test_modeling_common.py 106 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import copy
Aryan's avatar
Aryan committed
17
import gc
18
import glob
19
import inspect
20
21
import json
import os
Aryan's avatar
Aryan committed
22
import re
23
import tempfile
24
import traceback
25
import unittest
26
import unittest.mock as mock
27
import uuid
28
import warnings
29
30
from collections import defaultdict
from typing import Dict, List, Optional, Tuple, Union
31
32

import numpy as np
33
import pytest
34
import requests_mock
35
import safetensors.torch
36
import torch
37
import torch.nn as nn
YiYi Xu's avatar
YiYi Xu committed
38
from accelerate.utils.modeling import _get_proper_dtype, compute_module_sizes, dtype_byte_size
39
from huggingface_hub import ModelCard, delete_repo, snapshot_download, try_to_load_from_cache
40
from huggingface_hub.utils import HfHubHTTPError, is_jinja_available
41
from parameterized import parameterized
42

43
from diffusers.models import FluxTransformer2DModel, SD3Transformer2DModel, UNet2DConditionModel
44
45
46
47
48
49
from diffusers.models.attention_processor import (
    AttnProcessor,
    AttnProcessor2_0,
    AttnProcessorNPU,
    XFormersAttnProcessor,
)
hlky's avatar
hlky committed
50
from diffusers.models.auto_model import AutoModel
51
from diffusers.training_utils import EMAModel
52
53
54
from diffusers.utils import (
    SAFE_WEIGHTS_INDEX_NAME,
    WEIGHTS_INDEX_NAME,
55
    is_peft_available,
56
57
58
59
    is_torch_npu_available,
    is_xformers_available,
    logging,
)
60
from diffusers.utils.hub_utils import _add_variant
61
62
63
64
from diffusers.utils.torch_utils import get_torch_cuda_device_capability

from ..others.test_utils import TOKEN, USER, is_staging_test
from ..testing_utils import (
65
    CaptureLogger,
66
    _check_safetensors_serialization,
67
    backend_empty_cache,
68
69
70
    backend_max_memory_allocated,
    backend_reset_peak_memory_stats,
    backend_synchronize,
71
    check_if_dicts_are_equal,
72
    get_python_version,
73
    is_torch_compile,
Aryan's avatar
Aryan committed
74
    numpy_cosine_similarity_distance,
75
76
    require_peft_backend,
    require_peft_version_greater,
77
    require_torch_2,
78
    require_torch_accelerator,
Arsalan's avatar
Arsalan committed
79
    require_torch_accelerator_with_training,
80
    require_torch_multi_accelerator,
81
    require_torch_version_greater,
82
    run_test_in_subprocess,
83
    slow,
84
    torch_all_close,
Dhruv Nair's avatar
Dhruv Nair committed
85
    torch_device,
86
)
87
88


89
90
91
92
if is_peft_available():
    from peft.tuners.tuners_utils import BaseTunerLayer


93
94
95
96
97
98
99
100
101
def caculate_expected_num_shards(index_map_path):
    with open(index_map_path) as f:
        weight_map_dict = json.load(f)["weight_map"]
    first_key = list(weight_map_dict.keys())[0]
    weight_loc = weight_map_dict[first_key]  # e.g., diffusion_pytorch_model-00001-of-00002.safetensors
    expected_num_shards = int(weight_loc.split("-")[-1].split(".")[0])
    return expected_num_shards


102
103
104
105
106
107
108
109
110
111
def check_if_lora_correctly_set(model) -> bool:
    """
    Checks if the LoRA layers are correctly set with peft
    """
    for module in model.modules():
        if isinstance(module, BaseTunerLayer):
            return True
    return False


112
113
114
115
116
117
118
119
120
121
122
# Will be run via run_test_in_subprocess
def _test_from_save_pretrained_dynamo(in_queue, out_queue, timeout):
    error = None
    try:
        init_dict, model_class = in_queue.get(timeout=timeout)

        model = model_class(**init_dict)
        model.to(torch_device)
        model = torch.compile(model)

        with tempfile.TemporaryDirectory() as tmpdirname:
123
            model.save_pretrained(tmpdirname, safe_serialization=False)
124
125
126
127
128
129
130
131
132
133
            new_model = model_class.from_pretrained(tmpdirname)
            new_model.to(torch_device)

        assert new_model.__class__ == model_class
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()
134
135


136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
def named_persistent_module_tensors(
    module: nn.Module,
    recurse: bool = False,
):
    """
    A helper function that gathers all the tensors (parameters + persistent buffers) of a given module.

    Args:
        module (`torch.nn.Module`):
            The module we want the tensors on.
        recurse (`bool`, *optional`, defaults to `False`):
            Whether or not to go look in every submodule or just return the direct parameters and buffers.
    """
    yield from module.named_parameters(recurse=recurse)

    for named_buffer in module.named_buffers(recurse=recurse):
        name, _ = named_buffer
        # Get parent by splitting on dots and traversing the model
        parent = module
        if "." in name:
            parent_name = name.rsplit(".", 1)[0]
            for part in parent_name.split("."):
                parent = getattr(parent, part)
            name = name.split(".")[-1]
        if name not in parent._non_persistent_buffers_set:
            yield named_buffer


def compute_module_persistent_sizes(
    model: nn.Module,
    dtype: Optional[Union[str, torch.device]] = None,
    special_dtypes: Optional[Dict[str, Union[str, torch.device]]] = None,
):
    """
    Compute the size of each submodule of a given model (parameters + persistent buffers).
    """
    if dtype is not None:
        dtype = _get_proper_dtype(dtype)
        dtype_size = dtype_byte_size(dtype)
    if special_dtypes is not None:
        special_dtypes = {key: _get_proper_dtype(dtyp) for key, dtyp in special_dtypes.items()}
        special_dtypes_size = {key: dtype_byte_size(dtyp) for key, dtyp in special_dtypes.items()}
    module_sizes = defaultdict(int)

    module_list = []

    module_list = named_persistent_module_tensors(model, recurse=True)

    for name, tensor in module_list:
        if special_dtypes is not None and name in special_dtypes:
            size = tensor.numel() * special_dtypes_size[name]
        elif dtype is None:
            size = tensor.numel() * dtype_byte_size(tensor.dtype)
        elif str(tensor.dtype).startswith(("torch.uint", "torch.int", "torch.bool")):
            # According to the code in set_module_tensor_to_device, these types won't be converted
            # so use their original size here
            size = tensor.numel() * dtype_byte_size(tensor.dtype)
        else:
            size = tensor.numel() * min(dtype_size, dtype_byte_size(tensor.dtype))
        name_parts = name.split(".")
        for idx in range(len(name_parts) + 1):
            module_sizes[".".join(name_parts[:idx])] += size

    return module_sizes


Aryan's avatar
Aryan committed
202
203
204
205
206
207
208
209
210
211
def cast_maybe_tensor_dtype(maybe_tensor, current_dtype, target_dtype):
    if torch.is_tensor(maybe_tensor):
        return maybe_tensor.to(target_dtype) if maybe_tensor.dtype == current_dtype else maybe_tensor
    if isinstance(maybe_tensor, dict):
        return {k: cast_maybe_tensor_dtype(v, current_dtype, target_dtype) for k, v in maybe_tensor.items()}
    if isinstance(maybe_tensor, list):
        return [cast_maybe_tensor_dtype(v, current_dtype, target_dtype) for v in maybe_tensor]
    return maybe_tensor


212
class ModelUtilsTest(unittest.TestCase):
213
214
215
    def tearDown(self):
        super().tearDown()

216
217
    def test_missing_key_loading_warning_message(self):
        with self.assertLogs("diffusers.models.modeling_utils", level="WARNING") as logs:
218
219
220
            UNet2DConditionModel.from_pretrained("hf-internal-testing/stable-diffusion-broken", subfolder="unet")

        # make sure that error message states what keys are missing
221
        assert "conv_out.bias" in " ".join(logs.output)
222

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    @parameterized.expand(
        [
            ("hf-internal-testing/tiny-stable-diffusion-pipe-variants-all-kinds", "unet", False),
            ("hf-internal-testing/tiny-stable-diffusion-pipe-variants-all-kinds", "unet", True),
            ("hf-internal-testing/tiny-sd-unet-with-sharded-ckpt", None, False),
            ("hf-internal-testing/tiny-sd-unet-with-sharded-ckpt", None, True),
        ]
    )
    def test_variant_sharded_ckpt_legacy_format_raises_warning(self, repo_id, subfolder, use_local):
        def load_model(path):
            kwargs = {"variant": "fp16"}
            if subfolder:
                kwargs["subfolder"] = subfolder
            return UNet2DConditionModel.from_pretrained(path, **kwargs)

        with self.assertWarns(FutureWarning) as warning:
            if use_local:
                with tempfile.TemporaryDirectory() as tmpdirname:
                    tmpdirname = snapshot_download(repo_id=repo_id)
                    _ = load_model(tmpdirname)
            else:
                _ = load_model(repo_id)

246
247
        warning_messages = " ".join(str(w.message) for w in warning.warnings)
        self.assertIn("This serialization format is now deprecated to standardize the serialization", warning_messages)
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

    # Local tests are already covered down below.
    @parameterized.expand(
        [
            ("hf-internal-testing/tiny-sd-unet-sharded-latest-format", None, "fp16"),
            ("hf-internal-testing/tiny-sd-unet-sharded-latest-format-subfolder", "unet", "fp16"),
            ("hf-internal-testing/tiny-sd-unet-sharded-no-variants", None, None),
            ("hf-internal-testing/tiny-sd-unet-sharded-no-variants-subfolder", "unet", None),
        ]
    )
    def test_variant_sharded_ckpt_loads_from_hub(self, repo_id, subfolder, variant=None):
        def load_model():
            kwargs = {}
            if variant:
                kwargs["variant"] = variant
            if subfolder:
                kwargs["subfolder"] = subfolder
            return UNet2DConditionModel.from_pretrained(repo_id, **kwargs)

        assert load_model()

269
270
271
272
273
    def test_cached_files_are_used_when_no_internet(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = {}
274
        response_mock.raise_for_status.side_effect = HfHubHTTPError("Server down", response=mock.Mock())
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
        response_mock.json.return_value = {}

        # Download this model to make sure it's in the cache.
        orig_model = UNet2DConditionModel.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet"
        )

        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("requests.request", return_value=response_mock):
            # Download this model to make sure it's in the cache.
            model = UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", local_files_only=True
            )

        for p1, p2 in zip(orig_model.parameters(), model.parameters()):
            if p1.data.ne(p2.data).sum() > 0:
                assert False, "Parameters not the same!"

