test_modeling_common.py 85.3 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import copy
Aryan's avatar
Aryan committed
17
import gc
18
import inspect
19
20
import json
import os
Aryan's avatar
Aryan committed
21
import re
22
import tempfile
23
import traceback
24
import unittest
25
import unittest.mock as mock
26
import uuid
27
import warnings
28
29
from collections import defaultdict
from typing import Dict, List, Optional, Tuple, Union
30
31

import numpy as np
32
import requests_mock
33
import torch
34
import torch.nn as nn
YiYi Xu's avatar
YiYi Xu committed
35
from accelerate.utils.modeling import _get_proper_dtype, compute_module_sizes, dtype_byte_size
36
from huggingface_hub import ModelCard, delete_repo, snapshot_download
37
from huggingface_hub.utils import is_jinja_available
38
from parameterized import parameterized
39
from requests.exceptions import HTTPError
40

41
from diffusers.models import SD3Transformer2DModel, UNet2DConditionModel
42
43
44
45
46
47
from diffusers.models.attention_processor import (
    AttnProcessor,
    AttnProcessor2_0,
    AttnProcessorNPU,
    XFormersAttnProcessor,
)
hlky's avatar
hlky committed
48
from diffusers.models.auto_model import AutoModel
49
from diffusers.training_utils import EMAModel
50
51
52
from diffusers.utils import (
    SAFE_WEIGHTS_INDEX_NAME,
    WEIGHTS_INDEX_NAME,
53
    is_peft_available,
54
55
56
57
    is_torch_npu_available,
    is_xformers_available,
    logging,
)
58
from diffusers.utils.hub_utils import _add_variant
59
60
from diffusers.utils.testing_utils import (
    CaptureLogger,
61
    backend_empty_cache,
62
63
64
    backend_max_memory_allocated,
    backend_reset_peak_memory_stats,
    backend_synchronize,
65
    get_python_version,
66
    is_torch_compile,
Aryan's avatar
Aryan committed
67
    numpy_cosine_similarity_distance,
68
69
    require_peft_backend,
    require_peft_version_greater,
70
    require_torch_2,
71
    require_torch_accelerator,
Arsalan's avatar
Arsalan committed
72
    require_torch_accelerator_with_training,
Sayak Paul's avatar
Sayak Paul committed
73
    require_torch_gpu,
74
    require_torch_multi_accelerator,
75
    run_test_in_subprocess,
76
    slow,
77
    torch_all_close,
Dhruv Nair's avatar
Dhruv Nair committed
78
    torch_device,
79
)
80
from diffusers.utils.torch_utils import get_torch_cuda_device_capability
81
82

from ..others.test_utils import TOKEN, USER, is_staging_test
83
84


85
86
87
88
if is_peft_available():
    from peft.tuners.tuners_utils import BaseTunerLayer


89
90
91
92
93
94
95
96
97
def caculate_expected_num_shards(index_map_path):
    with open(index_map_path) as f:
        weight_map_dict = json.load(f)["weight_map"]
    first_key = list(weight_map_dict.keys())[0]
    weight_loc = weight_map_dict[first_key]  # e.g., diffusion_pytorch_model-00001-of-00002.safetensors
    expected_num_shards = int(weight_loc.split("-")[-1].split(".")[0])
    return expected_num_shards


98
99
100
101
102
103
104
105
106
107
def check_if_lora_correctly_set(model) -> bool:
    """
    Checks if the LoRA layers are correctly set with peft
    """
    for module in model.modules():
        if isinstance(module, BaseTunerLayer):
            return True
    return False


108
109
110
111
112
113
114
115
116
117
118
# Will be run via run_test_in_subprocess
def _test_from_save_pretrained_dynamo(in_queue, out_queue, timeout):
    error = None
    try:
        init_dict, model_class = in_queue.get(timeout=timeout)

        model = model_class(**init_dict)
        model.to(torch_device)
        model = torch.compile(model)

        with tempfile.TemporaryDirectory() as tmpdirname:
119
            model.save_pretrained(tmpdirname, safe_serialization=False)
120
121
122
123
124
125
126
127
128
129
            new_model = model_class.from_pretrained(tmpdirname)
            new_model.to(torch_device)

        assert new_model.__class__ == model_class
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()
130
131


132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
def named_persistent_module_tensors(
    module: nn.Module,
    recurse: bool = False,
):
    """
    A helper function that gathers all the tensors (parameters + persistent buffers) of a given module.

    Args:
        module (`torch.nn.Module`):
            The module we want the tensors on.
        recurse (`bool`, *optional`, defaults to `False`):
            Whether or not to go look in every submodule or just return the direct parameters and buffers.
    """
    yield from module.named_parameters(recurse=recurse)

    for named_buffer in module.named_buffers(recurse=recurse):
        name, _ = named_buffer
        # Get parent by splitting on dots and traversing the model
        parent = module
        if "." in name:
            parent_name = name.rsplit(".", 1)[0]
            for part in parent_name.split("."):
                parent = getattr(parent, part)
            name = name.split(".")[-1]
        if name not in parent._non_persistent_buffers_set:
            yield named_buffer


def compute_module_persistent_sizes(
    model: nn.Module,
    dtype: Optional[Union[str, torch.device]] = None,
    special_dtypes: Optional[Dict[str, Union[str, torch.device]]] = None,
):
    """
    Compute the size of each submodule of a given model (parameters + persistent buffers).
    """
    if dtype is not None:
        dtype = _get_proper_dtype(dtype)
        dtype_size = dtype_byte_size(dtype)
    if special_dtypes is not None:
        special_dtypes = {key: _get_proper_dtype(dtyp) for key, dtyp in special_dtypes.items()}
        special_dtypes_size = {key: dtype_byte_size(dtyp) for key, dtyp in special_dtypes.items()}
    module_sizes = defaultdict(int)

    module_list = []

    module_list = named_persistent_module_tensors(model, recurse=True)

    for name, tensor in module_list:
        if special_dtypes is not None and name in special_dtypes:
            size = tensor.numel() * special_dtypes_size[name]
        elif dtype is None:
            size = tensor.numel() * dtype_byte_size(tensor.dtype)
        elif str(tensor.dtype).startswith(("torch.uint", "torch.int", "torch.bool")):
            # According to the code in set_module_tensor_to_device, these types won't be converted
            # so use their original size here
            size = tensor.numel() * dtype_byte_size(tensor.dtype)
        else:
            size = tensor.numel() * min(dtype_size, dtype_byte_size(tensor.dtype))
        name_parts = name.split(".")
        for idx in range(len(name_parts) + 1):
            module_sizes[".".join(name_parts[:idx])] += size

    return module_sizes


Aryan's avatar
Aryan committed
198
199
200
201
202
203
204
205
206
207
def cast_maybe_tensor_dtype(maybe_tensor, current_dtype, target_dtype):
    if torch.is_tensor(maybe_tensor):
        return maybe_tensor.to(target_dtype) if maybe_tensor.dtype == current_dtype else maybe_tensor
    if isinstance(maybe_tensor, dict):
        return {k: cast_maybe_tensor_dtype(v, current_dtype, target_dtype) for k, v in maybe_tensor.items()}
    if isinstance(maybe_tensor, list):
        return [cast_maybe_tensor_dtype(v, current_dtype, target_dtype) for v in maybe_tensor]
    return maybe_tensor


208
class ModelUtilsTest(unittest.TestCase):
209
210
211
    def tearDown(self):
        super().tearDown()

212
213
    def test_missing_key_loading_warning_message(self):
        with self.assertLogs("diffusers.models.modeling_utils", level="WARNING") as logs:
214
215
216
            UNet2DConditionModel.from_pretrained("hf-internal-testing/stable-diffusion-broken", subfolder="unet")

        # make sure that error message states what keys are missing
217
        assert "conv_out.bias" in " ".join(logs.output)
218

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    @parameterized.expand(
        [
            ("hf-internal-testing/tiny-stable-diffusion-pipe-variants-all-kinds", "unet", False),
            ("hf-internal-testing/tiny-stable-diffusion-pipe-variants-all-kinds", "unet", True),
            ("hf-internal-testing/tiny-sd-unet-with-sharded-ckpt", None, False),
            ("hf-internal-testing/tiny-sd-unet-with-sharded-ckpt", None, True),
        ]
    )
    def test_variant_sharded_ckpt_legacy_format_raises_warning(self, repo_id, subfolder, use_local):
        def load_model(path):
            kwargs = {"variant": "fp16"}
            if subfolder:
                kwargs["subfolder"] = subfolder
            return UNet2DConditionModel.from_pretrained(path, **kwargs)

        with self.assertWarns(FutureWarning) as warning:
            if use_local:
                with tempfile.TemporaryDirectory() as tmpdirname:
                    tmpdirname = snapshot_download(repo_id=repo_id)
                    _ = load_model(tmpdirname)
            else:
                _ = load_model(repo_id)

        warning_message = str(warning.warnings[0].message)
        self.assertIn("This serialization format is now deprecated to standardize the serialization", warning_message)

