtype)
        elif str(tensor.dtype).startswith(("torch.uint", "torch.int", "torch.bool")):
            # According to the code in set_module_tensor_to_device, these types won't be converted
            # so use their original size here
            size = tensor.numel() * dtype_byte_size(tensor.dtype)
        else:
            size = tensor.numel() * min(dtype_size, dtype_byte_size(tensor.dtype))
        name_parts = name.split(".")
        for idx in range(len(name_parts) + 1):
            module_sizes[".".join(name_parts[:idx])] += size

    return module_sizes


Aryan's avatar
Aryan committed
189
190
191
192
193
194
195
196
197
198
def cast_maybe_tensor_dtype(maybe_tensor, current_dtype, target_dtype):
    if torch.is_tensor(maybe_tensor):
        return maybe_tensor.to(target_dtype) if maybe_tensor.dtype == current_dtype else maybe_tensor
    if isinstance(maybe_tensor, dict):
        return {k: cast_maybe_tensor_dtype(v, current_dtype, target_dtype) for k, v in maybe_tensor.items()}
    if isinstance(maybe_tensor, list):
        return [cast_maybe_tensor_dtype(v, current_dtype, target_dtype) for v in maybe_tensor]
    return maybe_tensor


199
class ModelUtilsTest(unittest.TestCase):
200
201
202
    def tearDown(self):
        super().tearDown()

203
204
    def test_missing_key_loading_warning_message(self):
        with self.assertLogs("diffusers.models.modeling_utils", level="WARNING") as logs:
205
206
207
            UNet2DConditionModel.from_pretrained("hf-internal-testing/stable-diffusion-broken", subfolder="unet")

        # make sure that error message states what keys are missing
208
        assert "conv_out.bias" in " ".join(logs.output)
209

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    @parameterized.expand(
        [
            ("hf-internal-testing/tiny-stable-diffusion-pipe-variants-all-kinds", "unet", False),
            ("hf-internal-testing/tiny-stable-diffusion-pipe-variants-all-kinds", "unet", True),
            ("hf-internal-testing/tiny-sd-unet-with-sharded-ckpt", None, False),
            ("hf-internal-testing/tiny-sd-unet-with-sharded-ckpt", None, True),
        ]
    )
    def test_variant_sharded_ckpt_legacy_format_raises_warning(self, repo_id, subfolder, use_local):
        def load_model(path):
            kwargs = {"variant": "fp16"}
            if subfolder:
                kwargs["subfolder"] = subfolder
            return UNet2DConditionModel.from_pretrained(path, **kwargs)

        with self.assertWarns(FutureWarning) as warning:
            if use_local:
                with tempfile.TemporaryDirectory() as tmpdirname:
                    tmpdirname = snapshot_download(repo_id=repo_id)
                    _ = load_model(tmpdirname)
            else:
                _ = load_model(repo_id)

        warning_message = str(warning.warnings[0].message)
        self.assertIn("This serialization format is now deprecated to standardize the serialization", warning_message)

    # Local tests are already covered down below.
    @parameterized.expand(
        [
            ("hf-internal-testing/tiny-sd-unet-sharded-latest-format", None, "fp16"),
            ("hf-internal-testing/tiny-sd-unet-sharded-latest-format-subfolder", "unet", "fp16"),
            ("hf-internal-testing/tiny-sd-unet-sharded-no-variants", None, None),
            ("hf-internal-testing/tiny-sd-unet-sharded-no-variants-subfolder", "unet", None),
        ]
    )
    def test_variant_sharded_ckpt_loads_from_hub(self, repo_id, subfolder, variant=None):
        def load_model():
            kwargs = {}
            if variant:
                kwargs["variant"] = variant
            if subfolder:
                kwargs["subfolder"] = subfolder
            return UNet2DConditionModel.from_pretrained(repo_id, **kwargs)

        assert load_model()

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    def test_cached_files_are_used_when_no_internet(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = {}
        response_mock.raise_for_status.side_effect = HTTPError
        response_mock.json.return_value = {}

        # Download this model to make sure it's in the cache.
        orig_model = UNet2DConditionModel.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet"
        )

        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("requests.request", return_value=response_mock):
            # Download this model to make sure it's in the cache.
            model = UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", local_files_only=True
            )

        for p1, p2 in zip(orig_model.parameters(), model.parameters()):
            if p1.data.ne(p2.data).sum() > 0:
                assert False, "Parameters not the same!"

280
    @unittest.skip("Flaky behaviour on CI. Re-enable after migrating to new runners")
281
    @unittest.skipIf(torch_device == "mps", reason="Test not supported for MPS.")
282
    def test_one_request_upon_cached(self):
283
        use_safetensors = False
284
285
286
287

        with tempfile.TemporaryDirectory() as tmpdirname:
            with requests_mock.mock(real_http=True) as m:
                UNet2DConditionModel.from_pretrained(
288
289
290
291
                    "hf-internal-testing/tiny-stable-diffusion-torch",
                    subfolder="unet",
                    cache_dir=tmpdirname,
                    use_safetensors=use_safetensors,
292
293
294
                )

            download_requests = [r.method for r in m.request_history]
295
296
297
            assert (
                download_requests.count("HEAD") == 3
            ), "3 HEAD requests one for config, one for model, and one for shard index file."
298
299
300
301
            assert download_requests.count("GET") == 2, "2 GET requests one for config, one for model"

            with requests_mock.mock(real_http=True) as m:
                UNet2DConditionModel.from_pretrained(
302
303
304
305
                    "hf-internal-testing/tiny-stable-diffusion-torch",
                    subfolder="unet",
                    cache_dir=tmpdirname,
                    use_safetensors=use_safetensors,
306
307
308
309
                )

            cache_requests = [r.method for r in m.request_history]
            assert (
310
311
                "HEAD" == cache_requests[0] and len(cache_requests) == 2
            ), "We should call only `model_info` to check for commit hash and  knowing if shard index is present."
312

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    def test_weight_overwrite(self):
        with tempfile.TemporaryDirectory() as tmpdirname, self.assertRaises(ValueError) as error_context:
            UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch",
                subfolder="unet",
                cache_dir=tmpdirname,
                in_channels=9,
            )