293
294
295
296
297
    def test_local_files_only_with_sharded_checkpoint(self):
        repo_id = "hf-internal-testing/tiny-flux-sharded"
        error_response = mock.Mock(
            status_code=500,
            headers={},
298
            raise_for_status=mock.Mock(side_effect=HfHubHTTPError("Server down", response=mock.Mock())),
299
300
            json=mock.Mock(return_value={}),
        )
301
302
        client_mock = mock.Mock()
        client_mock.get.return_value = error_response
303
304
305
306

        with tempfile.TemporaryDirectory() as tmpdir:
            model = FluxTransformer2DModel.from_pretrained(repo_id, subfolder="transformer", cache_dir=tmpdir)

307
            with mock.patch("huggingface_hub.hf_api.get_session", return_value=client_mock):
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
                # Should fail with local_files_only=False (network required)
                # We would make a network call with model_info
                with self.assertRaises(OSError):
                    FluxTransformer2DModel.from_pretrained(
                        repo_id, subfolder="transformer", cache_dir=tmpdir, local_files_only=False
                    )

                # Should succeed with local_files_only=True (uses cache)
                # model_info call skipped
                local_model = FluxTransformer2DModel.from_pretrained(
                    repo_id, subfolder="transformer", cache_dir=tmpdir, local_files_only=True
                )

            assert all(torch.equal(p1, p2) for p1, p2 in zip(model.parameters(), local_model.parameters())), (
                "Model parameters don't match!"
            )

            # Remove a shard file
            cached_shard_file = try_to_load_from_cache(
                repo_id, filename="transformer/diffusion_pytorch_model-00001-of-00002.safetensors", cache_dir=tmpdir
            )
            os.remove(cached_shard_file)

            # Attempting to load from cache should raise an error
            with self.assertRaises(OSError) as context:
                FluxTransformer2DModel.from_pretrained(
                    repo_id, subfolder="transformer", cache_dir=tmpdir, local_files_only=True
                )

            # Verify error mentions the missing shard
            error_msg = str(context.exception)
            assert cached_shard_file in error_msg or "required according to the checkpoint index" in error_msg, (
                f"Expected error about missing shard, got: {error_msg}"
            )

343
    @unittest.skip("Flaky behaviour on CI. Re-enable after migrating to new runners")
344
    @unittest.skipIf(torch_device == "mps", reason="Test not supported for MPS.")
345
    def test_one_request_upon_cached(self):
346
        use_safetensors = False
347
348
349
350

        with tempfile.TemporaryDirectory() as tmpdirname:
            with requests_mock.mock(real_http=True) as m:
                UNet2DConditionModel.from_pretrained(
351
352
353
354
                    "hf-internal-testing/tiny-stable-diffusion-torch",
                    subfolder="unet",
                    cache_dir=tmpdirname,
                    use_safetensors=use_safetensors,
355
356
357
                )

            download_requests = [r.method for r in m.request_history]
358
359
360
            assert download_requests.count("HEAD") == 3, (
                "3 HEAD requests one for config, one for model, and one for shard index file."
            )
361
362
363
364
            assert download_requests.count("GET") == 2, "2 GET requests one for config, one for model"

            with requests_mock.mock(real_http=True) as m:
                UNet2DConditionModel.from_pretrained(
365
366
367
368
                    "hf-internal-testing/tiny-stable-diffusion-torch",
                    subfolder="unet",
                    cache_dir=tmpdirname,
                    use_safetensors=use_safetensors,
369
370
371
                )

            cache_requests = [r.method for r in m.request_history]
372
373
374
            assert "HEAD" == cache_requests[0] and len(cache_requests) == 2, (
                "We should call only `model_info` to check for commit hash and  knowing if shard index is present."
            )
375

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
    def test_weight_overwrite(self):
        with tempfile.TemporaryDirectory() as tmpdirname, self.assertRaises(ValueError) as error_context:
            UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch",
                subfolder="unet",
                cache_dir=tmpdirname,
                in_channels=9,
            )

        # make sure that error message states what keys are missing
        assert "Cannot load" in str(error_context.exception)

        with tempfile.TemporaryDirectory() as tmpdirname:
            model = UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch",
                subfolder="unet",
                cache_dir=tmpdirname,
                in_channels=9,
                low_cpu_mem_usage=False,
                ignore_mismatched_sizes=True,
            )

        assert model.config.in_channels == 9

400
    @require_torch_accelerator
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
    def test_keep_modules_in_fp32(self):
        r"""
        A simple tests to check if the modules under `_keep_in_fp32_modules` are kept in fp32 when we load the model in fp16/bf16
        Also ensures if inference works.
        """
        fp32_modules = SD3Transformer2DModel._keep_in_fp32_modules

        for torch_dtype in [torch.bfloat16, torch.float16]:
            SD3Transformer2DModel._keep_in_fp32_modules = ["proj_out"]

            model = SD3Transformer2DModel.from_pretrained(
                "hf-internal-testing/tiny-sd3-pipe", subfolder="transformer", torch_dtype=torch_dtype
            ).to(torch_device)

            for name, module in model.named_modules():
                if isinstance(module, torch.nn.Linear):
                    if name in model._keep_in_fp32_modules:
                        self.assertTrue(module.weight.dtype == torch.float32)
                    else:
                        self.assertTrue(module.weight.dtype == torch_dtype)

        def get_dummy_inputs():
            batch_size = 2
            num_channels = 4
            height = width = embedding_dim = 32
            pooled_embedding_dim = embedding_dim * 2
            sequence_length = 154

            hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device)
            encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
            pooled_prompt_embeds = torch.randn((batch_size, pooled_embedding_dim)).to(torch_device)
            timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)

            return {
                "hidden_states": hidden_states,
                "encoder_hidden_states": encoder_hidden_states,
                "pooled_projections": pooled_prompt_embeds,
                "timestep": timestep,
            }

        # test if inference works.
        with torch.no_grad() and torch.amp.autocast(torch_device, dtype=torch_dtype):
            input_dict_for_transformer = get_dummy_inputs()
            model_inputs = {
                k: v.to(device=torch_device) for k, v in input_dict_for_transformer.items() if not isinstance(v, bool)
            }
            model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs})
            _ = model(**model_inputs)

        SD3Transformer2DModel._keep_in_fp32_modules = fp32_modules

452

453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
class UNetTesterMixin:
    def test_forward_with_norm_groups(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["norm_num_groups"] = 16
        init_dict["block_out_channels"] = (16, 32)

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.to_tuple()[0]

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")


475
class ModelTesterMixin:
476
477
    main_input_name = None  # overwrite in model specific tester class
    base_precision = 1e-3
Will Berman's avatar
Will Berman committed
478
    forward_requires_fresh_args = False
479
    model_split_percents = [0.5, 0.7, 0.9]
480
    uses_custom_attn_processor = False
481
482
483
484
485
486
487
488
489
490
491
492
493
494

    def check_device_map_is_respected(self, model, device_map):
        for param_name, param in model.named_parameters():
            # Find device in device_map
            while len(param_name) > 0 and param_name not in device_map:
                param_name = ".".join(param_name.split(".")[:-1])
            if param_name not in device_map:
                raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")

            param_device = device_map[param_name]
            if param_device in ["cpu", "disk"]:
                self.assertEqual(param.device, torch.device("meta"))
            else:
                self.assertEqual(param.device, torch.device(param_device))
495

496
    def test_from_save_pretrained(self, expected_max_diff=5e-5):
Will Berman's avatar
Will Berman committed
497
498
499
500
501
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
502

503
504
        if hasattr(model, "set_default_attn_processor"):
            model.set_default_attn_processor()
505
506
507
508
        model.to(torch_device)
        model.eval()

        with tempfile.TemporaryDirectory() as tmpdirname:
509
            model.save_pretrained(tmpdirname, safe_serialization=False)
510
            new_model = self.model_class.from_pretrained(tmpdirname)
511
512
            if hasattr(new_model, "set_default_attn_processor"):
                new_model.set_default_attn_processor()
513
514
515
            new_model.to(torch_device)

        with torch.no_grad():
Will Berman's avatar
Will Berman committed
516
517
518
519
520
            if self.forward_requires_fresh_args:
                image = model(**self.inputs_dict(0))
            else:
                image = model(**inputs_dict)

521
            if isinstance(image, dict):
522
                image = image.to_tuple()[0]
523

Will Berman's avatar
Will Berman committed
524
525
526
527
            if self.forward_requires_fresh_args:
                new_image = new_model(**self.inputs_dict(0))
            else:
                new_image = new_model(**inputs_dict)
528
529

            if isinstance(new_image, dict):
530
                new_image = new_image.to_tuple()[0]
531

532
533
        max_diff = (image - new_image).abs().max().item()
        self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
534

535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
    def test_getattr_is_correct(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)

        # save some things to test
        model.dummy_attribute = 5
        model.register_to_config(test_attribute=5)

        logger = logging.get_logger("diffusers.models.modeling_utils")
        # 30 for warning
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            assert hasattr(model, "dummy_attribute")
            assert getattr(model, "dummy_attribute") == 5
            assert model.dummy_attribute == 5

        # no warning should be thrown
        assert cap_logger.out == ""

        logger = logging.get_logger("diffusers.models.modeling_utils")
        # 30 for warning
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            assert hasattr(model, "save_pretrained")
            fn = model.save_pretrained
            fn_1 = getattr(model, "save_pretrained")

            assert fn == fn_1
        # no warning should be thrown
        assert cap_logger.out == ""

        # warning should be thrown
        with self.assertWarns(FutureWarning):
            assert model.test_attribute == 5

        with self.assertWarns(FutureWarning):
            assert getattr(model, "test_attribute") == 5

        with self.assertRaises(AttributeError) as error:
            model.does_not_exist

        assert str(error.exception) == f"'{type(model).__name__}' object has no attribute 'does_not_exist'"

578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
    @unittest.skipIf(
        torch_device != "npu" or not is_torch_npu_available(),
        reason="torch npu flash attention is only available with NPU and `torch_npu` installed",
    )
    def test_set_torch_npu_flash_attn_processor_determinism(self):
        torch.use_deterministic_algorithms(False)
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
        model.to(torch_device)

        if not hasattr(model, "set_attn_processor"):
            # If not has `set_attn_processor`, skip test
            return

        model.set_default_attn_processor()
        assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output = model(**self.inputs_dict(0))[0]
            else:
                output = model(**inputs_dict)[0]

        model.enable_npu_flash_attention()
        assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output_2 = model(**self.inputs_dict(0))[0]
            else:
                output_2 = model(**inputs_dict)[0]

        model.set_attn_processor(AttnProcessorNPU())
        assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output_3 = model(**self.inputs_dict(0))[0]
            else:
                output_3 = model(**inputs_dict)[0]

        torch.use_deterministic_algorithms(True)

        assert torch.allclose(output, output_2, atol=self.base_precision)
        assert torch.allclose(output, output_3, atol=self.base_precision)
        assert torch.allclose(output_2, output_3, atol=self.base_precision)

