test_modeling_common.py 52 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import copy
17
import inspect
18
19
import json
import os
20
import tempfile
21
import traceback
22
import unittest
23
import unittest.mock as mock
24
import uuid
25
from typing import Dict, List, Tuple
26
27

import numpy as np
28
import requests_mock
29
import torch
30
from accelerate.utils import compute_module_sizes
31
from huggingface_hub import ModelCard, delete_repo, snapshot_download
32
from huggingface_hub.utils import is_jinja_available
33
from parameterized import parameterized
34
from requests.exceptions import HTTPError
35

36
from diffusers.models import UNet2DConditionModel
37
38
39
40
41
42
from diffusers.models.attention_processor import (
    AttnProcessor,
    AttnProcessor2_0,
    AttnProcessorNPU,
    XFormersAttnProcessor,
)
43
from diffusers.training_utils import EMAModel
44
45
46
47
48
49
50
from diffusers.utils import (
    SAFE_WEIGHTS_INDEX_NAME,
    WEIGHTS_INDEX_NAME,
    is_torch_npu_available,
    is_xformers_available,
    logging,
)
51
from diffusers.utils.hub_utils import _add_variant
52
53
from diffusers.utils.testing_utils import (
    CaptureLogger,
54
    get_python_version,
55
    is_torch_compile,
56
    require_torch_2,
Arsalan's avatar
Arsalan committed
57
    require_torch_accelerator_with_training,
58
    require_torch_gpu,
59
    require_torch_multi_gpu,
60
    run_test_in_subprocess,
61
    torch_all_close,
Dhruv Nair's avatar
Dhruv Nair committed
62
    torch_device,
63
64
65
)

from ..others.test_utils import TOKEN, USER, is_staging_test
66
67


68
69
70
71
72
73
74
75
76
def caculate_expected_num_shards(index_map_path):
    with open(index_map_path) as f:
        weight_map_dict = json.load(f)["weight_map"]
    first_key = list(weight_map_dict.keys())[0]
    weight_loc = weight_map_dict[first_key]  # e.g., diffusion_pytorch_model-00001-of-00002.safetensors
    expected_num_shards = int(weight_loc.split("-")[-1].split(".")[0])
    return expected_num_shards


77
78
79
80
81
82
83
84
85
86
87
# Will be run via run_test_in_subprocess
def _test_from_save_pretrained_dynamo(in_queue, out_queue, timeout):
    error = None
    try:
        init_dict, model_class = in_queue.get(timeout=timeout)

        model = model_class(**init_dict)
        model.to(torch_device)
        model = torch.compile(model)

        with tempfile.TemporaryDirectory() as tmpdirname:
88
            model.save_pretrained(tmpdirname, safe_serialization=False)
89
90
91
92
93
94
95
96
97
98
            new_model = model_class.from_pretrained(tmpdirname)
            new_model.to(torch_device)

        assert new_model.__class__ == model_class
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()
99
100


101
class ModelUtilsTest(unittest.TestCase):
102
103
104
    def tearDown(self):
        super().tearDown()

105
106
107
108
109
110
111
    def test_accelerate_loading_error_message(self):
        with self.assertRaises(ValueError) as error_context:
            UNet2DConditionModel.from_pretrained("hf-internal-testing/stable-diffusion-broken", subfolder="unet")

        # make sure that error message states what keys are missing
        assert "conv_out.bias" in str(error_context.exception)

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    @parameterized.expand(
        [
            ("hf-internal-testing/tiny-stable-diffusion-pipe-variants-all-kinds", "unet", False),
            ("hf-internal-testing/tiny-stable-diffusion-pipe-variants-all-kinds", "unet", True),
            ("hf-internal-testing/tiny-sd-unet-with-sharded-ckpt", None, False),
            ("hf-internal-testing/tiny-sd-unet-with-sharded-ckpt", None, True),
        ]
    )
    def test_variant_sharded_ckpt_legacy_format_raises_warning(self, repo_id, subfolder, use_local):
        def load_model(path):
            kwargs = {"variant": "fp16"}
            if subfolder:
                kwargs["subfolder"] = subfolder
            return UNet2DConditionModel.from_pretrained(path, **kwargs)

        with self.assertWarns(FutureWarning) as warning:
            if use_local:
                with tempfile.TemporaryDirectory() as tmpdirname:
                    tmpdirname = snapshot_download(repo_id=repo_id)
                    _ = load_model(tmpdirname)
            else:
                _ = load_model(repo_id)

        warning_message = str(warning.warnings[0].message)
        self.assertIn("This serialization format is now deprecated to standardize the serialization", warning_message)