        # make sure that error message states what keys are missing
        assert "Cannot load" in str(error_context.exception)

        with tempfile.TemporaryDirectory() as tmpdirname:
            model = UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch",
                subfolder="unet",
                cache_dir=tmpdirname,
                in_channels=9,
                low_cpu_mem_usage=False,
                ignore_mismatched_sizes=True,
            )

        assert model.config.in_channels == 9

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
    @require_torch_gpu
    def test_keep_modules_in_fp32(self):
        r"""
        A simple tests to check if the modules under `_keep_in_fp32_modules` are kept in fp32 when we load the model in fp16/bf16
        Also ensures if inference works.
        """
        fp32_modules = SD3Transformer2DModel._keep_in_fp32_modules

        for torch_dtype in [torch.bfloat16, torch.float16]:
            SD3Transformer2DModel._keep_in_fp32_modules = ["proj_out"]

            model = SD3Transformer2DModel.from_pretrained(
                "hf-internal-testing/tiny-sd3-pipe", subfolder="transformer", torch_dtype=torch_dtype
            ).to(torch_device)

            for name, module in model.named_modules():
                if isinstance(module, torch.nn.Linear):
                    if name in model._keep_in_fp32_modules:
                        self.assertTrue(module.weight.dtype == torch.float32)
                    else:
                        self.assertTrue(module.weight.dtype == torch_dtype)

        def get_dummy_inputs():
            batch_size = 2
            num_channels = 4
            height = width = embedding_dim = 32
            pooled_embedding_dim = embedding_dim * 2
            sequence_length = 154

            hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device)
            encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
            pooled_prompt_embeds = torch.randn((batch_size, pooled_embedding_dim)).to(torch_device)
            timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)

            return {
                "hidden_states": hidden_states,
                "encoder_hidden_states": encoder_hidden_states,
                "pooled_projections": pooled_prompt_embeds,
                "timestep": timestep,
            }

        # test if inference works.
        with torch.no_grad() and torch.amp.autocast(torch_device, dtype=torch_dtype):
            input_dict_for_transformer = get_dummy_inputs()
            model_inputs = {
                k: v.to(device=torch_device) for k, v in input_dict_for_transformer.items() if not isinstance(v, bool)
            }
            model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs})
            _ = model(**model_inputs)

        SD3Transformer2DModel._keep_in_fp32_modules = fp32_modules

389

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
class UNetTesterMixin:
    def test_forward_with_norm_groups(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["norm_num_groups"] = 16
        init_dict["block_out_channels"] = (16, 32)

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.to_tuple()[0]

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")


412
class ModelTesterMixin:
413
414
    main_input_name = None  # overwrite in model specific tester class
    base_precision = 1e-3
Will Berman's avatar
Will Berman committed
415
    forward_requires_fresh_args = False
416
    model_split_percents = [0.5, 0.7, 0.9]
417
    uses_custom_attn_processor = False
418
419
420
421
422
423
424
425
426
427
428
429
430
431

    def check_device_map_is_respected(self, model, device_map):
        for param_name, param in model.named_parameters():
            # Find device in device_map
            while len(param_name) > 0 and param_name not in device_map:
                param_name = ".".join(param_name.split(".")[:-1])
            if param_name not in device_map:
                raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")

            param_device = device_map[param_name]
            if param_device in ["cpu", "disk"]:
                self.assertEqual(param.device, torch.device("meta"))
            else:
                self.assertEqual(param.device, torch.device(param_device))
432

433
    def test_from_save_pretrained(self, expected_max_diff=5e-5):
Will Berman's avatar
Will Berman committed
434
435
436
437
438
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
439

440
441
        if hasattr(model, "set_default_attn_processor"):
            model.set_default_attn_processor()
442
443
444
445
        model.to(torch_device)
        model.eval()

        with tempfile.TemporaryDirectory() as tmpdirname:
446
            model.save_pretrained(tmpdirname, safe_serialization=False)
447
            new_model = self.model_class.from_pretrained(tmpdirname)
448
449
            if hasattr(new_model, "set_default_attn_processor"):
                new_model.set_default_attn_processor()
450
451
452
            new_model.to(torch_device)

        with torch.no_grad():
Will Berman's avatar
Will Berman committed
453
454
455
456
457
            if self.forward_requires_fresh_args:
                image = model(**self.inputs_dict(0))
            else:
                image = model(**inputs_dict)

458
            if isinstance(image, dict):
459
                image = image.to_tuple()[0]
460

Will Berman's avatar
Will Berman committed
461
462
463
464
            if self.forward_requires_fresh_args:
                new_image = new_model(**self.inputs_dict(0))
            else:
                new_image = new_model(**inputs_dict)
465
466

            if isinstance(new_image, dict):
467
                new_image = new_image.to_tuple()[0]
468

469
470
        max_diff = (image - new_image).abs().max().item()
        self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
471

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    def test_getattr_is_correct(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)

        # save some things to test
        model.dummy_attribute = 5
        model.register_to_config(test_attribute=5)

        logger = logging.get_logger("diffusers.models.modeling_utils")
        # 30 for warning
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            assert hasattr(model, "dummy_attribute")
            assert getattr(model, "dummy_attribute") == 5
            assert model.dummy_attribute == 5

        # no warning should be thrown
        assert cap_logger.out == ""

        logger = logging.get_logger("diffusers.models.modeling_utils")
        # 30 for warning
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            assert hasattr(model, "save_pretrained")
            fn = model.save_pretrained
            fn_1 = getattr(model, "save_pretrained")

            assert fn == fn_1
        # no warning should be thrown
        assert cap_logger.out == ""

        # warning should be thrown
        with self.assertWarns(FutureWarning):
            assert model.test_attribute == 5

        with self.assertWarns(FutureWarning):
            assert getattr(model, "test_attribute") == 5

        with self.assertRaises(AttributeError) as error:
            model.does_not_exist

        assert str(error.exception) == f"'{type(model).__name__}' object has no attribute 'does_not_exist'"