Dhruv Nair's avatar
Dhruv Nair committed
625
626
627
628
629
630
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_set_xformers_attn_processor_for_determinism(self):
        torch.use_deterministic_algorithms(False)
Will Berman's avatar
Will Berman committed
631
632
633
634
635
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
Dhruv Nair's avatar
Dhruv Nair committed
636
637
638
639
        model.to(torch_device)

        if not hasattr(model, "set_attn_processor"):
            # If not has `set_attn_processor`, skip test
Dhruv Nair's avatar
Dhruv Nair committed
640
641
642
643
            return

        if not hasattr(model, "set_default_attn_processor"):
            # If not has `set_attn_processor`, skip test
Dhruv Nair's avatar
Dhruv Nair committed
644
645
646
647
648
            return

        model.set_default_attn_processor()
        assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
649
650
651
652
            if self.forward_requires_fresh_args:
                output = model(**self.inputs_dict(0))[0]
            else:
                output = model(**inputs_dict)[0]
Dhruv Nair's avatar
Dhruv Nair committed
653
654
655
656

        model.enable_xformers_memory_efficient_attention()
        assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
657
658
659
660
            if self.forward_requires_fresh_args:
                output_2 = model(**self.inputs_dict(0))[0]
            else:
                output_2 = model(**inputs_dict)[0]
Dhruv Nair's avatar
Dhruv Nair committed
661

662
663
664
        model.set_attn_processor(XFormersAttnProcessor())
        assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
665
666
667
668
            if self.forward_requires_fresh_args:
                output_3 = model(**self.inputs_dict(0))[0]
            else:
                output_3 = model(**inputs_dict)[0]
669
670
671

        torch.use_deterministic_algorithms(True)

Dhruv Nair's avatar
Dhruv Nair committed
672
        assert torch.allclose(output, output_2, atol=self.base_precision)
673
674
        assert torch.allclose(output, output_3, atol=self.base_precision)
        assert torch.allclose(output_2, output_3, atol=self.base_precision)
Dhruv Nair's avatar
Dhruv Nair committed
675

676
    @require_torch_accelerator
677
    def test_set_attn_processor_for_determinism(self):
678
679
680
        if self.uses_custom_attn_processor:
            return

681
        torch.use_deterministic_algorithms(False)
Will Berman's avatar
Will Berman committed
682
683
684
685
686
687
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)

688
689
690
691
692
693
694
695
        model.to(torch_device)

        if not hasattr(model, "set_attn_processor"):
            # If not has `set_attn_processor`, skip test
            return

        assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
696
697
698
699
            if self.forward_requires_fresh_args:
                output_1 = model(**self.inputs_dict(0))[0]
            else:
                output_1 = model(**inputs_dict)[0]
700
701
702
703

        model.set_default_attn_processor()
        assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
704
705
706
707
            if self.forward_requires_fresh_args:
                output_2 = model(**self.inputs_dict(0))[0]
            else:
                output_2 = model(**inputs_dict)[0]
708
709
710
711

        model.set_attn_processor(AttnProcessor2_0())
        assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
712
713
714
715
            if self.forward_requires_fresh_args:
                output_4 = model(**self.inputs_dict(0))[0]
            else:
                output_4 = model(**inputs_dict)[0]
716
717
718
719

        model.set_attn_processor(AttnProcessor())
        assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
720
721
722
723
            if self.forward_requires_fresh_args:
                output_5 = model(**self.inputs_dict(0))[0]
            else:
                output_5 = model(**inputs_dict)[0]
724
725
726
727
728
729
730
731

        torch.use_deterministic_algorithms(True)

        # make sure that outputs match
        assert torch.allclose(output_2, output_1, atol=self.base_precision)
        assert torch.allclose(output_2, output_4, atol=self.base_precision)
        assert torch.allclose(output_2, output_5, atol=self.base_precision)

732
    def test_from_save_pretrained_variant(self, expected_max_diff=5e-5):
Will Berman's avatar
Will Berman committed
733
734
735
736
737
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
738

739
740
        if hasattr(model, "set_default_attn_processor"):
            model.set_default_attn_processor()
741

742
743
744
745
        model.to(torch_device)
        model.eval()

        with tempfile.TemporaryDirectory() as tmpdirname:
746
            model.save_pretrained(tmpdirname, variant="fp16", safe_serialization=False)
747
            new_model = self.model_class.from_pretrained(tmpdirname, variant="fp16")
748
749
            if hasattr(new_model, "set_default_attn_processor"):
                new_model.set_default_attn_processor()
750
751
752
753
754
755
756
757
758
759
760

            # non-variant cannot be loaded
            with self.assertRaises(OSError) as error_context:
                self.model_class.from_pretrained(tmpdirname)

            # make sure that error message states what keys are missing
            assert "Error no file named diffusion_pytorch_model.bin found in directory" in str(error_context.exception)

            new_model.to(torch_device)

        with torch.no_grad():
Will Berman's avatar
Will Berman committed
761
762
763
764
            if self.forward_requires_fresh_args:
                image = model(**self.inputs_dict(0))
            else:
                image = model(**inputs_dict)
765
            if isinstance(image, dict):
766
                image = image.to_tuple()[0]
767

Will Berman's avatar
Will Berman committed
768
769
770
771
            if self.forward_requires_fresh_args:
                new_image = new_model(**self.inputs_dict(0))
            else:
                new_image = new_model(**inputs_dict)
772
773

            if isinstance(new_image, dict):
774
                new_image = new_image.to_tuple()[0]
775

776
777
        max_diff = (image - new_image).abs().max().item()
        self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
778

779
    @is_torch_compile
780
    @require_torch_2
781
782
783
784
    @unittest.skipIf(
        get_python_version == (3, 12),
        reason="Torch Dynamo isn't yet supported for Python 3.12.",
    )
785
    def test_from_save_pretrained_dynamo(self):
786
787
788
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        inputs = [init_dict, self.model_class]
        run_test_in_subprocess(test_case=self, target_func=_test_from_save_pretrained_dynamo, inputs=inputs)
789

790
791
792
793
794
795
796
797
798
799
800
801
    def test_from_save_pretrained_dtype(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        for dtype in [torch.float32, torch.float16, torch.bfloat16]:
            if torch_device == "mps" and dtype == torch.bfloat16:
                continue
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.to(dtype)
802
                model.save_pretrained(tmpdirname, safe_serialization=False)
803
                new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=True, torch_dtype=dtype)
804
                assert new_model.dtype == dtype
805
806
807
808
809
810
811
812
                if (
                    hasattr(self.model_class, "_keep_in_fp32_modules")
                    and self.model_class._keep_in_fp32_modules is None
                ):
                    new_model = self.model_class.from_pretrained(
                        tmpdirname, low_cpu_mem_usage=False, torch_dtype=dtype
                    )
                    assert new_model.dtype == dtype
813

814
    def test_determinism(self, expected_max_diff=1e-5):
Will Berman's avatar
Will Berman committed
815
816
817
818
819
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
820
821
        model.to(torch_device)
        model.eval()
822

823
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
824
825
826
827
            if self.forward_requires_fresh_args:
                first = model(**self.inputs_dict(0))
            else:
                first = model(**inputs_dict)
828
            if isinstance(first, dict):
829
                first = first.to_tuple()[0]
830

Will Berman's avatar
Will Berman committed
831
832
833
834
            if self.forward_requires_fresh_args:
                second = model(**self.inputs_dict(0))
            else:
                second = model(**inputs_dict)
835
            if isinstance(second, dict):
836
                second = second.to_tuple()[0]
837
838
839
840
841
842

        out_1 = first.cpu().numpy()
        out_2 = second.cpu().numpy()
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
843
        self.assertLessEqual(max_diff, expected_max_diff)
844

845
    def test_output(self, expected_output_shape=None):
846
847
848
849
850
851
852
853
854
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
855
                output = output.to_tuple()[0]
856
857

        self.assertIsNotNone(output)
858

859
860
        # input & output have to have the same shape
        input_tensor = inputs_dict[self.main_input_name]
861
862
863
864
865
866

        if expected_output_shape is None:
            expected_shape = input_tensor.shape
            self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
        else:
            self.assertEqual(output.shape, expected_output_shape, "Input and output shapes do not match")
867

868
    def test_model_from_pretrained(self):
869
870
871
872
873
874
875
876
877
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        # test if the model can be loaded from the config
        # and has all the expected shape
        with tempfile.TemporaryDirectory() as tmpdirname:
878
            model.save_pretrained(tmpdirname, safe_serialization=False)
879
            new_model = self.model_class.from_pretrained(tmpdirname)
880
881
882
            new_model.to(torch_device)
            new_model.eval()

883
        # check if all parameters shape are the same
884
885
886
887
888
889
890
891
892
        for param_name in model.state_dict().keys():
            param_1 = model.state_dict()[param_name]
            param_2 = new_model.state_dict()[param_name]
            self.assertEqual(param_1.shape, param_2.shape)

        with torch.no_grad():
            output_1 = model(**inputs_dict)

            if isinstance(output_1, dict):
893
                output_1 = output_1.to_tuple()[0]
894
895
896
897

            output_2 = new_model(**inputs_dict)

            if isinstance(output_2, dict):
898
                output_2 = output_2.to_tuple()[0]
899
900
901

        self.assertEqual(output_1.shape, output_2.shape)

Arsalan's avatar
Arsalan committed
902
    @require_torch_accelerator_with_training
903
904
905
906
907
908
909
910
911
    def test_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        output = model(**inputs_dict)

        if isinstance(output, dict):
912
            output = output.to_tuple()[0]
913

914
915
        input_tensor = inputs_dict[self.main_input_name]
        noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
916
917
918
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()

Arsalan's avatar
Arsalan committed
919
    @require_torch_accelerator_with_training
920
921
922
923
924
925
    def test_ema_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
926
        ema_model = EMAModel(model.parameters())
927
928
929
930

        output = model(**inputs_dict)

        if isinstance(output, dict):
931
            output = output.to_tuple()[0]
932

933
934
        input_tensor = inputs_dict[self.main_input_name]
        noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
935
936
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
937
        ema_model.step(model.parameters())
938

939
    def test_outputs_equivalence(self):
940
        def set_nan_tensor_to_zero(t):
941
942
943
944
945
            # Temporary fallback until `aten::_index_put_impl_` is implemented in mps
            # Track progress in https://github.com/pytorch/pytorch/issues/77764
            device = t.device
            if device.type == "mps":
                t = t.to("cpu")
946
            t[t != t] = 0
947
            return t.to(device)
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970

        def recursive_check(tuple_object, dict_object):
            if isinstance(tuple_object, (List, Tuple)):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif isinstance(tuple_object, Dict):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif tuple_object is None:
                return
            else:
                self.assertTrue(
                    torch.allclose(
                        set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                    ),
                    msg=(
                        "Tuple and dict output are not equal. Difference:"
                        f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                        f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                        f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                    ),
                )