    # Local tests are already covered down below.
    @parameterized.expand(
        [
            ("hf-internal-testing/tiny-sd-unet-sharded-latest-format", None, "fp16"),
            ("hf-internal-testing/tiny-sd-unet-sharded-latest-format-subfolder", "unet", "fp16"),
            ("hf-internal-testing/tiny-sd-unet-sharded-no-variants", None, None),
            ("hf-internal-testing/tiny-sd-unet-sharded-no-variants-subfolder", "unet", None),
        ]
    )
    def test_variant_sharded_ckpt_loads_from_hub(self, repo_id, subfolder, variant=None):
        def load_model():
            kwargs = {}
            if variant:
                kwargs["variant"] = variant
            if subfolder:
                kwargs["subfolder"] = subfolder
            return UNet2DConditionModel.from_pretrained(repo_id, **kwargs)

        assert load_model()

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    def test_cached_files_are_used_when_no_internet(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = {}
        response_mock.raise_for_status.side_effect = HTTPError
        response_mock.json.return_value = {}

        # Download this model to make sure it's in the cache.
        orig_model = UNet2DConditionModel.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet"
        )

        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("requests.request", return_value=response_mock):
            # Download this model to make sure it's in the cache.
            model = UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", local_files_only=True
            )

        for p1, p2 in zip(orig_model.parameters(), model.parameters()):
            if p1.data.ne(p2.data).sum() > 0:
                assert False, "Parameters not the same!"

289
    @unittest.skip("Flaky behaviour on CI. Re-enable after migrating to new runners")
290
    @unittest.skipIf(torch_device == "mps", reason="Test not supported for MPS.")
291
    def test_one_request_upon_cached(self):
292
        use_safetensors = False
293
294
295
296

        with tempfile.TemporaryDirectory() as tmpdirname:
            with requests_mock.mock(real_http=True) as m:
                UNet2DConditionModel.from_pretrained(
297
298
299
300
                    "hf-internal-testing/tiny-stable-diffusion-torch",
                    subfolder="unet",
                    cache_dir=tmpdirname,
                    use_safetensors=use_safetensors,
301
302
303
                )

            download_requests = [r.method for r in m.request_history]
304
305
306
            assert download_requests.count("HEAD") == 3, (
                "3 HEAD requests one for config, one for model, and one for shard index file."
            )
307
308
309
310
            assert download_requests.count("GET") == 2, "2 GET requests one for config, one for model"

            with requests_mock.mock(real_http=True) as m:
                UNet2DConditionModel.from_pretrained(
311
312
313
314
                    "hf-internal-testing/tiny-stable-diffusion-torch",
                    subfolder="unet",
                    cache_dir=tmpdirname,
                    use_safetensors=use_safetensors,
315
316
317
                )

            cache_requests = [r.method for r in m.request_history]
318
319
320
            assert "HEAD" == cache_requests[0] and len(cache_requests) == 2, (
                "We should call only `model_info` to check for commit hash and  knowing if shard index is present."
            )
321

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
    def test_weight_overwrite(self):
        with tempfile.TemporaryDirectory() as tmpdirname, self.assertRaises(ValueError) as error_context:
            UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch",
                subfolder="unet",
                cache_dir=tmpdirname,
                in_channels=9,
            )

        # make sure that error message states what keys are missing
        assert "Cannot load" in str(error_context.exception)

        with tempfile.TemporaryDirectory() as tmpdirname:
            model = UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch",
                subfolder="unet",
                cache_dir=tmpdirname,
                in_channels=9,
                low_cpu_mem_usage=False,
                ignore_mismatched_sizes=True,
            )

        assert model.config.in_channels == 9

346
    @require_torch_accelerator
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
    def test_keep_modules_in_fp32(self):
        r"""
        A simple tests to check if the modules under `_keep_in_fp32_modules` are kept in fp32 when we load the model in fp16/bf16
        Also ensures if inference works.
        """
        fp32_modules = SD3Transformer2DModel._keep_in_fp32_modules

        for torch_dtype in [torch.bfloat16, torch.float16]:
            SD3Transformer2DModel._keep_in_fp32_modules = ["proj_out"]

            model = SD3Transformer2DModel.from_pretrained(
                "hf-internal-testing/tiny-sd3-pipe", subfolder="transformer", torch_dtype=torch_dtype
            ).to(torch_device)

            for name, module in model.named_modules():
                if isinstance(module, torch.nn.Linear):
                    if name in model._keep_in_fp32_modules:
                        self.assertTrue(module.weight.dtype == torch.float32)
                    else:
                        self.assertTrue(module.weight.dtype == torch_dtype)

        def get_dummy_inputs():
            batch_size = 2
            num_channels = 4
            height = width = embedding_dim = 32
            pooled_embedding_dim = embedding_dim * 2
            sequence_length = 154

            hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device)
            encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
            pooled_prompt_embeds = torch.randn((batch_size, pooled_embedding_dim)).to(torch_device)
            timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)

            return {
                "hidden_states": hidden_states,
                "encoder_hidden_states": encoder_hidden_states,
                "pooled_projections": pooled_prompt_embeds,
                "timestep": timestep,
            }

        # test if inference works.
        with torch.no_grad() and torch.amp.autocast(torch_device, dtype=torch_dtype):
            input_dict_for_transformer = get_dummy_inputs()
            model_inputs = {
                k: v.to(device=torch_device) for k, v in input_dict_for_transformer.items() if not isinstance(v, bool)
            }
            model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs})
            _ = model(**model_inputs)

        SD3Transformer2DModel._keep_in_fp32_modules = fp32_modules

398

399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
class UNetTesterMixin:
    def test_forward_with_norm_groups(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["norm_num_groups"] = 16
        init_dict["block_out_channels"] = (16, 32)

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.to_tuple()[0]

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")


421
class ModelTesterMixin:
422
423
    main_input_name = None  # overwrite in model specific tester class
    base_precision = 1e-3
Will Berman's avatar
Will Berman committed
424
    forward_requires_fresh_args = False
425
    model_split_percents = [0.5, 0.7, 0.9]
426
    uses_custom_attn_processor = False
427
428
429
430
431
432
433
434
435
436
437
438
439
440

    def check_device_map_is_respected(self, model, device_map):
        for param_name, param in model.named_parameters():
            # Find device in device_map
            while len(param_name) > 0 and param_name not in device_map:
                param_name = ".".join(param_name.split(".")[:-1])
            if param_name not in device_map:
                raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")

            param_device = device_map[param_name]
            if param_device in ["cpu", "disk"]:
                self.assertEqual(param.device, torch.device("meta"))
            else:
                self.assertEqual(param.device, torch.device(param_device))
441

442
    def test_from_save_pretrained(self, expected_max_diff=5e-5):
Will Berman's avatar
Will Berman committed
443
444
445
446
447
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
448

449
450
        if hasattr(model, "set_default_attn_processor"):
            model.set_default_attn_processor()
451
452
453
454
        model.to(torch_device)
        model.eval()

        with tempfile.TemporaryDirectory() as tmpdirname:
455
            model.save_pretrained(tmpdirname, safe_serialization=False)
456
            new_model = self.model_class.from_pretrained(tmpdirname)
457
458
            if hasattr(new_model, "set_default_attn_processor"):
                new_model.set_default_attn_processor()
459
460
461
            new_model.to(torch_device)

        with torch.no_grad():
Will Berman's avatar
Will Berman committed
462
463
464
465
466
            if self.forward_requires_fresh_args:
                image = model(**self.inputs_dict(0))
            else:
                image = model(**inputs_dict)

467
            if isinstance(image, dict):
468
                image = image.to_tuple()[0]
469

Will Berman's avatar
Will Berman committed
470
471
472
473
            if self.forward_requires_fresh_args:
                new_image = new_model(**self.inputs_dict(0))
            else:
                new_image = new_model(**inputs_dict)
474
475

            if isinstance(new_image, dict):
476
                new_image = new_image.to_tuple()[0]
477