515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
    @unittest.skipIf(
        torch_device != "npu" or not is_torch_npu_available(),
        reason="torch npu flash attention is only available with NPU and `torch_npu` installed",
    )
    def test_set_torch_npu_flash_attn_processor_determinism(self):
        torch.use_deterministic_algorithms(False)
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
        model.to(torch_device)

        if not hasattr(model, "set_attn_processor"):
            # If not has `set_attn_processor`, skip test
            return

        model.set_default_attn_processor()
        assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output = model(**self.inputs_dict(0))[0]
            else:
                output = model(**inputs_dict)[0]

        model.enable_npu_flash_attention()
        assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output_2 = model(**self.inputs_dict(0))[0]
            else:
                output_2 = model(**inputs_dict)[0]

        model.set_attn_processor(AttnProcessorNPU())
        assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output_3 = model(**self.inputs_dict(0))[0]
            else:
                output_3 = model(**inputs_dict)[0]

        torch.use_deterministic_algorithms(True)

        assert torch.allclose(output, output_2, atol=self.base_precision)
        assert torch.allclose(output, output_3, atol=self.base_precision)
        assert torch.allclose(output_2, output_3, atol=self.base_precision)

Dhruv Nair's avatar
Dhruv Nair committed
562
563
564
565
566
567
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_set_xformers_attn_processor_for_determinism(self):
        torch.use_deterministic_algorithms(False)
Will Berman's avatar
Will Berman committed
568
569
570
571
572
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
Dhruv Nair's avatar
Dhruv Nair committed
573
574
575
576
        model.to(torch_device)

        if not hasattr(model, "set_attn_processor"):
            # If not has `set_attn_processor`, skip test
Dhruv Nair's avatar
Dhruv Nair committed
577
578
579
580
            return

        if not hasattr(model, "set_default_attn_processor"):
            # If not has `set_attn_processor`, skip test
Dhruv Nair's avatar
Dhruv Nair committed
581
582
583
584
585
            return

        model.set_default_attn_processor()
        assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
586
587
588
589
            if self.forward_requires_fresh_args:
                output = model(**self.inputs_dict(0))[0]
            else:
                output = model(**inputs_dict)[0]
Dhruv Nair's avatar
Dhruv Nair committed
590
591
592
593

        model.enable_xformers_memory_efficient_attention()
        assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
594
595
596
597
            if self.forward_requires_fresh_args:
                output_2 = model(**self.inputs_dict(0))[0]
            else:
                output_2 = model(**inputs_dict)[0]
Dhruv Nair's avatar
Dhruv Nair committed
598

599
600
601
        model.set_attn_processor(XFormersAttnProcessor())
        assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
602
603
604
605
            if self.forward_requires_fresh_args:
                output_3 = model(**self.inputs_dict(0))[0]
            else:
                output_3 = model(**inputs_dict)[0]
606
607
608

        torch.use_deterministic_algorithms(True)

Dhruv Nair's avatar
Dhruv Nair committed
609
        assert torch.allclose(output, output_2, atol=self.base_precision)
610
611
        assert torch.allclose(output, output_3, atol=self.base_precision)
        assert torch.allclose(output_2, output_3, atol=self.base_precision)
Dhruv Nair's avatar
Dhruv Nair committed
612

613
    @require_torch_accelerator
614
    def test_set_attn_processor_for_determinism(self):
615
616
617
        if self.uses_custom_attn_processor:
            return

618
        torch.use_deterministic_algorithms(False)
Will Berman's avatar
Will Berman committed
619
620
621
622
623
624
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)

625
626
627
628
629
630
631
632
        model.to(torch_device)

        if not hasattr(model, "set_attn_processor"):
            # If not has `set_attn_processor`, skip test
            return

        assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
633
634
635
636
            if self.forward_requires_fresh_args:
                output_1 = model(**self.inputs_dict(0))[0]
            else:
                output_1 = model(**inputs_dict)[0]
637
638
639
640

        model.set_default_attn_processor()
        assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
641
642
643
644
            if self.forward_requires_fresh_args:
                output_2 = model(**self.inputs_dict(0))[0]
            else:
                output_2 = model(**inputs_dict)[0]
645
646
647
648

        model.set_attn_processor(AttnProcessor2_0())
        assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
649
650
651
652
            if self.forward_requires_fresh_args:
                output_4 = model(**self.inputs_dict(0))[0]
            else:
                output_4 = model(**inputs_dict)[0]
653
654
655
656

        model.set_attn_processor(AttnProcessor())
        assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
657
658
659
660
            if self.forward_requires_fresh_args:
                output_5 = model(**self.inputs_dict(0))[0]
            else:
                output_5 = model(**inputs_dict)[0]
661
662
663
664
665
666
667
668

        torch.use_deterministic_algorithms(True)

        # make sure that outputs match
        assert torch.allclose(output_2, output_1, atol=self.base_precision)
        assert torch.allclose(output_2, output_4, atol=self.base_precision)
        assert torch.allclose(output_2, output_5, atol=self.base_precision)

669
    def test_from_save_pretrained_variant(self, expected_max_diff=5e-5):
Will Berman's avatar
Will Berman committed
670
671
672
673
674
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
675

676
677
        if hasattr(model, "set_default_attn_processor"):
            model.set_default_attn_processor()
678

679
680
681
682
        model.to(torch_device)
        model.eval()

        with tempfile.TemporaryDirectory() as tmpdirname:
683
            model.save_pretrained(tmpdirname, variant="fp16", safe_serialization=False)
684
            new_model = self.model_class.from_pretrained(tmpdirname, variant="fp16")
685
686
            if hasattr(new_model, "set_default_attn_processor"):
                new_model.set_default_attn_processor()
687
688
689
690
691
692
693
694
695
696
697

            # non-variant cannot be loaded
            with self.assertRaises(OSError) as error_context:
                self.model_class.from_pretrained(tmpdirname)