Will Berman's avatar
Will Berman committed
971
972
973
974
975
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
976
977
978
979

        model.to(torch_device)
        model.eval()

980
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
981
982
983
984
985
986
            if self.forward_requires_fresh_args:
                outputs_dict = model(**self.inputs_dict(0))
                outputs_tuple = model(**self.inputs_dict(0), return_dict=False)
            else:
                outputs_dict = model(**inputs_dict)
                outputs_tuple = model(**inputs_dict, return_dict=False)
987
988

        recursive_check(outputs_tuple, outputs_dict)
989

Arsalan's avatar
Arsalan committed
990
    @require_torch_accelerator_with_training
991
    def test_enable_disable_gradient_checkpointing(self):
992
        # Skip test if model does not support gradient checkpointing
993
        if not self.model_class._supports_gradient_checkpointing:
994
            pytest.skip("Gradient checkpointing is not supported.")
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008

        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        # at init model should have gradient checkpointing disabled
        model = self.model_class(**init_dict)
        self.assertFalse(model.is_gradient_checkpointing)

        # check enable works
        model.enable_gradient_checkpointing()
        self.assertTrue(model.is_gradient_checkpointing)

        # check disable works
        model.disable_gradient_checkpointing()
        self.assertFalse(model.is_gradient_checkpointing)
1009

1010
    @require_torch_accelerator_with_training
1011
    def test_effective_gradient_checkpointing(self, loss_tolerance=1e-5, param_grad_tol=5e-5, skip: set[str] = {}):
1012
        # Skip test if model does not support gradient checkpointing
1013
        if not self.model_class._supports_gradient_checkpointing:
1014
            pytest.skip("Gradient checkpointing is not supported.")
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        inputs_dict_copy = copy.deepcopy(inputs_dict)
        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)

        assert not model.is_gradient_checkpointing and model.training

        out = model(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model.zero_grad()

        labels = torch.randn_like(out)
        loss = (out - labels).mean()
        loss.backward()

        # re-instantiate the model now enabling gradient checkpointing
        torch.manual_seed(0)
        model_2 = self.model_class(**init_dict)
        # clone model
        model_2.load_state_dict(model.state_dict())
        model_2.to(torch_device)
        model_2.enable_gradient_checkpointing()

        assert model_2.is_gradient_checkpointing and model_2.training

        out_2 = model_2(**inputs_dict_copy).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model_2.zero_grad()
        loss_2 = (out_2 - labels).mean()
        loss_2.backward()

        # compare the output and parameters gradients
        self.assertTrue((loss - loss_2).abs() < loss_tolerance)
        named_params = dict(model.named_parameters())
        named_params_2 = dict(model_2.named_parameters())

        for name, param in named_params.items():
            if "post_quant_conv" in name:
                continue
1059
1060
            if name in skip:
                continue
1061
1062
1063
1064
            # TODO(aryan): remove the below lines after looking into easyanimate transformer a little more
            # It currently errors out the gradient checkpointing test because the gradients for attn2.to_out is None
            if param.grad is None:
                continue
1065
1066
1067
1068
1069
1070
            self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=param_grad_tol))

    @unittest.skipIf(torch_device == "mps", "This test is not supported for MPS devices.")
    def test_gradient_checkpointing_is_applied(
        self, expected_set=None, attention_head_dim=None, num_attention_heads=None, block_out_channels=None
    ):
1071
        # Skip test if model does not support gradient checkpointing
1072
        if not self.model_class._supports_gradient_checkpointing:
1073
            pytest.skip("Gradient checkpointing is not supported.")
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087

        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        if attention_head_dim is not None:
            init_dict["attention_head_dim"] = attention_head_dim
        if num_attention_heads is not None:
            init_dict["num_attention_heads"] = num_attention_heads
        if block_out_channels is not None:
            init_dict["block_out_channels"] = block_out_channels

        model_class_copy = copy.copy(self.model_class)
        model = model_class_copy(**init_dict)
        model.enable_gradient_checkpointing()

1088
1089
1090
1091
1092
1093
        modules_with_gc_enabled = {}
        for submodule in model.modules():
            if hasattr(submodule, "gradient_checkpointing"):
                self.assertTrue(submodule.gradient_checkpointing)
                modules_with_gc_enabled[submodule.__class__.__name__] = True

1094
1095
1096
        assert set(modules_with_gc_enabled.keys()) == expected_set
        assert all(modules_with_gc_enabled.values()), "All modules should be enabled"

1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
    def test_deprecated_kwargs(self):
        has_kwarg_in_model_class = "kwargs" in inspect.signature(self.model_class.__init__).parameters
        has_deprecated_kwarg = len(self.model_class._deprecated_kwargs) > 0

        if has_kwarg_in_model_class and not has_deprecated_kwarg:
            raise ValueError(
                f"{self.model_class} has `**kwargs` in its __init__ method but has not defined any deprecated kwargs"
                " under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if there are"
                " no deprecated arguments or add the deprecated argument with `_deprecated_kwargs ="
                " [<deprecated_argument>]`"
            )

        if not has_kwarg_in_model_class and has_deprecated_kwarg:
            raise ValueError(
                f"{self.model_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated kwargs"
                " under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs` argument to"
                f" {self.model_class}.__init__ if there are deprecated arguments or remove the deprecated argument"
                " from `_deprecated_kwargs = [<deprecated_argument>]`"
            )
1116

1117
    @parameterized.expand([(4, 4, True), (4, 8, False), (8, 4, False)])
1118
1119
    @torch.no_grad()
    @unittest.skipIf(not is_peft_available(), "Only with PEFT")
1120
    def test_save_load_lora_adapter(self, rank, lora_alpha, use_dora=False):
1121
1122
1123
1124
1125
1126
1127
1128
1129
        from peft import LoraConfig
        from peft.utils import get_peft_model_state_dict

        from diffusers.loaders.peft import PeftAdapterMixin

        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)

        if not issubclass(model.__class__, PeftAdapterMixin):
1130
            pytest.skip(f"PEFT is not supported for this model ({model.__class__.__name__}).")
1131
1132
1133
1134
1135

        torch.manual_seed(0)
        output_no_lora = model(**inputs_dict, return_dict=False)[0]

        denoiser_lora_config = LoraConfig(
1136
1137
            r=rank,
            lora_alpha=lora_alpha,
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
            target_modules=["to_q", "to_k", "to_v", "to_out.0"],
            init_lora_weights=False,
            use_dora=use_dora,
        )
        model.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

        torch.manual_seed(0)
        outputs_with_lora = model(**inputs_dict, return_dict=False)[0]

        self.assertFalse(torch.allclose(output_no_lora, outputs_with_lora, atol=1e-4, rtol=1e-4))

        with tempfile.TemporaryDirectory() as tmpdir:
            model.save_lora_adapter(tmpdir)
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))

            state_dict_loaded = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))

            model.unload_lora()
            self.assertFalse(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

            model.load_lora_adapter(tmpdir, prefix=None, use_safetensors=True)
            state_dict_retrieved = get_peft_model_state_dict(model, adapter_name="default_0")

            for k in state_dict_loaded:
                loaded_v = state_dict_loaded[k]
                retrieved_v = state_dict_retrieved[k].to(loaded_v.device)
                self.assertTrue(torch.allclose(loaded_v, retrieved_v))

            self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

        torch.manual_seed(0)
        outputs_with_lora_2 = model(**inputs_dict, return_dict=False)[0]

        self.assertFalse(torch.allclose(output_no_lora, outputs_with_lora_2, atol=1e-4, rtol=1e-4))
        self.assertTrue(torch.allclose(outputs_with_lora, outputs_with_lora_2, atol=1e-4, rtol=1e-4))

    @unittest.skipIf(not is_peft_available(), "Only with PEFT")
1176
    def test_lora_wrong_adapter_name_raises_error(self):
1177
1178
1179
1180
1181
1182
1183
1184
        from peft import LoraConfig

        from diffusers.loaders.peft import PeftAdapterMixin

        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)

        if not issubclass(model.__class__, PeftAdapterMixin):
1185
            pytest.skip(f"PEFT is not supported for this model ({model.__class__.__name__}).")
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203

        denoiser_lora_config = LoraConfig(
            r=4,
            lora_alpha=4,
            target_modules=["to_q", "to_k", "to_v", "to_out.0"],
            init_lora_weights=False,
            use_dora=False,
        )
        model.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

        with tempfile.TemporaryDirectory() as tmpdir:
            wrong_name = "foo"
            with self.assertRaises(ValueError) as err_context:
                model.save_lora_adapter(tmpdir, adapter_name=wrong_name)

            self.assertTrue(f"Adapter name {wrong_name} not found in the model." in str(err_context.exception))

1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
    @parameterized.expand([(4, 4, True), (4, 8, False), (8, 4, False)])
    @torch.no_grad()
    @unittest.skipIf(not is_peft_available(), "Only with PEFT")
    def test_lora_adapter_metadata_is_loaded_correctly(self, rank, lora_alpha, use_dora):
        from peft import LoraConfig

        from diffusers.loaders.peft import PeftAdapterMixin

        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)

        if not issubclass(model.__class__, PeftAdapterMixin):
1216
            pytest.skip(f"PEFT is not supported for this model ({model.__class__.__name__}).")
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252

        denoiser_lora_config = LoraConfig(
            r=rank,
            lora_alpha=lora_alpha,
            target_modules=["to_q", "to_k", "to_v", "to_out.0"],
            init_lora_weights=False,
            use_dora=use_dora,
        )
        model.add_adapter(denoiser_lora_config)
        metadata = model.peft_config["default"].to_dict()
        self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

        with tempfile.TemporaryDirectory() as tmpdir:
            model.save_lora_adapter(tmpdir)
            model_file = os.path.join(tmpdir, "pytorch_lora_weights.safetensors")
            self.assertTrue(os.path.isfile(model_file))

            model.unload_lora()
            self.assertFalse(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

            model.load_lora_adapter(tmpdir, prefix=None, use_safetensors=True)
            parsed_metadata = model.peft_config["default_0"].to_dict()
            check_if_dicts_are_equal(metadata, parsed_metadata)

    @torch.no_grad()
    @unittest.skipIf(not is_peft_available(), "Only with PEFT")
    def test_lora_adapter_wrong_metadata_raises_error(self):
        from peft import LoraConfig

        from diffusers.loaders.lora_base import LORA_ADAPTER_METADATA_KEY
        from diffusers.loaders.peft import PeftAdapterMixin

        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)

        if not issubclass(model.__class__, PeftAdapterMixin):
1253
            pytest.skip(f"PEFT is not supported for this model ({model.__class__.__name__}).")
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287

        denoiser_lora_config = LoraConfig(
            r=4,
            lora_alpha=4,
            target_modules=["to_q", "to_k", "to_v", "to_out.0"],
            init_lora_weights=False,
            use_dora=False,
        )
        model.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

        with tempfile.TemporaryDirectory() as tmpdir:
            model.save_lora_adapter(tmpdir)
            model_file = os.path.join(tmpdir, "pytorch_lora_weights.safetensors")
            self.assertTrue(os.path.isfile(model_file))