    # Local tests are already covered down below.
    @parameterized.expand(
        [
            ("hf-internal-testing/tiny-sd-unet-sharded-latest-format", None, "fp16"),
            ("hf-internal-testing/tiny-sd-unet-sharded-latest-format-subfolder", "unet", "fp16"),
            ("hf-internal-testing/tiny-sd-unet-sharded-no-variants", None, None),
            ("hf-internal-testing/tiny-sd-unet-sharded-no-variants-subfolder", "unet", None),
        ]
    )
    def test_variant_sharded_ckpt_loads_from_hub(self, repo_id, subfolder, variant=None):
        def load_model():
            kwargs = {}
            if variant:
                kwargs["variant"] = variant
            if subfolder:
                kwargs["subfolder"] = subfolder
            return UNet2DConditionModel.from_pretrained(repo_id, **kwargs)

        assert load_model()

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    def test_cached_files_are_used_when_no_internet(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = {}
        response_mock.raise_for_status.side_effect = HTTPError
        response_mock.json.return_value = {}

        # Download this model to make sure it's in the cache.
        orig_model = UNet2DConditionModel.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet"
        )

        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("requests.request", return_value=response_mock):
            # Download this model to make sure it's in the cache.
            model = UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", local_files_only=True
            )

        for p1, p2 in zip(orig_model.parameters(), model.parameters()):
            if p1.data.ne(p2.data).sum() > 0:
                assert False, "Parameters not the same!"

182
    @unittest.skip("Flaky behaviour on CI. Re-enable after migrating to new runners")
183
    @unittest.skipIf(torch_device == "mps", reason="Test not supported for MPS.")
184
    def test_one_request_upon_cached(self):
185
        use_safetensors = False
186
187
188
189

        with tempfile.TemporaryDirectory() as tmpdirname:
            with requests_mock.mock(real_http=True) as m:
                UNet2DConditionModel.from_pretrained(
190
191
192
193
                    "hf-internal-testing/tiny-stable-diffusion-torch",
                    subfolder="unet",
                    cache_dir=tmpdirname,
                    use_safetensors=use_safetensors,
194
195
196
                )

            download_requests = [r.method for r in m.request_history]
197
198
199
            assert (
                download_requests.count("HEAD") == 3
            ), "3 HEAD requests one for config, one for model, and one for shard index file."
200
201
202
203
            assert download_requests.count("GET") == 2, "2 GET requests one for config, one for model"

            with requests_mock.mock(real_http=True) as m:
                UNet2DConditionModel.from_pretrained(
204
205
206
207
                    "hf-internal-testing/tiny-stable-diffusion-torch",
                    subfolder="unet",
                    cache_dir=tmpdirname,
                    use_safetensors=use_safetensors,
208
209
210
211
                )

            cache_requests = [r.method for r in m.request_history]
            assert (
212
213
                "HEAD" == cache_requests[0] and len(cache_requests) == 2
            ), "We should call only `model_info` to check for commit hash and  knowing if shard index is present."
214

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    def test_weight_overwrite(self):
        with tempfile.TemporaryDirectory() as tmpdirname, self.assertRaises(ValueError) as error_context:
            UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch",
                subfolder="unet",
                cache_dir=tmpdirname,
                in_channels=9,
            )

        # make sure that error message states what keys are missing
        assert "Cannot load" in str(error_context.exception)

        with tempfile.TemporaryDirectory() as tmpdirname:
            model = UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch",
                subfolder="unet",
                cache_dir=tmpdirname,
                in_channels=9,
                low_cpu_mem_usage=False,
                ignore_mismatched_sizes=True,
            )

        assert model.config.in_channels == 9

239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
class UNetTesterMixin:
    def test_forward_with_norm_groups(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["norm_num_groups"] = 16
        init_dict["block_out_channels"] = (16, 32)

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.to_tuple()[0]

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")


262
class ModelTesterMixin:
263
264
    main_input_name = None  # overwrite in model specific tester class
    base_precision = 1e-3
Will Berman's avatar
Will Berman committed
265
    forward_requires_fresh_args = False
266
    model_split_percents = [0.5, 0.7, 0.9]
267
    uses_custom_attn_processor = False
268
269
270
271
272
273
274
275
276
277
278
279
280
281

    def check_device_map_is_respected(self, model, device_map):
        for param_name, param in model.named_parameters():
            # Find device in device_map
            while len(param_name) > 0 and param_name not in device_map:
                param_name = ".".join(param_name.split(".")[:-1])
            if param_name not in device_map:
                raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")

            param_device = device_map[param_name]
            if param_device in ["cpu", "disk"]:
                self.assertEqual(param.device, torch.device("meta"))
            else:
                self.assertEqual(param.device, torch.device(param_device))
282