            # make sure that error message states what keys are missing
            assert "Error no file named diffusion_pytorch_model.bin found in directory" in str(error_context.exception)

            new_model.to(torch_device)

        with torch.no_grad():
Will Berman's avatar
Will Berman committed
698
699
700
701
            if self.forward_requires_fresh_args:
                image = model(**self.inputs_dict(0))
            else:
                image = model(**inputs_dict)
702
            if isinstance(image, dict):
703
                image = image.to_tuple()[0]
704

Will Berman's avatar
Will Berman committed
705
706
707
708
            if self.forward_requires_fresh_args:
                new_image = new_model(**self.inputs_dict(0))
            else:
                new_image = new_model(**inputs_dict)
709
710

            if isinstance(new_image, dict):
711
                new_image = new_image.to_tuple()[0]
712

713
714
        max_diff = (image - new_image).abs().max().item()
        self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
715

716
    @is_torch_compile
717
    @require_torch_2
718
719
720
721
    @unittest.skipIf(
        get_python_version == (3, 12),
        reason="Torch Dynamo isn't yet supported for Python 3.12.",
    )
722
    def test_from_save_pretrained_dynamo(self):
723
724
725
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        inputs = [init_dict, self.model_class]
        run_test_in_subprocess(test_case=self, target_func=_test_from_save_pretrained_dynamo, inputs=inputs)
726

727
728
729
730
731
732
733
734
735
736
737
738
    def test_from_save_pretrained_dtype(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        for dtype in [torch.float32, torch.float16, torch.bfloat16]:
            if torch_device == "mps" and dtype == torch.bfloat16:
                continue
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.to(dtype)
739
                model.save_pretrained(tmpdirname, safe_serialization=False)
740
                new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=True, torch_dtype=dtype)
741
                assert new_model.dtype == dtype
742
                new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=False, torch_dtype=dtype)
743
744
                assert new_model.dtype == dtype

745
    def test_determinism(self, expected_max_diff=1e-5):
Will Berman's avatar
Will Berman committed
746
747
748
749
750
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
751
752
        model.to(torch_device)
        model.eval()
753

754
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
755
756
757
758
            if self.forward_requires_fresh_args:
                first = model(**self.inputs_dict(0))
            else:
                first = model(**inputs_dict)
759
            if isinstance(first, dict):
760
                first = first.to_tuple()[0]
761

Will Berman's avatar
Will Berman committed
762
763
764
765
            if self.forward_requires_fresh_args:
                second = model(**self.inputs_dict(0))
            else:
                second = model(**inputs_dict)
766
            if isinstance(second, dict):
767
                second = second.to_tuple()[0]
768
769
770
771
772
773

        out_1 = first.cpu().numpy()
        out_2 = second.cpu().numpy()
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
774
        self.assertLessEqual(max_diff, expected_max_diff)
775

776
    def test_output(self, expected_output_shape=None):
777
778
779
780
781
782
783
784
785
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
786
                output = output.to_tuple()[0]
787
788

        self.assertIsNotNone(output)
789

790
791
        # input & output have to have the same shape
        input_tensor = inputs_dict[self.main_input_name]
792
793
794
795
796
797

        if expected_output_shape is None:
            expected_shape = input_tensor.shape
            self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
        else:
            self.assertEqual(output.shape, expected_output_shape, "Input and output shapes do not match")
798

799
    def test_model_from_pretrained(self):
800
801
802
803
804
805
806
807
808
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        # test if the model can be loaded from the config
        # and has all the expected shape
        with tempfile.TemporaryDirectory() as tmpdirname:
809
            model.save_pretrained(tmpdirname, safe_serialization=False)
810
            new_model = self.model_class.from_pretrained(tmpdirname)
811
812
813
            new_model.to(torch_device)
            new_model.eval()

814
        # check if all parameters shape are the same
815
816
817
818
819
820
821
822
823
        for param_name in model.state_dict().keys():
            param_1 = model.state_dict()[param_name]
            param_2 = new_model.state_dict()[param_name]
            self.assertEqual(param_1.shape, param_2.shape)

        with torch.no_grad():
            output_1 = model(**inputs_dict)

            if isinstance(output_1, dict):
824
                output_1 = output_1.to_tuple()[0]
825
826
827
828

            output_2 = new_model(**inputs_dict)

            if isinstance(output_2, dict):
829
                output_2 = output_2.to_tuple()[0]
830
831
832

        self.assertEqual(output_1.shape, output_2.shape)

Arsalan's avatar
Arsalan committed
833
    @require_torch_accelerator_with_training
834
835
836
837
838
839
840
841
842
    def test_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        output = model(**inputs_dict)

        if isinstance(output, dict):
843
            output = output.to_tuple()[0]
844

845
846
        input_tensor = inputs_dict[self.main_input_name]
        noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
847
848
849
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()

Arsalan's avatar
Arsalan committed
850
    @require_torch_accelerator_with_training
851
852
853
854
855
856
    def test_ema_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
857
        ema_model = EMAModel(model.parameters())
858
859
860
861

        output = model(**inputs_dict)

        if isinstance(output, dict):
862
            output = output.to_tuple()[0]
863

864
865
        input_tensor = inputs_dict[self.main_input_name]
        noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
866
867
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
868
        ema_model.step(model.parameters())
869

870
    def test_outputs_equivalence(self):
871
        def set_nan_tensor_to_zero(t):
872
873
874
875
876
            # Temporary fallback until `aten::_index_put_impl_` is implemented in mps
            # Track progress in https://github.com/pytorch/pytorch/issues/77764
            device = t.device
            if device.type == "mps":
                t = t.to("cpu")
877
            t[t != t] = 0
878
            return t.to(device)
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901

        def recursive_check(tuple_object, dict_object):
            if isinstance(tuple_object, (List, Tuple)):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif isinstance(tuple_object, Dict):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif tuple_object is None:
                return
            else:
                self.assertTrue(
                    torch.allclose(
                        set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                    ),
                    msg=(
                        "Tuple and dict output are not equal. Difference:"
                        f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                        f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                        f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                    ),
                )

Will Berman's avatar
Will Berman committed
902
903
904
905
906
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
907
908
909
910

        model.to(torch_device)
        model.eval()