478
479
        max_diff = (image - new_image).abs().max().item()
        self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
480

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
    def test_getattr_is_correct(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)

        # save some things to test
        model.dummy_attribute = 5
        model.register_to_config(test_attribute=5)

        logger = logging.get_logger("diffusers.models.modeling_utils")
        # 30 for warning
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            assert hasattr(model, "dummy_attribute")
            assert getattr(model, "dummy_attribute") == 5
            assert model.dummy_attribute == 5

        # no warning should be thrown
        assert cap_logger.out == ""

        logger = logging.get_logger("diffusers.models.modeling_utils")
        # 30 for warning
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            assert hasattr(model, "save_pretrained")
            fn = model.save_pretrained
            fn_1 = getattr(model, "save_pretrained")

            assert fn == fn_1
        # no warning should be thrown
        assert cap_logger.out == ""

        # warning should be thrown
        with self.assertWarns(FutureWarning):
            assert model.test_attribute == 5

        with self.assertWarns(FutureWarning):
            assert getattr(model, "test_attribute") == 5

        with self.assertRaises(AttributeError) as error:
            model.does_not_exist

        assert str(error.exception) == f"'{type(model).__name__}' object has no attribute 'does_not_exist'"

524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
    @unittest.skipIf(
        torch_device != "npu" or not is_torch_npu_available(),
        reason="torch npu flash attention is only available with NPU and `torch_npu` installed",
    )
    def test_set_torch_npu_flash_attn_processor_determinism(self):
        torch.use_deterministic_algorithms(False)
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
        model.to(torch_device)

        if not hasattr(model, "set_attn_processor"):
            # If not has `set_attn_processor`, skip test
            return

        model.set_default_attn_processor()
        assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output = model(**self.inputs_dict(0))[0]
            else:
                output = model(**inputs_dict)[0]

        model.enable_npu_flash_attention()
        assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output_2 = model(**self.inputs_dict(0))[0]
            else:
                output_2 = model(**inputs_dict)[0]

        model.set_attn_processor(AttnProcessorNPU())
        assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output_3 = model(**self.inputs_dict(0))[0]
            else:
                output_3 = model(**inputs_dict)[0]

        torch.use_deterministic_algorithms(True)

        assert torch.allclose(output, output_2, atol=self.base_precision)
        assert torch.allclose(output, output_3, atol=self.base_precision)
        assert torch.allclose(output_2, output_3, atol=self.base_precision)

Dhruv Nair's avatar
Dhruv Nair committed
571
572
573
574
575
576
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_set_xformers_attn_processor_for_determinism(self):
        torch.use_deterministic_algorithms(False)
Will Berman's avatar
Will Berman committed
577
578
579
580
581
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
Dhruv Nair's avatar
Dhruv Nair committed
582
583
584
585
        model.to(torch_device)

        if not hasattr(model, "set_attn_processor"):
            # If not has `set_attn_processor`, skip test
Dhruv Nair's avatar
Dhruv Nair committed
586
587
588
589
            return

        if not hasattr(model, "set_default_attn_processor"):
            # If not has `set_attn_processor`, skip test
Dhruv Nair's avatar
Dhruv Nair committed
590
591
592
593
594
            return

        model.set_default_attn_processor()
        assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
595
596
597
598
            if self.forward_requires_fresh_args:
                output = model(**self.inputs_dict(0))[0]
            else:
                output = model(**inputs_dict)[0]
Dhruv Nair's avatar
Dhruv Nair committed
599
600
601
602

        model.enable_xformers_memory_efficient_attention()
        assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
603
604
605
606
            if self.forward_requires_fresh_args:
                output_2 = model(**self.inputs_dict(0))[0]
            else:
                output_2 = model(**inputs_dict)[0]
Dhruv Nair's avatar
Dhruv Nair committed
607

608
609
610
        model.set_attn_processor(XFormersAttnProcessor())
        assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
611
612
613
614
            if self.forward_requires_fresh_args:
                output_3 = model(**self.inputs_dict(0))[0]
            else:
                output_3 = model(**inputs_dict)[0]
615
616
617

        torch.use_deterministic_algorithms(True)

Dhruv Nair's avatar
Dhruv Nair committed
618
        assert torch.allclose(output, output_2, atol=self.base_precision)
619
620
        assert torch.allclose(output, output_3, atol=self.base_precision)
        assert torch.allclose(output_2, output_3, atol=self.base_precision)
Dhruv Nair's avatar
Dhruv Nair committed
621

622
    @require_torch_accelerator
623
    def test_set_attn_processor_for_determinism(self):
624
625
626
        if self.uses_custom_attn_processor:
            return

627
        torch.use_deterministic_algorithms(False)
Will Berman's avatar
Will Berman committed
628
629
630
631
632
633
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)

634
635
636
637
638
639
640
641
        model.to(torch_device)

        if not hasattr(model, "set_attn_processor"):
            # If not has `set_attn_processor`, skip test
            return

        assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
642
643
644
645
            if self.forward_requires_fresh_args:
                output_1 = model(**self.inputs_dict(0))[0]
            else:
                output_1 = model(**inputs_dict)[0]
646
647
648
649

        model.set_default_attn_processor()
        assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
650
651
652
653
            if self.forward_requires_fresh_args:
                output_2 = model(**self.inputs_dict(0))[0]
            else:
                output_2 = model(**inputs_dict)[0]
654
655
656
657

        model.set_attn_processor(AttnProcessor2_0())
        assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
658
659
660
661
            if self.forward_requires_fresh_args:
                output_4 = model(**self.inputs_dict(0))[0]
            else:
                output_4 = model(**inputs_dict)[0]
662
663
664
665

        model.set_attn_processor(AttnProcessor())
        assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
666
667
668
669
            if self.forward_requires_fresh_args:
                output_5 = model(**self.inputs_dict(0))[0]
            else:
                output_5 = model(**inputs_dict)[0]
670
671
672
673
674
675
676
677

        torch.use_deterministic_algorithms(True)

        # make sure that outputs match
        assert torch.allclose(output_2, output_1, atol=self.base_precision)
        assert torch.allclose(output_2, output_4, atol=self.base_precision)
        assert torch.allclose(output_2, output_5, atol=self.base_precision)

678
    def test_from_save_pretrained_variant(self, expected_max_diff=5e-5):
Will Berman's avatar
Will Berman committed
679
680
681
682
683
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
684

685
686
        if hasattr(model, "set_default_attn_processor"):
            model.set_default_attn_processor()
687

688
689
690
691
        model.to(torch_device)
        model.eval()

        with tempfile.TemporaryDirectory() as tmpdirname:
692
            model.save_pretrained(tmpdirname, variant="fp16", safe_serialization=False)
693
            new_model = self.model_class.from_pretrained(tmpdirname, variant="fp16")
694
695
            if hasattr(new_model, "set_default_attn_processor"):
                new_model.set_default_attn_processor()
696
697
698
699
700
701
702
703
704
705
706

            # non-variant cannot be loaded
            with self.assertRaises(OSError) as error_context:
                self.model_class.from_pretrained(tmpdirname)

            # make sure that error message states what keys are missing
            assert "Error no file named diffusion_pytorch_model.bin found in directory" in str(error_context.exception)

            new_model.to(torch_device)

        with torch.no_grad():
Will Berman's avatar
Will Berman committed
707
708
709
710
            if self.forward_requires_fresh_args:
                image = model(**self.inputs_dict(0))
            else:
                image = model(**inputs_dict)
711
            if isinstance(image, dict):
712
                image = image.to_tuple()[0]
713

Will Berman's avatar
Will Berman committed
714
715
716
717
            if self.forward_requires_fresh_args:
                new_image = new_model(**self.inputs_dict(0))
            else:
                new_image = new_model(**inputs_dict)
718
719

            if isinstance(new_image, dict):
720
                new_image = new_image.to_tuple()[0]
721

722
723
        max_diff = (image - new_image).abs().max().item()
        self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
724

725
    @is_torch_compile
726
    @require_torch_2
727
728
729
730
    @unittest.skipIf(
        get_python_version == (3, 12),
        reason="Torch Dynamo isn't yet supported for Python 3.12.",
    )
731
    def test_from_save_pretrained_dynamo(self):
732
733
734
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        inputs = [init_dict, self.model_class]
        run_test_in_subprocess(test_case=self, target_func=_test_from_save_pretrained_dynamo, inputs=inputs)
735