283
    def test_from_save_pretrained(self, expected_max_diff=5e-5):
Will Berman's avatar
Will Berman committed
284
285
286
287
288
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
289

290
291
        if hasattr(model, "set_default_attn_processor"):
            model.set_default_attn_processor()
292
293
294
295
        model.to(torch_device)
        model.eval()

        with tempfile.TemporaryDirectory() as tmpdirname:
296
            model.save_pretrained(tmpdirname, safe_serialization=False)
297
            new_model = self.model_class.from_pretrained(tmpdirname)
298
299
            if hasattr(new_model, "set_default_attn_processor"):
                new_model.set_default_attn_processor()
300
301
302
            new_model.to(torch_device)

        with torch.no_grad():
Will Berman's avatar
Will Berman committed
303
304
305
306
307
            if self.forward_requires_fresh_args:
                image = model(**self.inputs_dict(0))
            else:
                image = model(**inputs_dict)

308
            if isinstance(image, dict):
309
                image = image.to_tuple()[0]
310

Will Berman's avatar
Will Berman committed
311
312
313
314
            if self.forward_requires_fresh_args:
                new_image = new_model(**self.inputs_dict(0))
            else:
                new_image = new_model(**inputs_dict)
315
316

            if isinstance(new_image, dict):
317
                new_image = new_image.to_tuple()[0]
318

319
320
        max_diff = (image - new_image).abs().max().item()
        self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
321

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
    def test_getattr_is_correct(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)

        # save some things to test
        model.dummy_attribute = 5
        model.register_to_config(test_attribute=5)

        logger = logging.get_logger("diffusers.models.modeling_utils")
        # 30 for warning
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            assert hasattr(model, "dummy_attribute")
            assert getattr(model, "dummy_attribute") == 5
            assert model.dummy_attribute == 5

        # no warning should be thrown
        assert cap_logger.out == ""

        logger = logging.get_logger("diffusers.models.modeling_utils")
        # 30 for warning
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            assert hasattr(model, "save_pretrained")
            fn = model.save_pretrained
            fn_1 = getattr(model, "save_pretrained")

            assert fn == fn_1
        # no warning should be thrown
        assert cap_logger.out == ""

        # warning should be thrown
        with self.assertWarns(FutureWarning):
            assert model.test_attribute == 5

        with self.assertWarns(FutureWarning):
            assert getattr(model, "test_attribute") == 5

        with self.assertRaises(AttributeError) as error:
            model.does_not_exist

        assert str(error.exception) == f"'{type(model).__name__}' object has no attribute 'does_not_exist'"

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    @unittest.skipIf(
        torch_device != "npu" or not is_torch_npu_available(),
        reason="torch npu flash attention is only available with NPU and `torch_npu` installed",
    )
    def test_set_torch_npu_flash_attn_processor_determinism(self):
        torch.use_deterministic_algorithms(False)
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
        model.to(torch_device)

        if not hasattr(model, "set_attn_processor"):
            # If not has `set_attn_processor`, skip test
            return

        model.set_default_attn_processor()
        assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output = model(**self.inputs_dict(0))[0]
            else:
                output = model(**inputs_dict)[0]

        model.enable_npu_flash_attention()
        assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output_2 = model(**self.inputs_dict(0))[0]
            else:
                output_2 = model(**inputs_dict)[0]

        model.set_attn_processor(AttnProcessorNPU())
        assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output_3 = model(**self.inputs_dict(0))[0]
            else:
                output_3 = model(**inputs_dict)[0]

        torch.use_deterministic_algorithms(True)

        assert torch.allclose(output, output_2, atol=self.base_precision)
        assert torch.allclose(output, output_3, atol=self.base_precision)
        assert torch.allclose(output_2, output_3, atol=self.base_precision)

Dhruv Nair's avatar
Dhruv Nair committed
412
413
414
415
416
417
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_set_xformers_attn_processor_for_determinism(self):
        torch.use_deterministic_algorithms(False)
Will Berman's avatar
Will Berman committed
418
419
420
421
422
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
Dhruv Nair's avatar
Dhruv Nair committed
423
424
425
426
        model.to(torch_device)

        if not hasattr(model, "set_attn_processor"):
            # If not has `set_attn_processor`, skip test
Dhruv Nair's avatar
Dhruv Nair committed
427
428
429
430
            return

        if not hasattr(model, "set_default_attn_processor"):
            # If not has `set_attn_processor`, skip test
Dhruv Nair's avatar
Dhruv Nair committed
431
432
433
434
435
            return

        model.set_default_attn_processor()
        assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
436
437
438
439
            if self.forward_requires_fresh_args:
                output = model(**self.inputs_dict(0))[0]
            else:
                output = model(**inputs_dict)[0]
Dhruv Nair's avatar
Dhruv Nair committed
440
441
442
443

        model.enable_xformers_memory_efficient_attention()
        assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
444
445
446
447
            if self.forward_requires_fresh_args:
                output_2 = model(**self.inputs_dict(0))[0]
            else:
                output_2 = model(**inputs_dict)[0]
Dhruv Nair's avatar
Dhruv Nair committed
448