911
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
912
913
914
915
916
917
            if self.forward_requires_fresh_args:
                outputs_dict = model(**self.inputs_dict(0))
                outputs_tuple = model(**self.inputs_dict(0), return_dict=False)
            else:
                outputs_dict = model(**inputs_dict)
                outputs_tuple = model(**inputs_dict, return_dict=False)
918
919

        recursive_check(outputs_tuple, outputs_dict)
920

Arsalan's avatar
Arsalan committed
921
    @require_torch_accelerator_with_training
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
    def test_enable_disable_gradient_checkpointing(self):
        if not self.model_class._supports_gradient_checkpointing:
            return  # Skip test if model does not support gradient checkpointing

        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        # at init model should have gradient checkpointing disabled
        model = self.model_class(**init_dict)
        self.assertFalse(model.is_gradient_checkpointing)

        # check enable works
        model.enable_gradient_checkpointing()
        self.assertTrue(model.is_gradient_checkpointing)

        # check disable works
        model.disable_gradient_checkpointing()
        self.assertFalse(model.is_gradient_checkpointing)
939

940
    @require_torch_accelerator_with_training
941
    def test_effective_gradient_checkpointing(self, loss_tolerance=1e-5, param_grad_tol=5e-5, skip: set[str] = {}):
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
        if not self.model_class._supports_gradient_checkpointing:
            return  # Skip test if model does not support gradient checkpointing

        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        inputs_dict_copy = copy.deepcopy(inputs_dict)
        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)

        assert not model.is_gradient_checkpointing and model.training

        out = model(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model.zero_grad()

        labels = torch.randn_like(out)
        loss = (out - labels).mean()
        loss.backward()

        # re-instantiate the model now enabling gradient checkpointing
        torch.manual_seed(0)
        model_2 = self.model_class(**init_dict)
        # clone model
        model_2.load_state_dict(model.state_dict())
        model_2.to(torch_device)
        model_2.enable_gradient_checkpointing()

        assert model_2.is_gradient_checkpointing and model_2.training

        out_2 = model_2(**inputs_dict_copy).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model_2.zero_grad()
        loss_2 = (out_2 - labels).mean()
        loss_2.backward()

        # compare the output and parameters gradients
        self.assertTrue((loss - loss_2).abs() < loss_tolerance)
        named_params = dict(model.named_parameters())
        named_params_2 = dict(model_2.named_parameters())

        for name, param in named_params.items():
            if "post_quant_conv" in name:
                continue
988
989
            if name in skip:
                continue
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
            self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=param_grad_tol))

    @unittest.skipIf(torch_device == "mps", "This test is not supported for MPS devices.")
    def test_gradient_checkpointing_is_applied(
        self, expected_set=None, attention_head_dim=None, num_attention_heads=None, block_out_channels=None
    ):
        if not self.model_class._supports_gradient_checkpointing:
            return  # Skip test if model does not support gradient checkpointing

        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        if attention_head_dim is not None:
            init_dict["attention_head_dim"] = attention_head_dim
        if num_attention_heads is not None:
            init_dict["num_attention_heads"] = num_attention_heads
        if block_out_channels is not None:
            init_dict["block_out_channels"] = block_out_channels

        model_class_copy = copy.copy(self.model_class)
        model = model_class_copy(**init_dict)
        model.enable_gradient_checkpointing()

1012
1013
1014
1015
1016
1017
        modules_with_gc_enabled = {}
        for submodule in model.modules():
            if hasattr(submodule, "gradient_checkpointing"):
                self.assertTrue(submodule.gradient_checkpointing)
                modules_with_gc_enabled[submodule.__class__.__name__] = True

1018
1019
1020
        assert set(modules_with_gc_enabled.keys()) == expected_set
        assert all(modules_with_gc_enabled.values()), "All modules should be enabled"

1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
    def test_deprecated_kwargs(self):
        has_kwarg_in_model_class = "kwargs" in inspect.signature(self.model_class.__init__).parameters
        has_deprecated_kwarg = len(self.model_class._deprecated_kwargs) > 0

        if has_kwarg_in_model_class and not has_deprecated_kwarg:
            raise ValueError(
                f"{self.model_class} has `**kwargs` in its __init__ method but has not defined any deprecated kwargs"
                " under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if there are"
                " no deprecated arguments or add the deprecated argument with `_deprecated_kwargs ="
                " [<deprecated_argument>]`"
            )

        if not has_kwarg_in_model_class and has_deprecated_kwarg:
            raise ValueError(
                f"{self.model_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated kwargs"
                " under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs` argument to"
                f" {self.model_class}.__init__ if there are deprecated arguments or remove the deprecated argument"
                " from `_deprecated_kwargs = [<deprecated_argument>]`"
            )
1040

1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
    @parameterized.expand([True, False])
    @torch.no_grad()
    @unittest.skipIf(not is_peft_available(), "Only with PEFT")
    def test_save_load_lora_adapter(self, use_dora=False):
        import safetensors
        from peft import LoraConfig
        from peft.utils import get_peft_model_state_dict

        from diffusers.loaders.peft import PeftAdapterMixin

        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)

        if not issubclass(model.__class__, PeftAdapterMixin):
            return

        torch.manual_seed(0)
        output_no_lora = model(**inputs_dict, return_dict=False)[0]

        denoiser_lora_config = LoraConfig(
            r=4,
            lora_alpha=4,
            target_modules=["to_q", "to_k", "to_v", "to_out.0"],
            init_lora_weights=False,
            use_dora=use_dora,
        )
        model.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

        torch.manual_seed(0)
        outputs_with_lora = model(**inputs_dict, return_dict=False)[0]

        self.assertFalse(torch.allclose(output_no_lora, outputs_with_lora, atol=1e-4, rtol=1e-4))

        with tempfile.TemporaryDirectory() as tmpdir:
            model.save_lora_adapter(tmpdir)
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))

            state_dict_loaded = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))

            model.unload_lora()
            self.assertFalse(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

            model.load_lora_adapter(tmpdir, prefix=None, use_safetensors=True)
            state_dict_retrieved = get_peft_model_state_dict(model, adapter_name="default_0")

            for k in state_dict_loaded:
                loaded_v = state_dict_loaded[k]
                retrieved_v = state_dict_retrieved[k].to(loaded_v.device)
                self.assertTrue(torch.allclose(loaded_v, retrieved_v))

            self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

        torch.manual_seed(0)
        outputs_with_lora_2 = model(**inputs_dict, return_dict=False)[0]

        self.assertFalse(torch.allclose(output_no_lora, outputs_with_lora_2, atol=1e-4, rtol=1e-4))
        self.assertTrue(torch.allclose(outputs_with_lora, outputs_with_lora_2, atol=1e-4, rtol=1e-4))