736
737
738
739
740
741
742
743
744
745
746
747
    def test_from_save_pretrained_dtype(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        for dtype in [torch.float32, torch.float16, torch.bfloat16]:
            if torch_device == "mps" and dtype == torch.bfloat16:
                continue
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.to(dtype)
748
                model.save_pretrained(tmpdirname, safe_serialization=False)
749
                new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=True, torch_dtype=dtype)
750
                assert new_model.dtype == dtype
751
752
753
754
755
756
757
758
                if (
                    hasattr(self.model_class, "_keep_in_fp32_modules")
                    and self.model_class._keep_in_fp32_modules is None
                ):
                    new_model = self.model_class.from_pretrained(
                        tmpdirname, low_cpu_mem_usage=False, torch_dtype=dtype
                    )
                    assert new_model.dtype == dtype
759

760
    def test_determinism(self, expected_max_diff=1e-5):
Will Berman's avatar
Will Berman committed
761
762
763
764
765
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
766
767
        model.to(torch_device)
        model.eval()
768

769
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
770
771
772
773
            if self.forward_requires_fresh_args:
                first = model(**self.inputs_dict(0))
            else:
                first = model(**inputs_dict)
774
            if isinstance(first, dict):
775
                first = first.to_tuple()[0]
776

Will Berman's avatar
Will Berman committed
777
778
779
780
            if self.forward_requires_fresh_args:
                second = model(**self.inputs_dict(0))
            else:
                second = model(**inputs_dict)
781
            if isinstance(second, dict):
782
                second = second.to_tuple()[0]
783
784
785
786
787
788

        out_1 = first.cpu().numpy()
        out_2 = second.cpu().numpy()
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
789
        self.assertLessEqual(max_diff, expected_max_diff)
790

791
    def test_output(self, expected_output_shape=None):
792
793
794
795
796
797
798
799
800
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
801
                output = output.to_tuple()[0]
802
803

        self.assertIsNotNone(output)
804

805
806
        # input & output have to have the same shape
        input_tensor = inputs_dict[self.main_input_name]
807
808
809
810
811
812

        if expected_output_shape is None:
            expected_shape = input_tensor.shape
            self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
        else:
            self.assertEqual(output.shape, expected_output_shape, "Input and output shapes do not match")
813

814
    def test_model_from_pretrained(self):
815
816
817
818
819
820
821
822
823
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        # test if the model can be loaded from the config
        # and has all the expected shape
        with tempfile.TemporaryDirectory() as tmpdirname:
824
            model.save_pretrained(tmpdirname, safe_serialization=False)
825
            new_model = self.model_class.from_pretrained(tmpdirname)
826
827
828
            new_model.to(torch_device)
            new_model.eval()

829
        # check if all parameters shape are the same
830
831
832
833
834
835
836
837
838
        for param_name in model.state_dict().keys():
            param_1 = model.state_dict()[param_name]
            param_2 = new_model.state_dict()[param_name]
            self.assertEqual(param_1.shape, param_2.shape)

        with torch.no_grad():
            output_1 = model(**inputs_dict)

            if isinstance(output_1, dict):
839
                output_1 = output_1.to_tuple()[0]
840
841
842
843

            output_2 = new_model(**inputs_dict)

            if isinstance(output_2, dict):
844
                output_2 = output_2.to_tuple()[0]
845
846
847

        self.assertEqual(output_1.shape, output_2.shape)

Arsalan's avatar
Arsalan committed
848
    @require_torch_accelerator_with_training
849
850
851
852
853
854
855
856
857
    def test_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        output = model(**inputs_dict)

        if isinstance(output, dict):
858
            output = output.to_tuple()[0]
859

860
861
        input_tensor = inputs_dict[self.main_input_name]
        noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
862
863
864
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()

Arsalan's avatar
Arsalan committed
865
    @require_torch_accelerator_with_training
866
867
868
869
870
871
    def test_ema_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
872
        ema_model = EMAModel(model.parameters())
873
874
875
876

        output = model(**inputs_dict)

        if isinstance(output, dict):
877
            output = output.to_tuple()[0]
878

879
880
        input_tensor = inputs_dict[self.main_input_name]
        noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
881
882
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
883
        ema_model.step(model.parameters())
884

885
    def test_outputs_equivalence(self):
886
        def set_nan_tensor_to_zero(t):
887
888
889
890
891
            # Temporary fallback until `aten::_index_put_impl_` is implemented in mps
            # Track progress in https://github.com/pytorch/pytorch/issues/77764
            device = t.device
            if device.type == "mps":
                t = t.to("cpu")
892
            t[t != t] = 0
893
            return t.to(device)
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916

        def recursive_check(tuple_object, dict_object):
            if isinstance(tuple_object, (List, Tuple)):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif isinstance(tuple_object, Dict):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif tuple_object is None:
                return
            else:
                self.assertTrue(
                    torch.allclose(
                        set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                    ),
                    msg=(
                        "Tuple and dict output are not equal. Difference:"
                        f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                        f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                        f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                    ),
                )

Will Berman's avatar
Will Berman committed
917
918
919
920
921
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
922
923
924
925

        model.to(torch_device)
        model.eval()

926
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
927
928
929
930
931
932
            if self.forward_requires_fresh_args:
                outputs_dict = model(**self.inputs_dict(0))
                outputs_tuple = model(**self.inputs_dict(0), return_dict=False)
            else:
                outputs_dict = model(**inputs_dict)
                outputs_tuple = model(**inputs_dict, return_dict=False)
933
934

        recursive_check(outputs_tuple, outputs_dict)
935

Arsalan's avatar
Arsalan committed
936
    @require_torch_accelerator_with_training
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
    def test_enable_disable_gradient_checkpointing(self):
        if not self.model_class._supports_gradient_checkpointing:
            return  # Skip test if model does not support gradient checkpointing

        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        # at init model should have gradient checkpointing disabled
        model = self.model_class(**init_dict)
        self.assertFalse(model.is_gradient_checkpointing)

        # check enable works
        model.enable_gradient_checkpointing()
        self.assertTrue(model.is_gradient_checkpointing)

        # check disable works
        model.disable_gradient_checkpointing()
        self.assertFalse(model.is_gradient_checkpointing)
954

955
    @require_torch_accelerator_with_training
956
    def test_effective_gradient_checkpointing(self, loss_tolerance=1e-5, param_grad_tol=5e-5, skip: set[str] = {}):
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
        if not self.model_class._supports_gradient_checkpointing:
            return  # Skip test if model does not support gradient checkpointing

        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        inputs_dict_copy = copy.deepcopy(inputs_dict)
        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)

        assert not model.is_gradient_checkpointing and model.training

        out = model(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model.zero_grad()

        labels = torch.randn_like(out)
        loss = (out - labels).mean()
        loss.backward()

        # re-instantiate the model now enabling gradient checkpointing
        torch.manual_seed(0)
        model_2 = self.model_class(**init_dict)
        # clone model
        model_2.load_state_dict(model.state_dict())
        model_2.to(torch_device)
        model_2.enable_gradient_checkpointing()

        assert model_2.is_gradient_checkpointing and model_2.training

        out_2 = model_2(**inputs_dict_copy).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model_2.zero_grad()
        loss_2 = (out_2 - labels).mean()
        loss_2.backward()

        # compare the output and parameters gradients
        self.assertTrue((loss - loss_2).abs() < loss_tolerance)
        named_params = dict(model.named_parameters())
        named_params_2 = dict(model_2.named_parameters())

        for name, param in named_params.items():
            if "post_quant_conv" in name:
                continue
1003
1004
            if name in skip:
                continue
1005
1006
1007
1008
            # TODO(aryan): remove the below lines after looking into easyanimate transformer a little more
            # It currently errors out the gradient checkpointing test because the gradients for attn2.to_out is None
            if param.grad is None:
                continue
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
            self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=param_grad_tol))

    @unittest.skipIf(torch_device == "mps", "This test is not supported for MPS devices.")
    def test_gradient_checkpointing_is_applied(
        self, expected_set=None, attention_head_dim=None, num_attention_heads=None, block_out_channels=None
    ):
        if not self.model_class._supports_gradient_checkpointing:
            return  # Skip test if model does not support gradient checkpointing

        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        if attention_head_dim is not None:
            init_dict["attention_head_dim"] = attention_head_dim
        if num_attention_heads is not None:
            init_dict["num_attention_heads"] = num_attention_heads
        if block_out_channels is not None:
            init_dict["block_out_channels"] = block_out_channels

        model_class_copy = copy.copy(self.model_class)
        model = model_class_copy(**init_dict)
        model.enable_gradient_checkpointing()