            # Perturb the metadata in the state dict.
            loaded_state_dict = safetensors.torch.load_file(model_file)
            metadata = {"format": "pt"}
            lora_adapter_metadata = denoiser_lora_config.to_dict()
            lora_adapter_metadata.update({"foo": 1, "bar": 2})
            for key, value in lora_adapter_metadata.items():
                if isinstance(value, set):
                    lora_adapter_metadata[key] = list(value)
            metadata[LORA_ADAPTER_METADATA_KEY] = json.dumps(lora_adapter_metadata, indent=2, sort_keys=True)
            safetensors.torch.save_file(loaded_state_dict, model_file, metadata=metadata)

            model.unload_lora()
            self.assertFalse(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

            with self.assertRaises(TypeError) as err_context:
                model.load_lora_adapter(tmpdir, prefix=None, use_safetensors=True)
            self.assertTrue("`LoraConfig` class could not be instantiated" in str(err_context.exception))

1288
    @require_torch_accelerator
1289
    def test_cpu_offload(self):
1290
1291
        if self.model_class._no_split_modules is None:
            pytest.skip("Test not supported for this model as `_no_split_modules` is not set.")
1292
1293
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1294

1295
1296
1297
1298
1299
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

YiYi Xu's avatar
YiYi Xu committed
1300
        model_size = compute_module_sizes(model)[""]
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
        # We test several splits of sizes to make sure it works.
        max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir)

            for max_size in max_gpu_sizes:
                max_memory = {0: max_size, "cpu": model_size * 2}
                new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                # Making sure part of the model will actually end up offloaded
                self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
                torch.manual_seed(0)
                new_output = new_model(**inputs_dict)

                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1318
    @require_torch_accelerator
1319
    def test_disk_offload_without_safetensors(self):
1320
1321
        if self.model_class._no_split_modules is None:
            pytest.skip("Test not supported for this model as `_no_split_modules` is not set.")
1322
1323
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1324

1325
1326
1327
1328
1329
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

YiYi Xu's avatar
YiYi Xu committed
1330
        model_size = compute_module_sizes(model)[""]
1331
1332
1333
1334
        max_size = int(self.model_split_percents[0] * model_size)
        # Force disk offload by setting very small CPU memory
        max_memory = {0: max_size, "cpu": int(0.1 * max_size)}

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir, safe_serialization=False)
            with self.assertRaises(ValueError):
                # This errors out because it's missing an offload folder
                new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

            new_model = self.model_class.from_pretrained(
                tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
            )

            self.check_device_map_is_respected(new_model, new_model.hf_device_map)
            torch.manual_seed(0)
            new_output = new_model(**inputs_dict)

            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1351
    @require_torch_accelerator
1352
    def test_disk_offload_with_safetensors(self):
1353
1354
        if self.model_class._no_split_modules is None:
            pytest.skip("Test not supported for this model as `_no_split_modules` is not set.")
1355
1356
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1357

1358
1359
1360
1361
1362
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

YiYi Xu's avatar
YiYi Xu committed
1363
        model_size = compute_module_sizes(model)[""]
1364
1365
1366
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir)

1367
            max_size = int(self.model_split_percents[0] * model_size)
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
            max_memory = {0: max_size, "cpu": max_size}
            new_model = self.model_class.from_pretrained(
                tmp_dir, device_map="auto", offload_folder=tmp_dir, max_memory=max_memory
            )

            self.check_device_map_is_respected(new_model, new_model.hf_device_map)
            torch.manual_seed(0)
            new_output = new_model(**inputs_dict)

            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1379
    @require_torch_multi_accelerator
1380
    def test_model_parallelism(self):
1381
1382
        if self.model_class._no_split_modules is None:
            pytest.skip("Test not supported for this model as `_no_split_modules` is not set.")
1383
1384
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1385

1386
1387
1388
1389
1390
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

YiYi Xu's avatar
YiYi Xu committed
1391
        model_size = compute_module_sizes(model)[""]
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
        # We test several splits of sizes to make sure it works.
        max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir)

            for max_size in max_gpu_sizes:
                max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
                new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                # Making sure part of the model will actually end up offloaded
                self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)

                torch.manual_seed(0)
                new_output = new_model(**inputs_dict)

                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1410
    @require_torch_accelerator
1411
    def test_sharded_checkpoints(self):
1412
        torch.manual_seed(0)
1413
1414
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1415
1416
1417
1418
        model = model.to(torch_device)

        base_output = model(**inputs_dict)

1419
        model_size = compute_module_persistent_sizes(model)[""]
1420
1421
1422
1423
1424
1425
1426
1427
        max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB")
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))

            # Now check if the right number of shards exists. First, let's get the number of shards.
            # Since this number can be dependent on the model being tested, it's important that we calculate it
            # instead of hardcoding it.
1428
            expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))
1429
1430
1431
            actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
            self.assertTrue(actual_num_shards == expected_num_shards)

1432
            new_model = self.model_class.from_pretrained(tmp_dir).eval()
1433
            new_model = new_model.to(torch_device)
1434
1435

            torch.manual_seed(0)
1436
1437
            if "generator" in inputs_dict:
                _, inputs_dict = self.prepare_init_args_and_inputs_for_common()
1438
            new_output = new_model(**inputs_dict)
1439

1440
1441
            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1442
    @require_torch_accelerator
1443
1444
1445
1446
1447
1448
1449
1450
    def test_sharded_checkpoints_with_variant(self):
        torch.manual_seed(0)
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
        model = model.to(torch_device)

        base_output = model(**inputs_dict)

1451
        model_size = compute_module_persistent_sizes(model)[""]
1452
1453
1454
1455
1456
1457
1458
        max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
        variant = "fp16"
        with tempfile.TemporaryDirectory() as tmp_dir:
            # It doesn't matter if the actual model is in fp16 or not. Just adding the variant and
            # testing if loading works with the variant when the checkpoint is sharded should be
            # enough.
            model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB", variant=variant)
1459

1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
            index_filename = _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, index_filename)))

            # Now check if the right number of shards exists. First, let's get the number of shards.
            # Since this number can be dependent on the model being tested, it's important that we calculate it
            # instead of hardcoding it.
            expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, index_filename))
            actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
            self.assertTrue(actual_num_shards == expected_num_shards)

            new_model = self.model_class.from_pretrained(tmp_dir, variant=variant).eval()
            new_model = new_model.to(torch_device)

            torch.manual_seed(0)
            if "generator" in inputs_dict:
                _, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            new_output = new_model(**inputs_dict)

            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
    @require_torch_accelerator
    def test_sharded_checkpoints_with_parallel_loading(self):
        torch.manual_seed(0)
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
        model = model.to(torch_device)

        base_output = model(**inputs_dict)

        model_size = compute_module_persistent_sizes(model)[""]
        max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB")
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))

            # Now check if the right number of shards exists. First, let's get the number of shards.
            # Since this number can be dependent on the model being tested, it's important that we calculate it
            # instead of hardcoding it.
            expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))
            actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
            self.assertTrue(actual_num_shards == expected_num_shards)

            # Load with parallel loading
            os.environ["HF_ENABLE_PARALLEL_LOADING"] = "yes"
            new_model = self.model_class.from_pretrained(tmp_dir).eval()
            new_model = new_model.to(torch_device)

            torch.manual_seed(0)
            if "generator" in inputs_dict:
                _, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            new_output = new_model(**inputs_dict)
            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
            # set to no.
            os.environ["HF_ENABLE_PARALLEL_LOADING"] = "no"

1515
    @require_torch_accelerator
1516
    def test_sharded_checkpoints_device_map(self):
1517
1518
        if self.model_class._no_split_modules is None:
            pytest.skip("Test not supported for this model as `_no_split_modules` is not set.")
1519
1520
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1521
1522
1523
1524
1525
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

1526
        model_size = compute_module_persistent_sizes(model)[""]
1527
1528
1529
1530
1531
1532
1533
1534
        max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB")
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))

            # Now check if the right number of shards exists. First, let's get the number of shards.
            # Since this number can be dependent on the model being tested, it's important that we calculate it
            # instead of hardcoding it.
1535
            expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))
1536
1537
1538
1539
1540
1541
            actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
            self.assertTrue(actual_num_shards == expected_num_shards)

            new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto")

            torch.manual_seed(0)
1542
1543
            if "generator" in inputs_dict:
                _, inputs_dict = self.prepare_init_args_and_inputs_for_common()
1544
1545
1546
            new_output = new_model(**inputs_dict)
            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1547
1548
1549
1550
1551
1552
1553
1554
    # This test is okay without a GPU because we're not running any execution. We're just serializing
    # and check if the resultant files are following an expected format.
    def test_variant_sharded_ckpt_right_format(self):
        for use_safe in [True, False]:
            extension = ".safetensors" if use_safe else ".bin"
            config, _ = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**config).eval()

1555
            model_size = compute_module_persistent_sizes(model)[""]
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
            max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
            variant = "fp16"
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(
                    tmp_dir, variant=variant, max_shard_size=f"{max_shard_size}KB", safe_serialization=use_safe
                )
                index_variant = _add_variant(SAFE_WEIGHTS_INDEX_NAME if use_safe else WEIGHTS_INDEX_NAME, variant)
                self.assertTrue(os.path.exists(os.path.join(tmp_dir, index_variant)))

                # Now check if the right number of shards exists. First, let's get the number of shards.
                # Since this number can be dependent on the model being tested, it's important that we calculate it
                # instead of hardcoding it.
                expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, index_variant))
                actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(extension)])
                self.assertTrue(actual_num_shards == expected_num_shards)

                # Check if the variant is present as a substring in the checkpoints.
                shard_files = [
                    file
                    for file in os.listdir(tmp_dir)
                    if file.endswith(extension) or ("index" in file and "json" in file)
                ]
                assert all(variant in f for f in shard_files)

                # Check if the sharded checkpoints were serialized in the right format.
                shard_files = [file for file in os.listdir(tmp_dir) if file.endswith(extension)]
                # Example: diffusion_pytorch_model.fp16-00001-of-00002.safetensors
                assert all(f.split(".")[1].split("-")[0] == variant for f in shard_files)