    @unittest.skipIf(not is_peft_available(), "Only with PEFT")
    def test_wrong_adapter_name_raises_error(self):
        from peft import LoraConfig

        from diffusers.loaders.peft import PeftAdapterMixin

        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)

        if not issubclass(model.__class__, PeftAdapterMixin):
            return

        denoiser_lora_config = LoraConfig(
            r=4,
            lora_alpha=4,
            target_modules=["to_q", "to_k", "to_v", "to_out.0"],
            init_lora_weights=False,
            use_dora=False,
        )
        model.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

        with tempfile.TemporaryDirectory() as tmpdir:
            wrong_name = "foo"
            with self.assertRaises(ValueError) as err_context:
                model.save_lora_adapter(tmpdir, adapter_name=wrong_name)

            self.assertTrue(f"Adapter name {wrong_name} not found in the model." in str(err_context.exception))

1129
    @require_torch_accelerator
1130
1131
1132
    def test_cpu_offload(self):
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1133
1134
1135
        if model._no_split_modules is None:
            return

1136
1137
1138
1139
1140
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

YiYi Xu's avatar
YiYi Xu committed
1141
        model_size = compute_module_sizes(model)[""]
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
        # We test several splits of sizes to make sure it works.
        max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir)

            for max_size in max_gpu_sizes:
                max_memory = {0: max_size, "cpu": model_size * 2}
                new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                # Making sure part of the model will actually end up offloaded
                self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
                torch.manual_seed(0)
                new_output = new_model(**inputs_dict)

                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1159
    @require_torch_accelerator
1160
1161
1162
    def test_disk_offload_without_safetensors(self):
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1163
1164
1165
        if model._no_split_modules is None:
            return

1166
1167
1168
1169
1170
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

YiYi Xu's avatar
YiYi Xu committed
1171
        model_size = compute_module_sizes(model)[""]
1172
1173
1174
1175
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir, safe_serialization=False)

            with self.assertRaises(ValueError):
1176
                max_size = int(self.model_split_percents[0] * model_size)
1177
1178
1179
1180
                max_memory = {0: max_size, "cpu": max_size}
                # This errors out because it's missing an offload folder
                new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

1181
            max_size = int(self.model_split_percents[0] * model_size)
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
            max_memory = {0: max_size, "cpu": max_size}
            new_model = self.model_class.from_pretrained(
                tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
            )

            self.check_device_map_is_respected(new_model, new_model.hf_device_map)
            torch.manual_seed(0)
            new_output = new_model(**inputs_dict)

            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1193
    @require_torch_accelerator
1194
1195
1196
    def test_disk_offload_with_safetensors(self):
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1197
1198
1199
        if model._no_split_modules is None:
            return

1200
1201
1202
1203
1204
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

YiYi Xu's avatar
YiYi Xu committed
1205
        model_size = compute_module_sizes(model)[""]
1206
1207
1208
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir)

1209
            max_size = int(self.model_split_percents[0] * model_size)
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
            max_memory = {0: max_size, "cpu": max_size}
            new_model = self.model_class.from_pretrained(
                tmp_dir, device_map="auto", offload_folder=tmp_dir, max_memory=max_memory
            )

            self.check_device_map_is_respected(new_model, new_model.hf_device_map)
            torch.manual_seed(0)
            new_output = new_model(**inputs_dict)

            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

    @require_torch_multi_gpu
    def test_model_parallelism(self):
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1225
1226
1227
        if model._no_split_modules is None:
            return

1228
1229
1230
1231
1232
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

YiYi Xu's avatar
YiYi Xu committed
1233
        model_size = compute_module_sizes(model)[""]
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
        # We test several splits of sizes to make sure it works.
        max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir)

            for max_size in max_gpu_sizes:
                max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
                new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                # Making sure part of the model will actually end up offloaded
                self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})
YiYi Xu's avatar
YiYi Xu committed
1244
                print(f" new_model.hf_device_map:{new_model.hf_device_map}")
1245
1246
1247
1248
1249
1250
1251
1252

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)

                torch.manual_seed(0)
                new_output = new_model(**inputs_dict)

                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1253
    @require_torch_accelerator
1254
    def test_sharded_checkpoints(self):
1255
        torch.manual_seed(0)
1256
1257
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1258
1259
1260
1261
        model = model.to(torch_device)

        base_output = model(**inputs_dict)

1262
        model_size = compute_module_persistent_sizes(model)[""]
1263
1264
1265
1266
1267
1268
1269
1270
        max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB")
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))

            # Now check if the right number of shards exists. First, let's get the number of shards.
            # Since this number can be dependent on the model being tested, it's important that we calculate it
            # instead of hardcoding it.
1271
            expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))
1272
1273
1274
            actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
            self.assertTrue(actual_num_shards == expected_num_shards)

1275
            new_model = self.model_class.from_pretrained(tmp_dir).eval()
1276
            new_model = new_model.to(torch_device)
1277
1278

            torch.manual_seed(0)
1279
1280
            if "generator" in inputs_dict:
                _, inputs_dict = self.prepare_init_args_and_inputs_for_common()
1281
            new_output = new_model(**inputs_dict)
1282

1283
1284
            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1285
    @require_torch_accelerator
1286
1287
1288
1289
1290
1291
1292
1293
    def test_sharded_checkpoints_with_variant(self):
        torch.manual_seed(0)
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
        model = model.to(torch_device)

        base_output = model(**inputs_dict)