1031
1032
1033
1034
1035
1036
        modules_with_gc_enabled = {}
        for submodule in model.modules():
            if hasattr(submodule, "gradient_checkpointing"):
                self.assertTrue(submodule.gradient_checkpointing)
                modules_with_gc_enabled[submodule.__class__.__name__] = True

1037
1038
1039
        assert set(modules_with_gc_enabled.keys()) == expected_set
        assert all(modules_with_gc_enabled.values()), "All modules should be enabled"

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
    def test_deprecated_kwargs(self):
        has_kwarg_in_model_class = "kwargs" in inspect.signature(self.model_class.__init__).parameters
        has_deprecated_kwarg = len(self.model_class._deprecated_kwargs) > 0

        if has_kwarg_in_model_class and not has_deprecated_kwarg:
            raise ValueError(
                f"{self.model_class} has `**kwargs` in its __init__ method but has not defined any deprecated kwargs"
                " under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if there are"
                " no deprecated arguments or add the deprecated argument with `_deprecated_kwargs ="
                " [<deprecated_argument>]`"
            )

        if not has_kwarg_in_model_class and has_deprecated_kwarg:
            raise ValueError(
                f"{self.model_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated kwargs"
                " under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs` argument to"
                f" {self.model_class}.__init__ if there are deprecated arguments or remove the deprecated argument"
                " from `_deprecated_kwargs = [<deprecated_argument>]`"
            )
1059

1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
    @parameterized.expand([True, False])
    @torch.no_grad()
    @unittest.skipIf(not is_peft_available(), "Only with PEFT")
    def test_save_load_lora_adapter(self, use_dora=False):
        import safetensors
        from peft import LoraConfig
        from peft.utils import get_peft_model_state_dict

        from diffusers.loaders.peft import PeftAdapterMixin

        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)

        if not issubclass(model.__class__, PeftAdapterMixin):
            return

        torch.manual_seed(0)
        output_no_lora = model(**inputs_dict, return_dict=False)[0]

        denoiser_lora_config = LoraConfig(
            r=4,
            lora_alpha=4,
            target_modules=["to_q", "to_k", "to_v", "to_out.0"],
            init_lora_weights=False,
            use_dora=use_dora,
        )
        model.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

        torch.manual_seed(0)
        outputs_with_lora = model(**inputs_dict, return_dict=False)[0]

        self.assertFalse(torch.allclose(output_no_lora, outputs_with_lora, atol=1e-4, rtol=1e-4))

        with tempfile.TemporaryDirectory() as tmpdir:
            model.save_lora_adapter(tmpdir)
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))

            state_dict_loaded = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))

            model.unload_lora()
            self.assertFalse(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

            model.load_lora_adapter(tmpdir, prefix=None, use_safetensors=True)
            state_dict_retrieved = get_peft_model_state_dict(model, adapter_name="default_0")

            for k in state_dict_loaded:
                loaded_v = state_dict_loaded[k]
                retrieved_v = state_dict_retrieved[k].to(loaded_v.device)
                self.assertTrue(torch.allclose(loaded_v, retrieved_v))

            self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

        torch.manual_seed(0)
        outputs_with_lora_2 = model(**inputs_dict, return_dict=False)[0]

        self.assertFalse(torch.allclose(output_no_lora, outputs_with_lora_2, atol=1e-4, rtol=1e-4))
        self.assertTrue(torch.allclose(outputs_with_lora, outputs_with_lora_2, atol=1e-4, rtol=1e-4))

    @unittest.skipIf(not is_peft_available(), "Only with PEFT")
    def test_wrong_adapter_name_raises_error(self):
        from peft import LoraConfig

        from diffusers.loaders.peft import PeftAdapterMixin

        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)

        if not issubclass(model.__class__, PeftAdapterMixin):
            return

        denoiser_lora_config = LoraConfig(
            r=4,
            lora_alpha=4,
            target_modules=["to_q", "to_k", "to_v", "to_out.0"],
            init_lora_weights=False,
            use_dora=False,
        )
        model.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")

        with tempfile.TemporaryDirectory() as tmpdir:
            wrong_name = "foo"
            with self.assertRaises(ValueError) as err_context:
                model.save_lora_adapter(tmpdir, adapter_name=wrong_name)

            self.assertTrue(f"Adapter name {wrong_name} not found in the model." in str(err_context.exception))

1148
    @require_torch_accelerator
1149
1150
1151
    def test_cpu_offload(self):
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1152
1153
1154
        if model._no_split_modules is None:
            return

1155
1156
1157
1158
1159
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

YiYi Xu's avatar
YiYi Xu committed
1160
        model_size = compute_module_sizes(model)[""]
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
        # We test several splits of sizes to make sure it works.
        max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir)

            for max_size in max_gpu_sizes:
                max_memory = {0: max_size, "cpu": model_size * 2}
                new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                # Making sure part of the model will actually end up offloaded
                self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
                torch.manual_seed(0)
                new_output = new_model(**inputs_dict)

                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1178
    @require_torch_accelerator
1179
1180
1181
    def test_disk_offload_without_safetensors(self):
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1182
1183
1184
        if model._no_split_modules is None:
            return

1185
1186
1187
1188
1189
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

YiYi Xu's avatar
YiYi Xu committed
1190
        model_size = compute_module_sizes(model)[""]
1191
1192
1193
1194
        max_size = int(self.model_split_percents[0] * model_size)
        # Force disk offload by setting very small CPU memory
        max_memory = {0: max_size, "cpu": int(0.1 * max_size)}

1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir, safe_serialization=False)
            with self.assertRaises(ValueError):
                # This errors out because it's missing an offload folder
                new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

            new_model = self.model_class.from_pretrained(
                tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
            )

            self.check_device_map_is_respected(new_model, new_model.hf_device_map)
            torch.manual_seed(0)
            new_output = new_model(**inputs_dict)

            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1211
    @require_torch_accelerator
1212
1213
1214
    def test_disk_offload_with_safetensors(self):
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1215
1216
1217
        if model._no_split_modules is None:
            return

1218
1219
1220
1221
1222
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

YiYi Xu's avatar
YiYi Xu committed
1223
        model_size = compute_module_sizes(model)[""]
1224
1225
1226
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir)

1227
            max_size = int(self.model_split_percents[0] * model_size)
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
            max_memory = {0: max_size, "cpu": max_size}
            new_model = self.model_class.from_pretrained(
                tmp_dir, device_map="auto", offload_folder=tmp_dir, max_memory=max_memory
            )

            self.check_device_map_is_respected(new_model, new_model.hf_device_map)
            torch.manual_seed(0)
            new_output = new_model(**inputs_dict)

            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1239
    @require_torch_multi_accelerator
1240
1241
1242
    def test_model_parallelism(self):
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1243
1244
1245
        if model._no_split_modules is None:
            return

1246
1247
1248
1249
1250
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

YiYi Xu's avatar
YiYi Xu committed
1251
        model_size = compute_module_sizes(model)[""]
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
        # We test several splits of sizes to make sure it works.
        max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir)

            for max_size in max_gpu_sizes:
                max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
                new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                # Making sure part of the model will actually end up offloaded
                self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})
YiYi Xu's avatar
YiYi Xu committed
1262
                print(f" new_model.hf_device_map:{new_model.hf_device_map}")
1263
1264
1265
1266
1267
1268
1269
1270

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)

                torch.manual_seed(0)
                new_output = new_model(**inputs_dict)

                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1271
    @require_torch_accelerator
1272
    def test_sharded_checkpoints(self):
1273
        torch.manual_seed(0)
1274
1275
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1276
1277
1278
1279
        model = model.to(torch_device)

        base_output = model(**inputs_dict)

1280
        model_size = compute_module_persistent_sizes(model)[""]
1281
1282
1283
1284
1285
1286
1287
1288
        max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB")
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))

            # Now check if the right number of shards exists. First, let's get the number of shards.
            # Since this number can be dependent on the model being tested, it's important that we calculate it
            # instead of hardcoding it.
1289
            expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))
1290
1291
1292
            actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
            self.assertTrue(actual_num_shards == expected_num_shards)

1293
            new_model = self.model_class.from_pretrained(tmp_dir).eval()
1294
            new_model = new_model.to(torch_device)
1295
1296

            torch.manual_seed(0)
1297
1298
            if "generator" in inputs_dict:
                _, inputs_dict = self.prepare_init_args_and_inputs_for_common()
1299
            new_output = new_model(**inputs_dict)
1300