449
450
451
        model.set_attn_processor(XFormersAttnProcessor())
        assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
452
453
454
455
            if self.forward_requires_fresh_args:
                output_3 = model(**self.inputs_dict(0))[0]
            else:
                output_3 = model(**inputs_dict)[0]
456
457
458

        torch.use_deterministic_algorithms(True)

Dhruv Nair's avatar
Dhruv Nair committed
459
        assert torch.allclose(output, output_2, atol=self.base_precision)
460
461
        assert torch.allclose(output, output_3, atol=self.base_precision)
        assert torch.allclose(output_2, output_3, atol=self.base_precision)
Dhruv Nair's avatar
Dhruv Nair committed
462

463
464
    @require_torch_gpu
    def test_set_attn_processor_for_determinism(self):
465
466
467
        if self.uses_custom_attn_processor:
            return

468
        torch.use_deterministic_algorithms(False)
Will Berman's avatar
Will Berman committed
469
470
471
472
473
474
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)

475
476
477
478
479
480
481
482
        model.to(torch_device)

        if not hasattr(model, "set_attn_processor"):
            # If not has `set_attn_processor`, skip test
            return

        assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
483
484
485
486
            if self.forward_requires_fresh_args:
                output_1 = model(**self.inputs_dict(0))[0]
            else:
                output_1 = model(**inputs_dict)[0]
487
488
489
490

        model.set_default_attn_processor()
        assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
491
492
493
494
            if self.forward_requires_fresh_args:
                output_2 = model(**self.inputs_dict(0))[0]
            else:
                output_2 = model(**inputs_dict)[0]
495
496
497
498

        model.set_attn_processor(AttnProcessor2_0())
        assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
499
500
501
502
            if self.forward_requires_fresh_args:
                output_4 = model(**self.inputs_dict(0))[0]
            else:
                output_4 = model(**inputs_dict)[0]
503
504
505
506

        model.set_attn_processor(AttnProcessor())
        assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
507
508
509
510
            if self.forward_requires_fresh_args:
                output_5 = model(**self.inputs_dict(0))[0]
            else:
                output_5 = model(**inputs_dict)[0]
511
512
513
514
515
516
517
518

        torch.use_deterministic_algorithms(True)

        # make sure that outputs match
        assert torch.allclose(output_2, output_1, atol=self.base_precision)
        assert torch.allclose(output_2, output_4, atol=self.base_precision)
        assert torch.allclose(output_2, output_5, atol=self.base_precision)

519
    def test_from_save_pretrained_variant(self, expected_max_diff=5e-5):
Will Berman's avatar
Will Berman committed
520
521
522
523
524
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
525

526
527
        if hasattr(model, "set_default_attn_processor"):
            model.set_default_attn_processor()
528

529
530
531
532
        model.to(torch_device)
        model.eval()

        with tempfile.TemporaryDirectory() as tmpdirname:
533
            model.save_pretrained(tmpdirname, variant="fp16", safe_serialization=False)
534
            new_model = self.model_class.from_pretrained(tmpdirname, variant="fp16")
535
536
            if hasattr(new_model, "set_default_attn_processor"):
                new_model.set_default_attn_processor()
537
538
539
540
541
542
543
544
545
546
547

            # non-variant cannot be loaded
            with self.assertRaises(OSError) as error_context:
                self.model_class.from_pretrained(tmpdirname)

            # make sure that error message states what keys are missing
            assert "Error no file named diffusion_pytorch_model.bin found in directory" in str(error_context.exception)

            new_model.to(torch_device)

        with torch.no_grad():
Will Berman's avatar
Will Berman committed
548
549
550
551
            if self.forward_requires_fresh_args:
                image = model(**self.inputs_dict(0))
            else:
                image = model(**inputs_dict)
552
            if isinstance(image, dict):
553
                image = image.to_tuple()[0]
554

Will Berman's avatar
Will Berman committed
555
556
557
558
            if self.forward_requires_fresh_args:
                new_image = new_model(**self.inputs_dict(0))
            else:
                new_image = new_model(**inputs_dict)
559
560

            if isinstance(new_image, dict):
561
                new_image = new_image.to_tuple()[0]
562

563
564
        max_diff = (image - new_image).abs().max().item()
        self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
565