1294
        model_size = compute_module_persistent_sizes(model)[""]
1295
1296
1297
1298
1299
1300
1301
        max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
        variant = "fp16"
        with tempfile.TemporaryDirectory() as tmp_dir:
            # It doesn't matter if the actual model is in fp16 or not. Just adding the variant and
            # testing if loading works with the variant when the checkpoint is sharded should be
            # enough.
            model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB", variant=variant)
1302

1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
            index_filename = _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, index_filename)))

            # Now check if the right number of shards exists. First, let's get the number of shards.
            # Since this number can be dependent on the model being tested, it's important that we calculate it
            # instead of hardcoding it.
            expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, index_filename))
            actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
            self.assertTrue(actual_num_shards == expected_num_shards)

            new_model = self.model_class.from_pretrained(tmp_dir, variant=variant).eval()
            new_model = new_model.to(torch_device)

            torch.manual_seed(0)
            if "generator" in inputs_dict:
                _, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            new_output = new_model(**inputs_dict)

            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1323
    @require_torch_accelerator
1324
1325
1326
    def test_sharded_checkpoints_device_map(self):
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1327
1328
1329
1330
1331
1332
1333
        if model._no_split_modules is None:
            return
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

1334
        model_size = compute_module_persistent_sizes(model)[""]
1335
1336
1337
1338
1339
1340
1341
1342
        max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB")
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))

            # Now check if the right number of shards exists. First, let's get the number of shards.
            # Since this number can be dependent on the model being tested, it's important that we calculate it
            # instead of hardcoding it.
1343
            expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))
1344
1345
1346
1347
1348
1349
            actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
            self.assertTrue(actual_num_shards == expected_num_shards)

            new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto")

            torch.manual_seed(0)
1350
1351
            if "generator" in inputs_dict:
                _, inputs_dict = self.prepare_init_args_and_inputs_for_common()
1352
1353
1354
            new_output = new_model(**inputs_dict)
            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1355
1356
1357
1358
1359
1360
1361
1362
    # This test is okay without a GPU because we're not running any execution. We're just serializing
    # and check if the resultant files are following an expected format.
    def test_variant_sharded_ckpt_right_format(self):
        for use_safe in [True, False]:
            extension = ".safetensors" if use_safe else ".bin"
            config, _ = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**config).eval()

1363
            model_size = compute_module_persistent_sizes(model)[""]
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
            max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
            variant = "fp16"
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(
                    tmp_dir, variant=variant, max_shard_size=f"{max_shard_size}KB", safe_serialization=use_safe
                )
                index_variant = _add_variant(SAFE_WEIGHTS_INDEX_NAME if use_safe else WEIGHTS_INDEX_NAME, variant)
                self.assertTrue(os.path.exists(os.path.join(tmp_dir, index_variant)))

                # Now check if the right number of shards exists. First, let's get the number of shards.
                # Since this number can be dependent on the model being tested, it's important that we calculate it
                # instead of hardcoding it.
                expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, index_variant))
                actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(extension)])
                self.assertTrue(actual_num_shards == expected_num_shards)

                # Check if the variant is present as a substring in the checkpoints.
                shard_files = [
                    file
                    for file in os.listdir(tmp_dir)
                    if file.endswith(extension) or ("index" in file and "json" in file)
                ]
                assert all(variant in f for f in shard_files)

                # Check if the sharded checkpoints were serialized in the right format.
                shard_files = [file for file in os.listdir(tmp_dir) if file.endswith(extension)]
                # Example: diffusion_pytorch_model.fp16-00001-of-00002.safetensors
                assert all(f.split(".")[1].split("-")[0] == variant for f in shard_files)

1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
    def test_layerwise_casting_training(self):
        def test_fn(storage_dtype, compute_dtype):
            if torch.device(torch_device).type == "cpu" and compute_dtype == torch.bfloat16:
                return
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

            model = self.model_class(**init_dict)
            model = model.to(torch_device, dtype=compute_dtype)
            model.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)
            model.train()

            inputs_dict = cast_maybe_tensor_dtype(inputs_dict, torch.float32, compute_dtype)
            with torch.amp.autocast(device_type=torch.device(torch_device).type):
                output = model(**inputs_dict)

                if isinstance(output, dict):
                    output = output.to_tuple()[0]

                input_tensor = inputs_dict[self.main_input_name]
                noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
                noise = cast_maybe_tensor_dtype(noise, torch.float32, compute_dtype)
                loss = torch.nn.functional.mse_loss(output, noise)

            loss.backward()

        test_fn(torch.float16, torch.float32)
        test_fn(torch.float8_e4m3fn, torch.float32)
        test_fn(torch.float8_e5m2, torch.float32)
        test_fn(torch.float8_e4m3fn, torch.bfloat16)

Aryan's avatar
Aryan committed
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
    def test_layerwise_casting_inference(self):
        from diffusers.hooks.layerwise_casting import DEFAULT_SKIP_MODULES_PATTERN, SUPPORTED_PYTORCH_LAYERS

        torch.manual_seed(0)
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
        model = model.to(torch_device)
        base_slice = model(**inputs_dict)[0].flatten().detach().cpu().numpy()

        def check_linear_dtype(module, storage_dtype, compute_dtype):
            patterns_to_check = DEFAULT_SKIP_MODULES_PATTERN
            if getattr(module, "_skip_layerwise_casting_patterns", None) is not None:
                patterns_to_check += tuple(module._skip_layerwise_casting_patterns)
            for name, submodule in module.named_modules():
                if not isinstance(submodule, SUPPORTED_PYTORCH_LAYERS):
                    continue
                dtype_to_check = storage_dtype
                if any(re.search(pattern, name) for pattern in patterns_to_check):
                    dtype_to_check = compute_dtype
                if getattr(submodule, "weight", None) is not None:
                    self.assertEqual(submodule.weight.dtype, dtype_to_check)
                if getattr(submodule, "bias", None) is not None:
                    self.assertEqual(submodule.bias.dtype, dtype_to_check)

        def test_layerwise_casting(storage_dtype, compute_dtype):
            torch.manual_seed(0)
            config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            inputs_dict = cast_maybe_tensor_dtype(inputs_dict, torch.float32, compute_dtype)
            model = self.model_class(**config).eval()
            model = model.to(torch_device, dtype=compute_dtype)
            model.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)

            check_linear_dtype(model, storage_dtype, compute_dtype)
            output = model(**inputs_dict)[0].float().flatten().detach().cpu().numpy()