1301
1302
            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1303
    @require_torch_accelerator
1304
1305
1306
1307
1308
1309
1310
1311
    def test_sharded_checkpoints_with_variant(self):
        torch.manual_seed(0)
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
        model = model.to(torch_device)

        base_output = model(**inputs_dict)

1312
        model_size = compute_module_persistent_sizes(model)[""]
1313
1314
1315
1316
1317
1318
1319
        max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
        variant = "fp16"
        with tempfile.TemporaryDirectory() as tmp_dir:
            # It doesn't matter if the actual model is in fp16 or not. Just adding the variant and
            # testing if loading works with the variant when the checkpoint is sharded should be
            # enough.
            model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB", variant=variant)
1320

1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
            index_filename = _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, index_filename)))

            # Now check if the right number of shards exists. First, let's get the number of shards.
            # Since this number can be dependent on the model being tested, it's important that we calculate it
            # instead of hardcoding it.
            expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, index_filename))
            actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
            self.assertTrue(actual_num_shards == expected_num_shards)

            new_model = self.model_class.from_pretrained(tmp_dir, variant=variant).eval()
            new_model = new_model.to(torch_device)

            torch.manual_seed(0)
            if "generator" in inputs_dict:
                _, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            new_output = new_model(**inputs_dict)

            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1341
    @require_torch_accelerator
1342
1343
1344
    def test_sharded_checkpoints_device_map(self):
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
1345
1346
1347
1348
1349
1350
1351
        if model._no_split_modules is None:
            return
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

1352
        model_size = compute_module_persistent_sizes(model)[""]
1353
1354
1355
1356
1357
1358
1359
1360
        max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB")
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))

            # Now check if the right number of shards exists. First, let's get the number of shards.
            # Since this number can be dependent on the model being tested, it's important that we calculate it
            # instead of hardcoding it.
1361
            expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))
1362
1363
1364
1365
1366
1367
            actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
            self.assertTrue(actual_num_shards == expected_num_shards)

            new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto")

            torch.manual_seed(0)
1368
1369
            if "generator" in inputs_dict:
                _, inputs_dict = self.prepare_init_args_and_inputs_for_common()
1370
1371
1372
            new_output = new_model(**inputs_dict)
            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

1373
1374
1375
1376
1377
1378
1379
1380
    # This test is okay without a GPU because we're not running any execution. We're just serializing
    # and check if the resultant files are following an expected format.
    def test_variant_sharded_ckpt_right_format(self):
        for use_safe in [True, False]:
            extension = ".safetensors" if use_safe else ".bin"
            config, _ = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**config).eval()

1381
            model_size = compute_module_persistent_sizes(model)[""]
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
            max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
            variant = "fp16"
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(
                    tmp_dir, variant=variant, max_shard_size=f"{max_shard_size}KB", safe_serialization=use_safe
                )
                index_variant = _add_variant(SAFE_WEIGHTS_INDEX_NAME if use_safe else WEIGHTS_INDEX_NAME, variant)
                self.assertTrue(os.path.exists(os.path.join(tmp_dir, index_variant)))

                # Now check if the right number of shards exists. First, let's get the number of shards.
                # Since this number can be dependent on the model being tested, it's important that we calculate it
                # instead of hardcoding it.
                expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, index_variant))
                actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(extension)])
                self.assertTrue(actual_num_shards == expected_num_shards)

                # Check if the variant is present as a substring in the checkpoints.
                shard_files = [
                    file
                    for file in os.listdir(tmp_dir)
                    if file.endswith(extension) or ("index" in file and "json" in file)
                ]
                assert all(variant in f for f in shard_files)

                # Check if the sharded checkpoints were serialized in the right format.
                shard_files = [file for file in os.listdir(tmp_dir) if file.endswith(extension)]
                # Example: diffusion_pytorch_model.fp16-00001-of-00002.safetensors
                assert all(f.split(".")[1].split("-")[0] == variant for f in shard_files)

1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
    def test_layerwise_casting_training(self):
        def test_fn(storage_dtype, compute_dtype):
            if torch.device(torch_device).type == "cpu" and compute_dtype == torch.bfloat16:
                return
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

            model = self.model_class(**init_dict)
            model = model.to(torch_device, dtype=compute_dtype)
            model.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)
            model.train()

            inputs_dict = cast_maybe_tensor_dtype(inputs_dict, torch.float32, compute_dtype)
            with torch.amp.autocast(device_type=torch.device(torch_device).type):
                output = model(**inputs_dict)

                if isinstance(output, dict):
                    output = output.to_tuple()[0]

                input_tensor = inputs_dict[self.main_input_name]
                noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
                noise = cast_maybe_tensor_dtype(noise, torch.float32, compute_dtype)
                loss = torch.nn.functional.mse_loss(output, noise)

            loss.backward()

        test_fn(torch.float16, torch.float32)
        test_fn(torch.float8_e4m3fn, torch.float32)
        test_fn(torch.float8_e5m2, torch.float32)
        test_fn(torch.float8_e4m3fn, torch.bfloat16)

Aryan's avatar
Aryan committed
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
    def test_layerwise_casting_inference(self):
        from diffusers.hooks.layerwise_casting import DEFAULT_SKIP_MODULES_PATTERN, SUPPORTED_PYTORCH_LAYERS

        torch.manual_seed(0)
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
        model = model.to(torch_device)
        base_slice = model(**inputs_dict)[0].flatten().detach().cpu().numpy()

        def check_linear_dtype(module, storage_dtype, compute_dtype):
            patterns_to_check = DEFAULT_SKIP_MODULES_PATTERN
            if getattr(module, "_skip_layerwise_casting_patterns", None) is not None:
                patterns_to_check += tuple(module._skip_layerwise_casting_patterns)
            for name, submodule in module.named_modules():
                if not isinstance(submodule, SUPPORTED_PYTORCH_LAYERS):
                    continue
                dtype_to_check = storage_dtype
                if any(re.search(pattern, name) for pattern in patterns_to_check):
                    dtype_to_check = compute_dtype
                if getattr(submodule, "weight", None) is not None:
                    self.assertEqual(submodule.weight.dtype, dtype_to_check)
                if getattr(submodule, "bias", None) is not None:
                    self.assertEqual(submodule.bias.dtype, dtype_to_check)

        def test_layerwise_casting(storage_dtype, compute_dtype):
            torch.manual_seed(0)
            config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            inputs_dict = cast_maybe_tensor_dtype(inputs_dict, torch.float32, compute_dtype)
            model = self.model_class(**config).eval()
            model = model.to(torch_device, dtype=compute_dtype)
            model.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)

            check_linear_dtype(model, storage_dtype, compute_dtype)
            output = model(**inputs_dict)[0].float().flatten().detach().cpu().numpy()

            # The precision test is not very important for fast tests. In most cases, the outputs will not be the same.
            # We just want to make sure that the layerwise casting is working as expected.
            self.assertTrue(numpy_cosine_similarity_distance(base_slice, output) < 1.0)

        test_layerwise_casting(torch.float16, torch.float32)
        test_layerwise_casting(torch.float8_e4m3fn, torch.float32)
        test_layerwise_casting(torch.float8_e5m2, torch.float32)
        test_layerwise_casting(torch.float8_e4m3fn, torch.bfloat16)

1485
    @require_torch_accelerator
Aryan's avatar
Aryan committed
1486
1487
    def test_layerwise_casting_memory(self):
        MB_TOLERANCE = 0.2
1488
        LEAST_COMPUTE_CAPABILITY = 8.0
Aryan's avatar
Aryan committed
1489
1490
1491

        def reset_memory_stats():
            gc.collect()
1492
1493
1494
            backend_synchronize(torch_device)
            backend_empty_cache(torch_device)
            backend_reset_peak_memory_stats(torch_device)
Aryan's avatar
Aryan committed
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506

        def get_memory_usage(storage_dtype, compute_dtype):
            torch.manual_seed(0)
            config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            inputs_dict = cast_maybe_tensor_dtype(inputs_dict, torch.float32, compute_dtype)
            model = self.model_class(**config).eval()
            model = model.to(torch_device, dtype=compute_dtype)
            model.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)

            reset_memory_stats()
            model(**inputs_dict)
            model_memory_footprint = model.get_memory_footprint()
1507
            peak_inference_memory_allocated_mb = backend_max_memory_allocated(torch_device) / 1024**2
Aryan's avatar
Aryan committed
1508
1509
1510
1511
1512
1513
1514
1515
1516

            return model_memory_footprint, peak_inference_memory_allocated_mb

        fp32_memory_footprint, fp32_max_memory = get_memory_usage(torch.float32, torch.float32)
        fp8_e4m3_fp32_memory_footprint, fp8_e4m3_fp32_max_memory = get_memory_usage(torch.float8_e4m3fn, torch.float32)
        fp8_e4m3_bf16_memory_footprint, fp8_e4m3_bf16_max_memory = get_memory_usage(
            torch.float8_e4m3fn, torch.bfloat16
        )