1585
1586
1587
    def test_layerwise_casting_training(self):
        def test_fn(storage_dtype, compute_dtype):
            if torch.device(torch_device).type == "cpu" and compute_dtype == torch.bfloat16:
1588
                pytest.skip("Skipping test because CPU doesn't go well with bfloat16.")
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

            model = self.model_class(**init_dict)
            model = model.to(torch_device, dtype=compute_dtype)
            model.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)
            model.train()

            inputs_dict = cast_maybe_tensor_dtype(inputs_dict, torch.float32, compute_dtype)
            with torch.amp.autocast(device_type=torch.device(torch_device).type):
                output = model(**inputs_dict)

                if isinstance(output, dict):
                    output = output.to_tuple()[0]

                input_tensor = inputs_dict[self.main_input_name]
                noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
                noise = cast_maybe_tensor_dtype(noise, torch.float32, compute_dtype)
                loss = torch.nn.functional.mse_loss(output, noise)

            loss.backward()

        test_fn(torch.float16, torch.float32)
        test_fn(torch.float8_e4m3fn, torch.float32)
        test_fn(torch.float8_e5m2, torch.float32)
        test_fn(torch.float8_e4m3fn, torch.bfloat16)

1615
    @torch.no_grad()
Aryan's avatar
Aryan committed
1616
    def test_layerwise_casting_inference(self):
1617
1618
        from diffusers.hooks._common import _GO_LC_SUPPORTED_PYTORCH_LAYERS
        from diffusers.hooks.layerwise_casting import DEFAULT_SKIP_MODULES_PATTERN
Aryan's avatar
Aryan committed
1619
1620
1621

        torch.manual_seed(0)
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
1622
1623
1624
1625
        model = self.model_class(**config)
        model.eval()
        model.to(torch_device)
        base_slice = model(**inputs_dict)[0].detach().flatten().cpu().numpy()
Aryan's avatar
Aryan committed
1626
1627
1628
1629
1630
1631

        def check_linear_dtype(module, storage_dtype, compute_dtype):
            patterns_to_check = DEFAULT_SKIP_MODULES_PATTERN
            if getattr(module, "_skip_layerwise_casting_patterns", None) is not None:
                patterns_to_check += tuple(module._skip_layerwise_casting_patterns)
            for name, submodule in module.named_modules():
1632
                if not isinstance(submodule, _GO_LC_SUPPORTED_PYTORCH_LAYERS):
Aryan's avatar
Aryan committed
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
                    continue
                dtype_to_check = storage_dtype
                if any(re.search(pattern, name) for pattern in patterns_to_check):
                    dtype_to_check = compute_dtype
                if getattr(submodule, "weight", None) is not None:
                    self.assertEqual(submodule.weight.dtype, dtype_to_check)
                if getattr(submodule, "bias", None) is not None:
                    self.assertEqual(submodule.bias.dtype, dtype_to_check)

        def test_layerwise_casting(storage_dtype, compute_dtype):
            torch.manual_seed(0)
            config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            inputs_dict = cast_maybe_tensor_dtype(inputs_dict, torch.float32, compute_dtype)
            model = self.model_class(**config).eval()
            model = model.to(torch_device, dtype=compute_dtype)
            model.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)

            check_linear_dtype(model, storage_dtype, compute_dtype)
            output = model(**inputs_dict)[0].float().flatten().detach().cpu().numpy()

            # The precision test is not very important for fast tests. In most cases, the outputs will not be the same.
            # We just want to make sure that the layerwise casting is working as expected.
            self.assertTrue(numpy_cosine_similarity_distance(base_slice, output) < 1.0)

        test_layerwise_casting(torch.float16, torch.float32)
        test_layerwise_casting(torch.float8_e4m3fn, torch.float32)
        test_layerwise_casting(torch.float8_e5m2, torch.float32)
        test_layerwise_casting(torch.float8_e4m3fn, torch.bfloat16)

1662
    @require_torch_accelerator
1663
    @torch.no_grad()
Aryan's avatar
Aryan committed
1664
1665
    def test_layerwise_casting_memory(self):
        MB_TOLERANCE = 0.2
1666
        LEAST_COMPUTE_CAPABILITY = 8.0
Aryan's avatar
Aryan committed
1667
1668
1669

        def reset_memory_stats():
            gc.collect()
1670
1671
1672
            backend_synchronize(torch_device)
            backend_empty_cache(torch_device)
            backend_reset_peak_memory_stats(torch_device)
Aryan's avatar
Aryan committed
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684

        def get_memory_usage(storage_dtype, compute_dtype):
            torch.manual_seed(0)
            config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            inputs_dict = cast_maybe_tensor_dtype(inputs_dict, torch.float32, compute_dtype)
            model = self.model_class(**config).eval()
            model = model.to(torch_device, dtype=compute_dtype)
            model.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)

            reset_memory_stats()
            model(**inputs_dict)
            model_memory_footprint = model.get_memory_footprint()
1685
            peak_inference_memory_allocated_mb = backend_max_memory_allocated(torch_device) / 1024**2
Aryan's avatar
Aryan committed
1686
1687
1688
1689
1690
1691
1692
1693
1694

            return model_memory_footprint, peak_inference_memory_allocated_mb

        fp32_memory_footprint, fp32_max_memory = get_memory_usage(torch.float32, torch.float32)
        fp8_e4m3_fp32_memory_footprint, fp8_e4m3_fp32_max_memory = get_memory_usage(torch.float8_e4m3fn, torch.float32)
        fp8_e4m3_bf16_memory_footprint, fp8_e4m3_bf16_max_memory = get_memory_usage(
            torch.float8_e4m3fn, torch.bfloat16
        )

1695
        compute_capability = get_torch_cuda_device_capability() if torch_device == "cuda" else None
Aryan's avatar
Aryan committed
1696
        self.assertTrue(fp8_e4m3_bf16_memory_footprint < fp8_e4m3_fp32_memory_footprint < fp32_memory_footprint)
1697
1698
1699
1700
        # NOTE: the following assertion would fail on our CI (running Tesla T4) due to bf16 using more memory than fp32.
        # On other devices, such as DGX (Ampere) and Audace (Ada), the test passes. So, we conditionally check it.
        if compute_capability and compute_capability >= LEAST_COMPUTE_CAPABILITY:
            self.assertTrue(fp8_e4m3_bf16_max_memory < fp8_e4m3_fp32_max_memory)
Aryan's avatar
Aryan committed
1701
1702
1703
1704
1705
1706
1707
1708
        # On this dummy test case with a small model, sometimes fp8_e4m3_fp32 max memory usage is higher than fp32 by a few
        # bytes. This only happens for some models, so we allow a small tolerance.
        # For any real model being tested, the order would be fp8_e4m3_bf16 < fp8_e4m3_fp32 < fp32.
        self.assertTrue(
            fp8_e4m3_fp32_max_memory < fp32_max_memory
            or abs(fp8_e4m3_fp32_max_memory - fp32_max_memory) < MB_TOLERANCE
        )

1709
    @parameterized.expand([False, True])
1710
    @require_torch_accelerator
1711
    def test_group_offloading(self, record_stream):
1712
1713
1714
        if not self.model_class._supports_group_offloading:
            pytest.skip("Model does not support group offloading.")

Aryan's avatar
Aryan committed
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        torch.manual_seed(0)

        @torch.no_grad()
        def run_forward(model):
            self.assertTrue(
                all(
                    module._diffusers_hook.get_hook("group_offloading") is not None
                    for module in model.modules()
                    if hasattr(module, "_diffusers_hook")
                )
            )
            model.eval()
            return model(**inputs_dict)[0]

        model = self.model_class(**init_dict)

        model.to(torch_device)
        output_without_group_offloading = run_forward(model)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1)
        output_with_group_offloading1 = run_forward(model)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, non_blocking=True)
        output_with_group_offloading2 = run_forward(model)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.enable_group_offload(torch_device, offload_type="leaf_level")
        output_with_group_offloading3 = run_forward(model)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
1752
1753
1754
        model.enable_group_offload(
            torch_device, offload_type="leaf_level", use_stream=True, record_stream=record_stream
        )
Aryan's avatar
Aryan committed
1755
1756
1757
1758
1759
1760
1761
        output_with_group_offloading4 = run_forward(model)

        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading1, atol=1e-5))
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading2, atol=1e-5))
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading3, atol=1e-5))
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading4, atol=1e-5))

1762
1763
1764
1765
    @parameterized.expand([(False, "block_level"), (True, "leaf_level")])
    @require_torch_accelerator
    @torch.no_grad()
    def test_group_offloading_with_layerwise_casting(self, record_stream, offload_type):
1766
1767
1768
        if not self.model_class._supports_group_offloading:
            pytest.skip("Model does not support group offloading.")

1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
        torch.manual_seed(0)
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)

        model.to(torch_device)
        model.eval()
        _ = model(**inputs_dict)[0]

        torch.manual_seed(0)
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        storage_dtype, compute_dtype = torch.float16, torch.float32
        inputs_dict = cast_maybe_tensor_dtype(inputs_dict, torch.float32, compute_dtype)
        model = self.model_class(**init_dict)
        model.eval()
        additional_kwargs = {} if offload_type == "leaf_level" else {"num_blocks_per_group": 1}
        model.enable_group_offload(
            torch_device, offload_type=offload_type, use_stream=True, record_stream=record_stream, **additional_kwargs
        )
        model.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)
        _ = model(**inputs_dict)[0]

1790
    @parameterized.expand([("block_level", False), ("leaf_level", True)])
1791
1792
    @require_torch_accelerator
    @torch.no_grad()
1793
1794
    @torch.inference_mode()
    def test_group_offloading_with_disk(self, offload_type, record_stream, atol=1e-5):
1795
1796
1797
        if not self.model_class._supports_group_offloading:
            pytest.skip("Model does not support group offloading.")

1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
        def _has_generator_arg(model):
            sig = inspect.signature(model.forward)
            params = sig.parameters
            return "generator" in params

        def _run_forward(model, inputs_dict):
            accepts_generator = _has_generator_arg(model)
            if accepts_generator:
                inputs_dict["generator"] = torch.manual_seed(0)
            torch.manual_seed(0)
            return model(**inputs_dict)[0]

        if self.__class__.__name__ == "AutoencoderKLCosmosTests" and offload_type == "leaf_level":
            pytest.skip("With `leaf_type` as the offloading type, it fails. Needs investigation.")

1813
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
1814
        torch.manual_seed(0)
1815
        model = self.model_class(**init_dict)
1816

1817
        model.eval()
1818
1819
1820
1821
1822
1823
1824
1825
1826
        model.to(torch_device)
        output_without_group_offloading = _run_forward(model, inputs_dict)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.eval()

        num_blocks_per_group = None if offload_type == "leaf_level" else 1
        additional_kwargs = {} if offload_type == "leaf_level" else {"num_blocks_per_group": num_blocks_per_group}
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
        with tempfile.TemporaryDirectory() as tmpdir:
            model.enable_group_offload(
                torch_device,
                offload_type=offload_type,
                offload_to_disk_path=tmpdir,
                use_stream=True,
                record_stream=record_stream,
                **additional_kwargs,
            )
            has_safetensors = glob.glob(f"{tmpdir}/*.safetensors")
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
            self.assertTrue(has_safetensors, "No safetensors found in the directory.")