            # The precision test is not very important for fast tests. In most cases, the outputs will not be the same.
            # We just want to make sure that the layerwise casting is working as expected.
            self.assertTrue(numpy_cosine_similarity_distance(base_slice, output) < 1.0)

        test_layerwise_casting(torch.float16, torch.float32)
        test_layerwise_casting(torch.float8_e4m3fn, torch.float32)
        test_layerwise_casting(torch.float8_e5m2, torch.float32)
        test_layerwise_casting(torch.float8_e4m3fn, torch.bfloat16)

    @require_torch_gpu
    def test_layerwise_casting_memory(self):
        MB_TOLERANCE = 0.2
1470
        LEAST_COMPUTE_CAPABILITY = 8.0
Aryan's avatar
Aryan committed
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498

        def reset_memory_stats():
            gc.collect()
            torch.cuda.synchronize()
            torch.cuda.empty_cache()
            torch.cuda.reset_peak_memory_stats()

        def get_memory_usage(storage_dtype, compute_dtype):
            torch.manual_seed(0)
            config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            inputs_dict = cast_maybe_tensor_dtype(inputs_dict, torch.float32, compute_dtype)
            model = self.model_class(**config).eval()
            model = model.to(torch_device, dtype=compute_dtype)
            model.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)

            reset_memory_stats()
            model(**inputs_dict)
            model_memory_footprint = model.get_memory_footprint()
            peak_inference_memory_allocated_mb = torch.cuda.max_memory_allocated() / 1024**2

            return model_memory_footprint, peak_inference_memory_allocated_mb

        fp32_memory_footprint, fp32_max_memory = get_memory_usage(torch.float32, torch.float32)
        fp8_e4m3_fp32_memory_footprint, fp8_e4m3_fp32_max_memory = get_memory_usage(torch.float8_e4m3fn, torch.float32)
        fp8_e4m3_bf16_memory_footprint, fp8_e4m3_bf16_max_memory = get_memory_usage(
            torch.float8_e4m3fn, torch.bfloat16
        )

1499
        compute_capability = get_torch_cuda_device_capability()
Aryan's avatar
Aryan committed
1500
        self.assertTrue(fp8_e4m3_bf16_memory_footprint < fp8_e4m3_fp32_memory_footprint < fp32_memory_footprint)
1501
1502
1503
1504
        # NOTE: the following assertion would fail on our CI (running Tesla T4) due to bf16 using more memory than fp32.
        # On other devices, such as DGX (Ampere) and Audace (Ada), the test passes. So, we conditionally check it.
        if compute_capability and compute_capability >= LEAST_COMPUTE_CAPABILITY:
            self.assertTrue(fp8_e4m3_bf16_max_memory < fp8_e4m3_fp32_max_memory)
Aryan's avatar
Aryan committed
1505
1506
1507
1508
1509
1510
1511
1512
        # On this dummy test case with a small model, sometimes fp8_e4m3_fp32 max memory usage is higher than fp32 by a few
        # bytes. This only happens for some models, so we allow a small tolerance.
        # For any real model being tested, the order would be fp8_e4m3_bf16 < fp8_e4m3_fp32 < fp32.
        self.assertTrue(
            fp8_e4m3_fp32_max_memory < fp32_max_memory
            or abs(fp8_e4m3_fp32_max_memory - fp32_max_memory) < MB_TOLERANCE
        )

Aryan's avatar
Aryan committed
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
    @require_torch_gpu
    def test_group_offloading(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        torch.manual_seed(0)

        @torch.no_grad()
        def run_forward(model):
            self.assertTrue(
                all(
                    module._diffusers_hook.get_hook("group_offloading") is not None
                    for module in model.modules()
                    if hasattr(module, "_diffusers_hook")
                )
            )
            model.eval()
            return model(**inputs_dict)[0]

        model = self.model_class(**init_dict)
        if not getattr(model, "_supports_group_offloading", True):
            return

        model.to(torch_device)
        output_without_group_offloading = run_forward(model)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1)
        output_with_group_offloading1 = run_forward(model)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, non_blocking=True)
        output_with_group_offloading2 = run_forward(model)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.enable_group_offload(torch_device, offload_type="leaf_level")
        output_with_group_offloading3 = run_forward(model)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.enable_group_offload(torch_device, offload_type="leaf_level", use_stream=True)
        output_with_group_offloading4 = run_forward(model)

        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading1, atol=1e-5))
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading2, atol=1e-5))
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading3, atol=1e-5))
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading4, atol=1e-5))

1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629

@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
    identifier = uuid.uuid4()
    repo_id = f"test-model-{identifier}"
    org_repo_id = f"valid_org/{repo_id}-org"

    def test_push_to_hub(self):
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        model.push_to_hub(self.repo_id, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.repo_id)

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(self.repo_id, token=TOKEN)

    def test_push_to_hub_in_organization(self):
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        model.push_to_hub(self.org_repo_id, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id)
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.org_repo_id)

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, push_to_hub=True, token=TOKEN, repo_id=self.org_repo_id)

        new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id)
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(self.org_repo_id, token=TOKEN)
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652

    @unittest.skipIf(
        not is_jinja_available(),
        reason="Model card tests cannot be performed without Jinja installed.",
    )
    def test_push_to_hub_library_name(self):
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        model.push_to_hub(self.repo_id, token=TOKEN)

        model_card = ModelCard.load(f"{USER}/{self.repo_id}", token=TOKEN).data
        assert model_card.library_name == "diffusers"

        # Reset repo
        delete_repo(self.repo_id, token=TOKEN)