1517
        compute_capability = get_torch_cuda_device_capability() if torch_device == "cuda" else None
Aryan's avatar
Aryan committed
1518
        self.assertTrue(fp8_e4m3_bf16_memory_footprint < fp8_e4m3_fp32_memory_footprint < fp32_memory_footprint)
1519
1520
1521
1522
        # NOTE: the following assertion would fail on our CI (running Tesla T4) due to bf16 using more memory than fp32.
        # On other devices, such as DGX (Ampere) and Audace (Ada), the test passes. So, we conditionally check it.
        if compute_capability and compute_capability >= LEAST_COMPUTE_CAPABILITY:
            self.assertTrue(fp8_e4m3_bf16_max_memory < fp8_e4m3_fp32_max_memory)
Aryan's avatar
Aryan committed
1523
1524
1525
1526
1527
1528
1529
1530
        # On this dummy test case with a small model, sometimes fp8_e4m3_fp32 max memory usage is higher than fp32 by a few
        # bytes. This only happens for some models, so we allow a small tolerance.
        # For any real model being tested, the order would be fp8_e4m3_bf16 < fp8_e4m3_fp32 < fp32.
        self.assertTrue(
            fp8_e4m3_fp32_max_memory < fp32_max_memory
            or abs(fp8_e4m3_fp32_max_memory - fp32_max_memory) < MB_TOLERANCE
        )

1531
    @parameterized.expand([False, True])
1532
    @require_torch_accelerator
1533
    def test_group_offloading(self, record_stream):
Aryan's avatar
Aryan committed
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        torch.manual_seed(0)

        @torch.no_grad()
        def run_forward(model):
            self.assertTrue(
                all(
                    module._diffusers_hook.get_hook("group_offloading") is not None
                    for module in model.modules()
                    if hasattr(module, "_diffusers_hook")
                )
            )
            model.eval()
            return model(**inputs_dict)[0]

        model = self.model_class(**init_dict)
        if not getattr(model, "_supports_group_offloading", True):
            return

        model.to(torch_device)
        output_without_group_offloading = run_forward(model)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1)
        output_with_group_offloading1 = run_forward(model)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, non_blocking=True)
        output_with_group_offloading2 = run_forward(model)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.enable_group_offload(torch_device, offload_type="leaf_level")
        output_with_group_offloading3 = run_forward(model)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
1573
1574
1575
        model.enable_group_offload(
            torch_device, offload_type="leaf_level", use_stream=True, record_stream=record_stream
        )
Aryan's avatar
Aryan committed
1576
1577
1578
1579
1580
1581
1582
        output_with_group_offloading4 = run_forward(model)

        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading1, atol=1e-5))
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading2, atol=1e-5))
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading3, atol=1e-5))
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading4, atol=1e-5))

hlky's avatar
hlky committed
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
    def test_auto_model(self, expected_max_diff=5e-5):
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)

        model = model.eval()
        model = model.to(torch_device)

        if hasattr(model, "set_default_attn_processor"):
            model.set_default_attn_processor()

        with tempfile.TemporaryDirectory(ignore_cleanup_errors=True) as tmpdirname:
            model.save_pretrained(tmpdirname, safe_serialization=False)

            auto_model = AutoModel.from_pretrained(tmpdirname)
            if hasattr(auto_model, "set_default_attn_processor"):
                auto_model.set_default_attn_processor()

        auto_model = auto_model.eval()
        auto_model = auto_model.to(torch_device)

        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output_original = model(**self.inputs_dict(0))
                output_auto = auto_model(**self.inputs_dict(0))
            else:
                output_original = model(**inputs_dict)
                output_auto = auto_model(**inputs_dict)

            if isinstance(output_original, dict):
                output_original = output_original.to_tuple()[0]
            if isinstance(output_auto, dict):
                output_auto = output_auto.to_tuple()[0]

        max_diff = (output_original - output_auto).abs().max().item()
        self.assertLessEqual(
            max_diff,
            expected_max_diff,
            f"AutoModel forward pass diff: {max_diff} exceeds threshold {expected_max_diff}",
        )

1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693

@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
    identifier = uuid.uuid4()
    repo_id = f"test-model-{identifier}"
    org_repo_id = f"valid_org/{repo_id}-org"

    def test_push_to_hub(self):
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        model.push_to_hub(self.repo_id, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.repo_id)

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(self.repo_id, token=TOKEN)

    def test_push_to_hub_in_organization(self):
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        model.push_to_hub(self.org_repo_id, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id)
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.org_repo_id)

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, push_to_hub=True, token=TOKEN, repo_id=self.org_repo_id)

        new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id)
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(self.org_repo_id, token=TOKEN)
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716

    @unittest.skipIf(
        not is_jinja_available(),
        reason="Model card tests cannot be performed without Jinja installed.",
    )
    def test_push_to_hub_library_name(self):
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        model.push_to_hub(self.repo_id, token=TOKEN)

        model_card = ModelCard.load(f"{USER}/{self.repo_id}", token=TOKEN).data
        assert model_card.library_name == "diffusers"

        # Reset repo
        delete_repo(self.repo_id, token=TOKEN)
1717
1718


1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
class TorchCompileTesterMixin:
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        torch._dynamo.reset()
        gc.collect()
        backend_empty_cache(torch_device)

    def tearDown(self):
        # clean up the VRAM after each test in case of CUDA runtime errors
        super().tearDown()
        torch._dynamo.reset()
        gc.collect()
        backend_empty_cache(torch_device)

    @require_torch_gpu
    @require_torch_2
    @is_torch_compile
    @slow
    def test_torch_compile_recompilation_and_graph_break(self):
        torch._dynamo.reset()
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict).to(torch_device)
        model = torch.compile(model, fullgraph=True)

        with torch._dynamo.config.patch(error_on_recompile=True), torch.no_grad():
            _ = model(**inputs_dict)
            _ = model(**inputs_dict)


1750
1751
1752
1753
1754
1755
@slow
@require_torch_2
@require_torch_accelerator
@require_peft_backend
@require_peft_version_greater("0.14.0")
@is_torch_compile
1756
class LoraHotSwappingForModelTesterMixin:
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
    """Test that hotswapping does not result in recompilation on the model directly.

    We're not extensively testing the hotswapping functionality since it is implemented in PEFT and is extensively
    tested there. The goal of this test is specifically to ensure that hotswapping with diffusers does not require
    recompilation.

    See
    https://github.com/huggingface/peft/blob/eaab05e18d51fb4cce20a73c9acd82a00c013b83/tests/test_gpu_examples.py#L4252
    for the analogous PEFT test.

    """

    def tearDown(self):
        # It is critical that the dynamo cache is reset for each test. Otherwise, if the test re-uses the same model,
        # there will be recompilation errors, as torch caches the model when run in the same process.
        super().tearDown()
        torch._dynamo.reset()
        gc.collect()
        backend_empty_cache(torch_device)

1777
    def get_lora_config(self, lora_rank, lora_alpha, target_modules):
1778
1779
1780
        # from diffusers test_models_unet_2d_condition.py
        from peft import LoraConfig

1781
        lora_config = LoraConfig(
1782
1783
1784
1785
1786
1787
            r=lora_rank,
            lora_alpha=lora_alpha,
            target_modules=target_modules,
            init_lora_weights=False,
            use_dora=False,
        )
1788
        return lora_config
1789

1790
1791
1792
1793
1794
    def get_linear_module_name_other_than_attn(self, model):
        linear_names = [
            name for name, module in model.named_modules() if isinstance(module, nn.Linear) and "to_" not in name
        ]
        return linear_names[0]
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811

    def check_model_hotswap(self, do_compile, rank0, rank1, target_modules0, target_modules1=None):
        """
        Check that hotswapping works on a small unet.