            # For "leaf-level", there is a prefetching hook which makes this check a bit non-deterministic
            # in nature. So, skip it.
            if offload_type != "leaf_level":
                is_correct, extra_files, missing_files = _check_safetensors_serialization(
                    module=model,
                    offload_to_disk_path=tmpdir,
                    offload_type=offload_type,
                    num_blocks_per_group=num_blocks_per_group,
                )
                if not is_correct:
                    if extra_files:
                        raise ValueError(f"Found extra files: {', '.join(extra_files)}")
                    elif missing_files:
                        raise ValueError(f"Following files are missing: {', '.join(missing_files)}")

            output_with_group_offloading = _run_forward(model, inputs_dict)
            self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading, atol=atol))
1856

hlky's avatar
hlky committed
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
    def test_auto_model(self, expected_max_diff=5e-5):
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)

        model = model.eval()
        model = model.to(torch_device)

        if hasattr(model, "set_default_attn_processor"):
            model.set_default_attn_processor()

        with tempfile.TemporaryDirectory(ignore_cleanup_errors=True) as tmpdirname:
            model.save_pretrained(tmpdirname, safe_serialization=False)

            auto_model = AutoModel.from_pretrained(tmpdirname)
            if hasattr(auto_model, "set_default_attn_processor"):
                auto_model.set_default_attn_processor()

        auto_model = auto_model.eval()
        auto_model = auto_model.to(torch_device)

        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output_original = model(**self.inputs_dict(0))
                output_auto = auto_model(**self.inputs_dict(0))
            else:
                output_original = model(**inputs_dict)
                output_auto = auto_model(**inputs_dict)

            if isinstance(output_original, dict):
                output_original = output_original.to_tuple()[0]
            if isinstance(output_auto, dict):
                output_auto = output_auto.to_tuple()[0]

        max_diff = (output_original - output_auto).abs().max().item()
        self.assertLessEqual(
            max_diff,
            expected_max_diff,
            f"AutoModel forward pass diff: {max_diff} exceeds threshold {expected_max_diff}",
        )

1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
    @parameterized.expand(
        [
            (-1, "You can't pass device_map as a negative int"),
            ("foo", "When passing device_map as a string, the value needs to be a device name"),
        ]
    )
    def test_wrong_device_map_raises_error(self, device_map, msg_substring):
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        with tempfile.TemporaryDirectory() as tmpdir:
            model.save_pretrained(tmpdir)
            with self.assertRaises(ValueError) as err_ctx:
                _ = self.model_class.from_pretrained(tmpdir, device_map=device_map)

        assert msg_substring in str(err_ctx.exception)

1916
1917
    @parameterized.expand([0, torch_device, torch.device(torch_device)])
    @require_torch_accelerator
1918
1919
1920
1921
1922
1923
1924
1925
    def test_passing_non_dict_device_map_works(self, device_map):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).eval()
        with tempfile.TemporaryDirectory() as tmpdir:
            model.save_pretrained(tmpdir)
            loaded_model = self.model_class.from_pretrained(tmpdir, device_map=device_map)
            _ = loaded_model(**inputs_dict)

1926
1927
    @parameterized.expand([("", torch_device), ("", torch.device(torch_device))])
    @require_torch_accelerator
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
    def test_passing_dict_device_map_works(self, name, device):
        # There are other valid dict-based `device_map` values too. It's best to refer to
        # the docs for those: https://huggingface.co/docs/accelerate/en/concept_guides/big_model_inference#the-devicemap.
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).eval()
        device_map = {name: device}
        with tempfile.TemporaryDirectory() as tmpdir:
            model.save_pretrained(tmpdir)
            loaded_model = self.model_class.from_pretrained(tmpdir, device_map=device_map)
            _ = loaded_model(**inputs_dict)

1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006

@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
    identifier = uuid.uuid4()
    repo_id = f"test-model-{identifier}"
    org_repo_id = f"valid_org/{repo_id}-org"

    def test_push_to_hub(self):
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        model.push_to_hub(self.repo_id, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.repo_id)

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(self.repo_id, token=TOKEN)

    def test_push_to_hub_in_organization(self):
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        model.push_to_hub(self.org_repo_id, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id)
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.org_repo_id)

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, push_to_hub=True, token=TOKEN, repo_id=self.org_repo_id)

        new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id)
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(self.org_repo_id, token=TOKEN)
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029

    @unittest.skipIf(
        not is_jinja_available(),
        reason="Model card tests cannot be performed without Jinja installed.",
    )
    def test_push_to_hub_library_name(self):
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        model.push_to_hub(self.repo_id, token=TOKEN)

        model_card = ModelCard.load(f"{USER}/{self.repo_id}", token=TOKEN).data
        assert model_card.library_name == "diffusers"

        # Reset repo
        delete_repo(self.repo_id, token=TOKEN)
2030
2031


2032
@require_torch_accelerator
2033
2034
2035
@require_torch_2
@is_torch_compile
@slow
2036
@require_torch_version_greater("2.7.1")
2037
class TorchCompileTesterMixin:
2038
2039
    different_shapes_for_compilation = None

2040
2041
2042
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
2043
        torch.compiler.reset()
2044
2045
2046
2047
2048
2049
        gc.collect()
        backend_empty_cache(torch_device)

    def tearDown(self):
        # clean up the VRAM after each test in case of CUDA runtime errors
        super().tearDown()
2050
        torch.compiler.reset()
2051
2052
2053
2054
2055
2056
2057
        gc.collect()
        backend_empty_cache(torch_device)

    def test_torch_compile_recompilation_and_graph_break(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict).to(torch_device)
2058
        model.eval()
2059
2060
        model = torch.compile(model, fullgraph=True)

2061
2062
2063
2064
2065
        with (
            torch._inductor.utils.fresh_inductor_cache(),
            torch._dynamo.config.patch(error_on_recompile=True),
            torch.no_grad(),
        ):
2066
2067
            _ = model(**inputs_dict)
            _ = model(**inputs_dict)
2068
2069
2070
2071
2072
2073
2074
2075

    def test_torch_compile_repeated_blocks(self):
        if self.model_class._repeated_blocks is None:
            pytest.skip("Skipping test as the model class doesn't have `_repeated_blocks` set.")

        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict).to(torch_device)
2076
        model.eval()
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
        model.compile_repeated_blocks(fullgraph=True)

        recompile_limit = 1
        if self.model_class.__name__ == "UNet2DConditionModel":
            recompile_limit = 2

        with (
            torch._inductor.utils.fresh_inductor_cache(),
            torch._dynamo.config.patch(recompile_limit=recompile_limit),
            torch.no_grad(),
        ):
            _ = model(**inputs_dict)
            _ = model(**inputs_dict)
2090

2091
    def test_compile_with_group_offloading(self):
2092
2093
2094
        if not self.model_class._supports_group_offloading:
            pytest.skip("Model does not support group offloading.")

2095
2096
2097
2098
2099
2100
2101
        torch._dynamo.config.cache_size_limit = 10000

        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.eval()
        # TODO: Can test for other group offloading kwargs later if needed.
        group_offload_kwargs = {
2102
            "onload_device": torch_device,
2103
2104
2105
2106
2107
2108
2109
2110
            "offload_device": "cpu",
            "offload_type": "block_level",
            "num_blocks_per_group": 1,
            "use_stream": True,
            "non_blocking": True,
        }
        model.enable_group_offload(**group_offload_kwargs)
        model.compile()
2111

2112
2113
2114
2115
        with torch.no_grad():
            _ = model(**inputs_dict)
            _ = model(**inputs_dict)

2116
2117
2118
2119
2120
2121
2122
    def test_compile_on_different_shapes(self):
        if self.different_shapes_for_compilation is None:
            pytest.skip(f"Skipping as `different_shapes_for_compilation` is not set for {self.__class__.__name__}.")
        torch.fx.experimental._config.use_duck_shape = False

        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)
2123
        model.eval()
2124
2125
2126
2127
2128
2129
2130
        model = torch.compile(model, fullgraph=True, dynamic=True)

        for height, width in self.different_shapes_for_compilation:
            with torch._dynamo.config.patch(error_on_recompile=True), torch.no_grad():
                inputs_dict = self.prepare_dummy_input(height=height, width=width)
                _ = model(**inputs_dict)

2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
    def test_compile_works_with_aot(self):
        from torch._inductor.package import load_package

        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict).to(torch_device)
        exported_model = torch.export.export(model, args=(), kwargs=inputs_dict)

        with tempfile.TemporaryDirectory() as tmpdir:
            package_path = os.path.join(tmpdir, f"{self.model_class.__name__}.pt2")
            _ = torch._inductor.aoti_compile_and_package(exported_model, package_path=package_path)
            assert os.path.exists(package_path)
            loaded_binary = load_package(package_path, run_single_threaded=True)

        model.forward = loaded_binary

        with torch.no_grad():
            _ = model(**inputs_dict)
            _ = model(**inputs_dict)

2151

2152
2153
2154
2155
2156
@slow
@require_torch_2
@require_torch_accelerator
@require_peft_backend
@require_peft_version_greater("0.14.0")
2157
@require_torch_version_greater("2.7.1")
2158
@is_torch_compile
2159
class LoraHotSwappingForModelTesterMixin:
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
    """Test that hotswapping does not result in recompilation on the model directly.

    We're not extensively testing the hotswapping functionality since it is implemented in PEFT and is extensively
    tested there. The goal of this test is specifically to ensure that hotswapping with diffusers does not require
    recompilation.

    See
    https://github.com/huggingface/peft/blob/eaab05e18d51fb4cce20a73c9acd82a00c013b83/tests/test_gpu_examples.py#L4252
    for the analogous PEFT test.

    """

2172
2173
    different_shapes_for_compilation = None

2174
2175
2176
2177
    def tearDown(self):
        # It is critical that the dynamo cache is reset for each test. Otherwise, if the test re-uses the same model,
        # there will be recompilation errors, as torch caches the model when run in the same process.
        super().tearDown()
2178
        torch.compiler.reset()
2179
2180
2181
        gc.collect()
        backend_empty_cache(torch_device)

2182
    def get_lora_config(self, lora_rank, lora_alpha, target_modules):
2183
2184
2185
        # from diffusers test_models_unet_2d_condition.py
        from peft import LoraConfig

2186
        lora_config = LoraConfig(
2187
2188
2189
2190
2191
2192
            r=lora_rank,
            lora_alpha=lora_alpha,
            target_modules=target_modules,
            init_lora_weights=False,
            use_dora=False,
        )
2193
        return lora_config
2194

2195
2196
2197
2198
2199
    def get_linear_module_name_other_than_attn(self, model):
        linear_names = [
            name for name, module in model.named_modules() if isinstance(module, nn.Linear) and "to_" not in name
        ]
        return linear_names[0]
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210

    def check_model_hotswap(self, do_compile, rank0, rank1, target_modules0, target_modules1=None):
        """
        Check that hotswapping works on a small unet.