566
    @is_torch_compile
567
    @require_torch_2
568
569
570
571
    @unittest.skipIf(
        get_python_version == (3, 12),
        reason="Torch Dynamo isn't yet supported for Python 3.12.",
    )
572
    def test_from_save_pretrained_dynamo(self):
573
574
575
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        inputs = [init_dict, self.model_class]
        run_test_in_subprocess(test_case=self, target_func=_test_from_save_pretrained_dynamo, inputs=inputs)
576

577
578
579
580
581
582
583
584
585
586
587
588
    def test_from_save_pretrained_dtype(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        for dtype in [torch.float32, torch.float16, torch.bfloat16]:
            if torch_device == "mps" and dtype == torch.bfloat16:
                continue
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.to(dtype)
589
                model.save_pretrained(tmpdirname, safe_serialization=False)
590
                new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=True, torch_dtype=dtype)
591
                assert new_model.dtype == dtype
592
                new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=False, torch_dtype=dtype)
593
594
                assert new_model.dtype == dtype

595
    def test_determinism(self, expected_max_diff=1e-5):
Will Berman's avatar
Will Berman committed
596
597
598
599
600
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
601
602
        model.to(torch_device)
        model.eval()
603

604
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
605
606
607
608
            if self.forward_requires_fresh_args:
                first = model(**self.inputs_dict(0))
            else:
                first = model(**inputs_dict)
609
            if isinstance(first, dict):
610
                first = first.to_tuple()[0]
611

Will Berman's avatar
Will Berman committed
612
613
614
615
            if self.forward_requires_fresh_args:
                second = model(**self.inputs_dict(0))
            else:
                second = model(**inputs_dict)
616
            if isinstance(second, dict):
617
                second = second.to_tuple()[0]
618
619
620
621
622
623

        out_1 = first.cpu().numpy()
        out_2 = second.cpu().numpy()
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
624
        self.assertLessEqual(max_diff, expected_max_diff)
625

626
    def test_output(self, expected_output_shape=None):
627
628
629
630
631
632
633
634
635
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
636
                output = output.to_tuple()[0]
637
638

        self.assertIsNotNone(output)
639

640
641
        # input & output have to have the same shape
        input_tensor = inputs_dict[self.main_input_name]
642
643
644
645
646
647

        if expected_output_shape is None:
            expected_shape = input_tensor.shape
            self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
        else:
            self.assertEqual(output.shape, expected_output_shape, "Input and output shapes do not match")
648

649
    def test_model_from_pretrained(self):
650
651
652
653
654
655
656
657
658
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        # test if the model can be loaded from the config
        # and has all the expected shape
        with tempfile.TemporaryDirectory() as tmpdirname:
659
            model.save_pretrained(tmpdirname, safe_serialization=False)
660
            new_model = self.model_class.from_pretrained(tmpdirname)
661
662
663
            new_model.to(torch_device)
            new_model.eval()

664
        # check if all parameters shape are the same
665
666
667
668
669
670
671
672
673
        for param_name in model.state_dict().keys():
            param_1 = model.state_dict()[param_name]
            param_2 = new_model.state_dict()[param_name]
            self.assertEqual(param_1.shape, param_2.shape)

        with torch.no_grad():
            output_1 = model(**inputs_dict)

            if isinstance(output_1, dict):
674
                output_1 = output_1.to_tuple()[0]
675
676
677
678

            output_2 = new_model(**inputs_dict)

            if isinstance(output_2, dict):
679
                output_2 = output_2.to_tuple()[0]
680
681
682

        self.assertEqual(output_1.shape, output_2.shape)

Arsalan's avatar
Arsalan committed
683
    @require_torch_accelerator_with_training
684
685
686
687
688
689
690
691
692
    def test_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        output = model(**inputs_dict)

        if isinstance(output, dict):
693
            output = output.to_tuple()[0]
694

695
696
        input_tensor = inputs_dict[self.main_input_name]
        noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
697
698
699
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()

Arsalan's avatar
Arsalan committed
700
    @require_torch_accelerator_with_training
701
702
703
704
705
706
    def test_ema_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
707
        ema_model = EMAModel(model.parameters())
708
709
710
711

        output = model(**inputs_dict)

        if isinstance(output, dict):
712
            output = output.to_tuple()[0]
713

714
715
        input_tensor = inputs_dict[self.main_input_name]
        noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
716
717
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
718
        ema_model.step(model.parameters())
719