        Steps:
        - create 2 LoRA adapters and save them
        - load the first adapter
        - hotswap the second adapter
        - check that the outputs are correct
        - optionally compile the model

        Note: We set rank == alpha here because save_lora_adapter does not save the alpha scalings, thus the test would
        fail if the values are different. Since rank != alpha does not matter for the purpose of this test, this is
        fine.
        """
        # create 2 adapters with different ranks and alphas
1812
1813
1814
1815
        torch.manual_seed(0)
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)

1816
1817
1818
1819
        alpha0, alpha1 = rank0, rank1
        max_rank = max([rank0, rank1])
        if target_modules1 is None:
            target_modules1 = target_modules0[:]
1820
1821
        lora_config0 = self.get_lora_config(rank0, alpha0, target_modules0)
        lora_config1 = self.get_lora_config(rank1, alpha1, target_modules1)
1822

1823
        model.add_adapter(lora_config0, adapter_name="adapter0")
1824
        with torch.inference_mode():
1825
1826
            torch.manual_seed(0)
            output0_before = model(**inputs_dict)["sample"]
1827

1828
1829
        model.add_adapter(lora_config1, adapter_name="adapter1")
        model.set_adapter("adapter1")
1830
        with torch.inference_mode():
1831
1832
            torch.manual_seed(0)
            output1_before = model(**inputs_dict)["sample"]
1833
1834
1835
1836
1837
1838
1839
1840
1841

        # sanity checks:
        tol = 5e-3
        assert not torch.allclose(output0_before, output1_before, atol=tol, rtol=tol)
        assert not (output0_before == 0).all()
        assert not (output1_before == 0).all()

        with tempfile.TemporaryDirectory() as tmp_dirname:
            # save the adapter checkpoints
1842
1843
1844
            model.save_lora_adapter(os.path.join(tmp_dirname, "0"), safe_serialization=True, adapter_name="adapter0")
            model.save_lora_adapter(os.path.join(tmp_dirname, "1"), safe_serialization=True, adapter_name="adapter1")
            del model
1845
1846

            # load the first adapter
1847
1848
1849
1850
            torch.manual_seed(0)
            init_dict, _ = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict).to(torch_device)

1851
1852
            if do_compile or (rank0 != rank1):
                # no need to prepare if the model is not compiled or if the ranks are identical
1853
                model.enable_lora_hotswap(target_rank=max_rank)
1854
1855
1856

            file_name0 = os.path.join(os.path.join(tmp_dirname, "0"), "pytorch_lora_weights.safetensors")
            file_name1 = os.path.join(os.path.join(tmp_dirname, "1"), "pytorch_lora_weights.safetensors")
1857
            model.load_lora_adapter(file_name0, safe_serialization=True, adapter_name="adapter0", prefix=None)
1858
1859

            if do_compile:
1860
                model = torch.compile(model, mode="reduce-overhead")
1861
1862

            with torch.inference_mode():
1863
                output0_after = model(**inputs_dict)["sample"]
1864
1865
1866
            assert torch.allclose(output0_before, output0_after, atol=tol, rtol=tol)

            # hotswap the 2nd adapter
1867
            model.load_lora_adapter(file_name1, adapter_name="adapter0", hotswap=True, prefix=None)
1868
1869
1870

            # we need to call forward to potentially trigger recompilation
            with torch.inference_mode():
1871
                output1_after = model(**inputs_dict)["sample"]
1872
1873
1874
1875
1876
1877
            assert torch.allclose(output1_before, output1_after, atol=tol, rtol=tol)

            # check error when not passing valid adapter name
            name = "does-not-exist"
            msg = f"Trying to hotswap LoRA adapter '{name}' but there is no existing adapter by that name"
            with self.assertRaisesRegex(ValueError, msg):
1878
                model.load_lora_adapter(file_name1, adapter_name=name, hotswap=True, prefix=None)
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_model(self, rank0, rank1):
        self.check_model_hotswap(
            do_compile=False, rank0=rank0, rank1=rank1, target_modules0=["to_q", "to_k", "to_v", "to_out.0"]
        )

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_compiled_model_linear(self, rank0, rank1):
        # It's important to add this context to raise an error on recompilation
        target_modules = ["to_q", "to_k", "to_v", "to_out.0"]
        with torch._dynamo.config.patch(error_on_recompile=True):
            self.check_model_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_compiled_model_conv2d(self, rank0, rank1):
1895
1896
1897
        if "unet" not in self.model_class.__name__.lower():
            return

1898
1899
1900
1901
1902
1903
1904
        # It's important to add this context to raise an error on recompilation
        target_modules = ["conv", "conv1", "conv2"]
        with torch._dynamo.config.patch(error_on_recompile=True):
            self.check_model_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_compiled_model_both_linear_and_conv2d(self, rank0, rank1):
1905
1906
1907
        if "unet" not in self.model_class.__name__.lower():
            return

1908
1909
1910
1911
1912
        # It's important to add this context to raise an error on recompilation
        target_modules = ["to_q", "conv"]
        with torch._dynamo.config.patch(error_on_recompile=True):
            self.check_model_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)

1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_compiled_model_both_linear_and_other(self, rank0, rank1):
        # In `test_hotswapping_compiled_model_both_linear_and_conv2d()`, we check if we can do hotswapping
        # with `torch.compile()` for models that have both linear and conv layers. In this test, we check
        # if we can target a linear layer from the transformer blocks and another linear layer from non-attention
        # block.
        target_modules = ["to_q"]
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)

        target_modules.append(self.get_linear_module_name_other_than_attn(model))
        del model

        # It's important to add this context to raise an error on recompilation
        with torch._dynamo.config.patch(error_on_recompile=True):
            self.check_model_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)

1930
1931
    def test_enable_lora_hotswap_called_after_adapter_added_raises(self):
        # ensure that enable_lora_hotswap is called before loading the first adapter
1932
1933
1934
1935
1936
        lora_config = self.get_lora_config(8, 8, target_modules=["to_q"])
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)
        model.add_adapter(lora_config)

1937
1938
        msg = re.escape("Call `enable_lora_hotswap` before loading the first adapter.")
        with self.assertRaisesRegex(RuntimeError, msg):
1939
            model.enable_lora_hotswap(target_rank=32)
1940
1941
1942
1943
1944

    def test_enable_lora_hotswap_called_after_adapter_added_warning(self):
        # ensure that enable_lora_hotswap is called before loading the first adapter
        from diffusers.loaders.peft import logger

1945
1946
1947
1948
        lora_config = self.get_lora_config(8, 8, target_modules=["to_q"])
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)
        model.add_adapter(lora_config)
1949
1950
1951
1952
        msg = (
            "It is recommended to call `enable_lora_hotswap` before loading the first adapter to avoid recompilation."
        )
        with self.assertLogs(logger=logger, level="WARNING") as cm:
1953
            model.enable_lora_hotswap(target_rank=32, check_compiled="warn")
1954
1955
1956
1957
            assert any(msg in log for log in cm.output)

    def test_enable_lora_hotswap_called_after_adapter_added_ignore(self):
        # check possibility to ignore the error/warning
1958
1959
1960
1961
        lora_config = self.get_lora_config(8, 8, target_modules=["to_q"])
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)
        model.add_adapter(lora_config)
1962
1963
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")  # Capture all warnings
1964
            model.enable_lora_hotswap(target_rank=32, check_compiled="warn")
1965
1966
1967
1968
            self.assertEqual(len(w), 0, f"Expected no warnings, but got: {[str(warn.message) for warn in w]}")

    def test_enable_lora_hotswap_wrong_check_compiled_argument_raises(self):
        # check that wrong argument value raises an error
1969
1970
1971
1972
        lora_config = self.get_lora_config(8, 8, target_modules=["to_q"])
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict).to(torch_device)
        model.add_adapter(lora_config)
1973
1974
        msg = re.escape("check_compiles should be one of 'error', 'warn', or 'ignore', got 'wrong-argument' instead.")
        with self.assertRaisesRegex(ValueError, msg):
1975
            model.enable_lora_hotswap(target_rank=32, check_compiled="wrong-argument")
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989

    def test_hotswap_second_adapter_targets_more_layers_raises(self):
        # check the error and log
        from diffusers.loaders.peft import logger

        # at the moment, PEFT requires the 2nd adapter to target the same or a subset of layers
        target_modules0 = ["to_q"]
        target_modules1 = ["to_q", "to_k"]
        with self.assertRaises(RuntimeError):  # peft raises RuntimeError
            with self.assertLogs(logger=logger, level="ERROR") as cm:
                self.check_model_hotswap(
                    do_compile=True, rank0=8, rank1=8, target_modules0=target_modules0, target_modules1=target_modules1
                )
                assert any("Hotswapping adapter0 was unsuccessful" in log for log in cm.output)