        Steps:
        - create 2 LoRA adapters and save them
        - load the first adapter
        - hotswap the second adapter
        - check that the outputs are correct
        - optionally compile the model
2211
        - optionally check if recompilations happen on different shapes
2212
2213
2214
2215
2216

        Note: We set rank == alpha here because save_lora_adapter does not save the alpha scalings, thus the test would
        fail if the values are different. Since rank != alpha does not matter for the purpose of this test, this is
        fine.
        """
2217
        different_shapes = self.different_shapes_for_compilation
2218
        # create 2 adapters with different ranks and alphas
2219
2220
2221
2222
        torch.manual_seed(0)
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)

2223
2224
2225
2226
        alpha0, alpha1 = rank0, rank1
        max_rank = max([rank0, rank1])
        if target_modules1 is None:
            target_modules1 = target_modules0[:]
2227
2228
        lora_config0 = self.get_lora_config(rank0, alpha0, target_modules0)
        lora_config1 = self.get_lora_config(rank1, alpha1, target_modules1)
2229

2230
        model.add_adapter(lora_config0, adapter_name="adapter0")
2231
        with torch.inference_mode():
2232
2233
            torch.manual_seed(0)
            output0_before = model(**inputs_dict)["sample"]
2234

2235
2236
        model.add_adapter(lora_config1, adapter_name="adapter1")
        model.set_adapter("adapter1")
2237
        with torch.inference_mode():
2238
2239
            torch.manual_seed(0)
            output1_before = model(**inputs_dict)["sample"]
2240
2241
2242
2243
2244
2245
2246
2247
2248

        # sanity checks:
        tol = 5e-3
        assert not torch.allclose(output0_before, output1_before, atol=tol, rtol=tol)
        assert not (output0_before == 0).all()
        assert not (output1_before == 0).all()

        with tempfile.TemporaryDirectory() as tmp_dirname:
            # save the adapter checkpoints
2249
2250
2251
            model.save_lora_adapter(os.path.join(tmp_dirname, "0"), safe_serialization=True, adapter_name="adapter0")
            model.save_lora_adapter(os.path.join(tmp_dirname, "1"), safe_serialization=True, adapter_name="adapter1")
            del model
2252
2253

            # load the first adapter
2254
2255
2256
2257
            torch.manual_seed(0)
            init_dict, _ = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict).to(torch_device)

2258
2259
            if do_compile or (rank0 != rank1):
                # no need to prepare if the model is not compiled or if the ranks are identical
2260
                model.enable_lora_hotswap(target_rank=max_rank)
2261
2262
2263

            file_name0 = os.path.join(os.path.join(tmp_dirname, "0"), "pytorch_lora_weights.safetensors")
            file_name1 = os.path.join(os.path.join(tmp_dirname, "1"), "pytorch_lora_weights.safetensors")
2264
            model.load_lora_adapter(file_name0, safe_serialization=True, adapter_name="adapter0", prefix=None)
2265
2266

            if do_compile:
2267
                model = torch.compile(model, mode="reduce-overhead", dynamic=different_shapes is not None)
2268
2269

            with torch.inference_mode():
2270
2271
2272
2273
2274
2275
2276
2277
                # additionally check if dynamic compilation works.
                if different_shapes is not None:
                    for height, width in different_shapes:
                        new_inputs_dict = self.prepare_dummy_input(height=height, width=width)
                        _ = model(**new_inputs_dict)
                else:
                    output0_after = model(**inputs_dict)["sample"]
                    assert torch.allclose(output0_before, output0_after, atol=tol, rtol=tol)
2278
2279

            # hotswap the 2nd adapter
2280
            model.load_lora_adapter(file_name1, adapter_name="adapter0", hotswap=True, prefix=None)
2281
2282
2283

            # we need to call forward to potentially trigger recompilation
            with torch.inference_mode():
2284
2285
2286
2287
2288
2289
2290
                if different_shapes is not None:
                    for height, width in different_shapes:
                        new_inputs_dict = self.prepare_dummy_input(height=height, width=width)
                        _ = model(**new_inputs_dict)
                else:
                    output1_after = model(**inputs_dict)["sample"]
                    assert torch.allclose(output1_before, output1_after, atol=tol, rtol=tol)
2291
2292
2293
2294
2295

            # check error when not passing valid adapter name
            name = "does-not-exist"
            msg = f"Trying to hotswap LoRA adapter '{name}' but there is no existing adapter by that name"
            with self.assertRaisesRegex(ValueError, msg):
2296
                model.load_lora_adapter(file_name1, adapter_name=name, hotswap=True, prefix=None)
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_model(self, rank0, rank1):
        self.check_model_hotswap(
            do_compile=False, rank0=rank0, rank1=rank1, target_modules0=["to_q", "to_k", "to_v", "to_out.0"]
        )

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_compiled_model_linear(self, rank0, rank1):
        # It's important to add this context to raise an error on recompilation
        target_modules = ["to_q", "to_k", "to_v", "to_out.0"]
2308
        with torch._dynamo.config.patch(error_on_recompile=True), torch._inductor.utils.fresh_inductor_cache():
2309
2310
2311
2312
            self.check_model_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_compiled_model_conv2d(self, rank0, rank1):
2313
        if "unet" not in self.model_class.__name__.lower():
2314
            pytest.skip("Test only applies to UNet.")
2315

2316
2317
        # It's important to add this context to raise an error on recompilation
        target_modules = ["conv", "conv1", "conv2"]
2318
        with torch._dynamo.config.patch(error_on_recompile=True), torch._inductor.utils.fresh_inductor_cache():
2319
2320
2321
2322
            self.check_model_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_compiled_model_both_linear_and_conv2d(self, rank0, rank1):
2323
        if "unet" not in self.model_class.__name__.lower():
2324
            pytest.skip("Test only applies to UNet.")
2325

2326
2327
        # It's important to add this context to raise an error on recompilation
        target_modules = ["to_q", "conv"]
2328
        with torch._dynamo.config.patch(error_on_recompile=True), torch._inductor.utils.fresh_inductor_cache():
2329
2330
            self.check_model_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)

2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_compiled_model_both_linear_and_other(self, rank0, rank1):
        # In `test_hotswapping_compiled_model_both_linear_and_conv2d()`, we check if we can do hotswapping
        # with `torch.compile()` for models that have both linear and conv layers. In this test, we check
        # if we can target a linear layer from the transformer blocks and another linear layer from non-attention
        # block.
        target_modules = ["to_q"]
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)

        target_modules.append(self.get_linear_module_name_other_than_attn(model))
        del model

        # It's important to add this context to raise an error on recompilation
        with torch._dynamo.config.patch(error_on_recompile=True):
            self.check_model_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)

2348
2349
    def test_enable_lora_hotswap_called_after_adapter_added_raises(self):
        # ensure that enable_lora_hotswap is called before loading the first adapter
2350
2351
2352
2353
2354
        lora_config = self.get_lora_config(8, 8, target_modules=["to_q"])
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)
        model.add_adapter(lora_config)

2355
2356
        msg = re.escape("Call `enable_lora_hotswap` before loading the first adapter.")
        with self.assertRaisesRegex(RuntimeError, msg):
2357
            model.enable_lora_hotswap(target_rank=32)
2358
2359
2360
2361
2362

    def test_enable_lora_hotswap_called_after_adapter_added_warning(self):
        # ensure that enable_lora_hotswap is called before loading the first adapter
        from diffusers.loaders.peft import logger

2363
2364
2365
2366
        lora_config = self.get_lora_config(8, 8, target_modules=["to_q"])
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)
        model.add_adapter(lora_config)
2367
2368
2369
2370
        msg = (
            "It is recommended to call `enable_lora_hotswap` before loading the first adapter to avoid recompilation."
        )
        with self.assertLogs(logger=logger, level="WARNING") as cm:
2371
            model.enable_lora_hotswap(target_rank=32, check_compiled="warn")
2372
2373
2374
2375
            assert any(msg in log for log in cm.output)

    def test_enable_lora_hotswap_called_after_adapter_added_ignore(self):
        # check possibility to ignore the error/warning
2376
2377
2378
2379
        lora_config = self.get_lora_config(8, 8, target_modules=["to_q"])
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)
        model.add_adapter(lora_config)
2380
2381
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")  # Capture all warnings
2382
            model.enable_lora_hotswap(target_rank=32, check_compiled="warn")
2383
2384
2385
2386
            self.assertEqual(len(w), 0, f"Expected no warnings, but got: {[str(warn.message) for warn in w]}")

    def test_enable_lora_hotswap_wrong_check_compiled_argument_raises(self):
        # check that wrong argument value raises an error
2387
2388
2389
2390
        lora_config = self.get_lora_config(8, 8, target_modules=["to_q"])
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)
        model.add_adapter(lora_config)
2391
2392
        msg = re.escape("check_compiles should be one of 'error', 'warn', or 'ignore', got 'wrong-argument' instead.")
        with self.assertRaisesRegex(ValueError, msg):
2393
            model.enable_lora_hotswap(target_rank=32, check_compiled="wrong-argument")
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407

    def test_hotswap_second_adapter_targets_more_layers_raises(self):
        # check the error and log
        from diffusers.loaders.peft import logger

        # at the moment, PEFT requires the 2nd adapter to target the same or a subset of layers
        target_modules0 = ["to_q"]
        target_modules1 = ["to_q", "to_k"]
        with self.assertRaises(RuntimeError):  # peft raises RuntimeError
            with self.assertLogs(logger=logger, level="ERROR") as cm:
                self.check_model_hotswap(
                    do_compile=True, rank0=8, rank1=8, target_modules0=target_modules0, target_modules1=target_modules1
                )
                assert any("Hotswapping adapter0 was unsuccessful" in log for log in cm.output)
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])
    @require_torch_version_greater("2.7.1")
    def test_hotswapping_compile_on_different_shapes(self, rank0, rank1):
        different_shapes_for_compilation = self.different_shapes_for_compilation
        if different_shapes_for_compilation is None:
            pytest.skip(f"Skipping as `different_shapes_for_compilation` is not set for {self.__class__.__name__}.")
        # Specifying `use_duck_shape=False` instructs the compiler if it should use the same symbolic
        # variable to represent input sizes that are the same. For more details,
        # check out this [comment](https://github.com/huggingface/diffusers/pull/11327#discussion_r2047659790).
        torch.fx.experimental._config.use_duck_shape = False

        target_modules = ["to_q", "to_k", "to_v", "to_out.0"]
        with torch._dynamo.config.patch(error_on_recompile=True):
            self.check_model_hotswap(
                do_compile=True,
                rank0=rank0,
                rank1=rank1,
                target_modules0=target_modules,
            )