720
    def test_outputs_equivalence(self):
721
        def set_nan_tensor_to_zero(t):
722
723
724
725
726
            # Temporary fallback until `aten::_index_put_impl_` is implemented in mps
            # Track progress in https://github.com/pytorch/pytorch/issues/77764
            device = t.device
            if device.type == "mps":
                t = t.to("cpu")
727
            t[t != t] = 0
728
            return t.to(device)
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

        def recursive_check(tuple_object, dict_object):
            if isinstance(tuple_object, (List, Tuple)):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif isinstance(tuple_object, Dict):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif tuple_object is None:
                return
            else:
                self.assertTrue(
                    torch.allclose(
                        set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                    ),
                    msg=(
                        "Tuple and dict output are not equal. Difference:"
                        f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                        f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                        f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                    ),
                )

Will Berman's avatar
Will Berman committed
752
753
754
755
756
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
757
758
759
760

        model.to(torch_device)
        model.eval()

761
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
762
763
764
765
766
767
            if self.forward_requires_fresh_args:
                outputs_dict = model(**self.inputs_dict(0))
                outputs_tuple = model(**self.inputs_dict(0), return_dict=False)
            else:
                outputs_dict = model(**inputs_dict)
                outputs_tuple = model(**inputs_dict, return_dict=False)
768
769

        recursive_check(outputs_tuple, outputs_dict)
770

Arsalan's avatar
Arsalan committed
771
    @require_torch_accelerator_with_training
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
    def test_enable_disable_gradient_checkpointing(self):
        if not self.model_class._supports_gradient_checkpointing:
            return  # Skip test if model does not support gradient checkpointing

        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        # at init model should have gradient checkpointing disabled
        model = self.model_class(**init_dict)
        self.assertFalse(model.is_gradient_checkpointing)

        # check enable works
        model.enable_gradient_checkpointing()
        self.assertTrue(model.is_gradient_checkpointing)

        # check disable works
        model.disable_gradient_checkpointing()
        self.assertFalse(model.is_gradient_checkpointing)
789

790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
    @require_torch_accelerator_with_training
    def test_effective_gradient_checkpointing(self, loss_tolerance=1e-5, param_grad_tol=5e-5):
        if not self.model_class._supports_gradient_checkpointing:
            return  # Skip test if model does not support gradient checkpointing

        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        inputs_dict_copy = copy.deepcopy(inputs_dict)
        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)

        assert not model.is_gradient_checkpointing and model.training

        out = model(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model.zero_grad()

        labels = torch.randn_like(out)
        loss = (out - labels).mean()
        loss.backward()

        # re-instantiate the model now enabling gradient checkpointing
        torch.manual_seed(0)
        model_2 = self.model_class(**init_dict)
        # clone model
        model_2.load_state_dict(model.state_dict())
        model_2.to(torch_device)
        model_2.enable_gradient_checkpointing()

        assert model_2.is_gradient_checkpointing and model_2.training

        out_2 = model_2(**inputs_dict_copy).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model_2.zero_grad()
        loss_2 = (out_2 - labels).mean()
        loss_2.backward()

        # compare the output and parameters gradients
        self.assertTrue((loss - loss_2).abs() < loss_tolerance)
        named_params = dict(model.named_parameters())
        named_params_2 = dict(model_2.named_parameters())

        for name, param in named_params.items():
            if "post_quant_conv" in name:
                continue
            self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=param_grad_tol))

    @unittest.skipIf(torch_device == "mps", "This test is not supported for MPS devices.")
    def test_gradient_checkpointing_is_applied(
        self, expected_set=None, attention_head_dim=None, num_attention_heads=None, block_out_channels=None
    ):
        if not self.model_class._supports_gradient_checkpointing:
            return  # Skip test if model does not support gradient checkpointing
        if self.model_class.__name__ in [
            "UNetSpatioTemporalConditionModel",
            "AutoencoderKLTemporalDecoder",
        ]:
            return

        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        if attention_head_dim is not None:
            init_dict["attention_head_dim"] = attention_head_dim
        if num_attention_heads is not None:
            init_dict["num_attention_heads"] = num_attention_heads
        if block_out_channels is not None:
            init_dict["block_out_channels"] = block_out_channels

        model_class_copy = copy.copy(self.model_class)

        modules_with_gc_enabled = {}

        # now monkey patch the following function:
        #     def _set_gradient_checkpointing(self, module, value=False):
        #         if hasattr(module, "gradient_checkpointing"):
        #             module.gradient_checkpointing = value

        def _set_gradient_checkpointing_new(self, module, value=False):
            if hasattr(module, "gradient_checkpointing"):
                module.gradient_checkpointing = value
                modules_with_gc_enabled[module.__class__.__name__] = True

        model_class_copy._set_gradient_checkpointing = _set_gradient_checkpointing_new

        model = model_class_copy(**init_dict)
        model.enable_gradient_checkpointing()

        print(f"{set(modules_with_gc_enabled.keys())=}, {expected_set=}")

        assert set(modules_with_gc_enabled.keys()) == expected_set
        assert all(modules_with_gc_enabled.values()), "All modules should be enabled"

885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
    def test_deprecated_kwargs(self):
        has_kwarg_in_model_class = "kwargs" in inspect.signature(self.model_class.__init__).parameters
        has_deprecated_kwarg = len(self.model_class._deprecated_kwargs) > 0

        if has_kwarg_in_model_class and not has_deprecated_kwarg:
            raise ValueError(
                f"{self.model_class} has `**kwargs` in its __init__ method but has not defined any deprecated kwargs"
                " under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if there are"
                " no deprecated arguments or add the deprecated argument with `_deprecated_kwargs ="
                " [<deprecated_argument>]`"
            )

        if not has_kwarg_in_model_class and has_deprecated_kwarg:
            raise ValueError(
                f"{self.model_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated kwargs"
                " under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs` argument to"
                f" {self.model_class}.__init__ if there are deprecated arguments or remove the deprecated argument"
                " from `_deprecated_kwargs = [<deprecated_argument>]`"
            )
904

905
906
907
908
    @require_torch_gpu
    def test_cpu_offload(self):
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
909
910
911
        if model._no_split_modules is None:
            return

912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

        model_size = compute_module_sizes(model)[""]
        # We test several splits of sizes to make sure it works.
        max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir)

            for max_size in max_gpu_sizes:
                max_memory = {0: max_size, "cpu": model_size * 2}
                new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                # Making sure part of the model will actually end up offloaded
                self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
                torch.manual_seed(0)
                new_output = new_model(**inputs_dict)

                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

    @require_torch_gpu
    def test_disk_offload_without_safetensors(self):
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
939
940
941
        if model._no_split_modules is None:
            return

942
943
944
945
946
947
948
949
950
951
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

        model_size = compute_module_sizes(model)[""]
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir, safe_serialization=False)

            with self.assertRaises(ValueError):
952
                max_size = int(self.model_split_percents[0] * model_size)
953
954
955
956
                max_memory = {0: max_size, "cpu": max_size}
                # This errors out because it's missing an offload folder
                new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

957
            max_size = int(self.model_split_percents[0] * model_size)
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
            max_memory = {0: max_size, "cpu": max_size}
            new_model = self.model_class.from_pretrained(
                tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
            )

            self.check_device_map_is_respected(new_model, new_model.hf_device_map)
            torch.manual_seed(0)
            new_output = new_model(**inputs_dict)

            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

    @require_torch_gpu
    def test_disk_offload_with_safetensors(self):
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
973
974
975
        if model._no_split_modules is None:
            return

976
977
978
979
980
981
982
983
984
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

        model_size = compute_module_sizes(model)[""]
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir)

985
            max_size = int(self.model_split_percents[0] * model_size)
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
            max_memory = {0: max_size, "cpu": max_size}
            new_model = self.model_class.from_pretrained(
                tmp_dir, device_map="auto", offload_folder=tmp_dir, max_memory=max_memory
            )

            self.check_device_map_is_respected(new_model, new_model.hf_device_map)
            torch.manual_seed(0)
            new_output = new_model(**inputs_dict)

            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

    @require_torch_multi_gpu
    def test_model_parallelism(self):
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1001
1002
1003
        if model._no_split_modules is None:
            return

1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

        model_size = compute_module_sizes(model)[""]
        # We test several splits of sizes to make sure it works.
        max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir)

            for max_size in max_gpu_sizes:
                max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
                new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                # Making sure part of the model will actually end up offloaded
                self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)

                torch.manual_seed(0)
                new_output = new_model(**inputs_dict)

                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1028
1029
    @require_torch_gpu
    def test_sharded_checkpoints(self):
1030
        torch.manual_seed(0)
1031
1032
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
        model = model.to(torch_device)

        base_output = model(**inputs_dict)

        model_size = compute_module_sizes(model)[""]
        max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB")
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))

            # Now check if the right number of shards exists. First, let's get the number of shards.
            # Since this number can be dependent on the model being tested, it's important that we calculate it
            # instead of hardcoding it.
1046
            expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))
1047
1048
1049
            actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
            self.assertTrue(actual_num_shards == expected_num_shards)

1050
            new_model = self.model_class.from_pretrained(tmp_dir).eval()
1051
            new_model = new_model.to(torch_device)
1052
1053

            torch.manual_seed(0)
1054
1055
            if "generator" in inputs_dict:
                _, inputs_dict = self.prepare_init_args_and_inputs_for_common()
1056
            new_output = new_model(**inputs_dict)
1057

1058
1059
            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
    @require_torch_gpu
    def test_sharded_checkpoints_with_variant(self):
        torch.manual_seed(0)
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
        model = model.to(torch_device)

        base_output = model(**inputs_dict)

        model_size = compute_module_sizes(model)[""]
        max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
        variant = "fp16"
        with tempfile.TemporaryDirectory() as tmp_dir:
            # It doesn't matter if the actual model is in fp16 or not. Just adding the variant and
            # testing if loading works with the variant when the checkpoint is sharded should be
            # enough.
            model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB", variant=variant)
1077

1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
            index_filename = _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, index_filename)))

            # Now check if the right number of shards exists. First, let's get the number of shards.
            # Since this number can be dependent on the model being tested, it's important that we calculate it
            # instead of hardcoding it.
            expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, index_filename))
            actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
            self.assertTrue(actual_num_shards == expected_num_shards)

            new_model = self.model_class.from_pretrained(tmp_dir, variant=variant).eval()
            new_model = new_model.to(torch_device)

            torch.manual_seed(0)
            if "generator" in inputs_dict:
                _, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            new_output = new_model(**inputs_dict)

            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1098
1099
1100
1101
    @require_torch_gpu
    def test_sharded_checkpoints_device_map(self):
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
        if model._no_split_modules is None:
            return
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

        model_size = compute_module_sizes(model)[""]
        max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB")
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))

            # Now check if the right number of shards exists. First, let's get the number of shards.
            # Since this number can be dependent on the model being tested, it's important that we calculate it
            # instead of hardcoding it.
1118
            expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))
1119
1120
1121
1122
1123
1124
            actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
            self.assertTrue(actual_num_shards == expected_num_shards)

            new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto")

            torch.manual_seed(0)
1125
1126
            if "generator" in inputs_dict:
                _, inputs_dict = self.prepare_init_args_and_inputs_for_common()
1127
1128
1129
            new_output = new_model(**inputs_dict)
            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
    # This test is okay without a GPU because we're not running any execution. We're just serializing
    # and check if the resultant files are following an expected format.
    def test_variant_sharded_ckpt_right_format(self):
        for use_safe in [True, False]:
            extension = ".safetensors" if use_safe else ".bin"
            config, _ = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**config).eval()

            model_size = compute_module_sizes(model)[""]
            max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
            variant = "fp16"
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(
                    tmp_dir, variant=variant, max_shard_size=f"{max_shard_size}KB", safe_serialization=use_safe
                )
                index_variant = _add_variant(SAFE_WEIGHTS_INDEX_NAME if use_safe else WEIGHTS_INDEX_NAME, variant)
                self.assertTrue(os.path.exists(os.path.join(tmp_dir, index_variant)))

                # Now check if the right number of shards exists. First, let's get the number of shards.
                # Since this number can be dependent on the model being tested, it's important that we calculate it
                # instead of hardcoding it.
                expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, index_variant))
                actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(extension)])
                self.assertTrue(actual_num_shards == expected_num_shards)

                # Check if the variant is present as a substring in the checkpoints.
                shard_files = [
                    file
                    for file in os.listdir(tmp_dir)
                    if file.endswith(extension) or ("index" in file and "json" in file)
                ]
                assert all(variant in f for f in shard_files)

                # Check if the sharded checkpoints were serialized in the right format.
                shard_files = [file for file in os.listdir(tmp_dir) if file.endswith(extension)]
                # Example: diffusion_pytorch_model.fp16-00001-of-00002.safetensors
                assert all(f.split(".")[1].split("-")[0] == variant for f in shard_files)

1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235

@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
    identifier = uuid.uuid4()
    repo_id = f"test-model-{identifier}"
    org_repo_id = f"valid_org/{repo_id}-org"

    def test_push_to_hub(self):
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        model.push_to_hub(self.repo_id, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.repo_id)

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(self.repo_id, token=TOKEN)

    def test_push_to_hub_in_organization(self):
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        model.push_to_hub(self.org_repo_id, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id)
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.org_repo_id)

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, push_to_hub=True, token=TOKEN, repo_id=self.org_repo_id)

        new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id)
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(self.org_repo_id, token=TOKEN)
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258

    @unittest.skipIf(
        not is_jinja_available(),
        reason="Model card tests cannot be performed without Jinja installed.",
    )
    def test_push_to_hub_library_name(self):
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        model.push_to_hub(self.repo_id, token=TOKEN)

        model_card = ModelCard.load(f"{USER}/{self.repo_id}", token=TOKEN).data
        assert model_card.library_name == "diffusers"

        # Reset repo
        delete_repo(self.repo_id, token=TOKEN)