test_modeling_utils.py 33.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
16

patil-suraj's avatar
patil-suraj committed
17
import inspect
18
19
20
import tempfile
import unittest

21
import numpy as np
22
23
import torch

Patrick von Platen's avatar
Patrick von Platen committed
24
from diffusers import (
patil-suraj's avatar
patil-suraj committed
25
    AutoencoderKL,
Patrick von Platen's avatar
Patrick von Platen committed
26
    DDIMPipeline,
27
    DDIMScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
28
    DDPMPipeline,
29
    DDPMScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
30
    GlidePipeline,
Patrick von Platen's avatar
Patrick von Platen committed
31
32
    GlideSuperResUNetModel,
    GlideTextToImageUNetModel,
Patrick von Platen's avatar
Patrick von Platen committed
33
    LatentDiffusionPipeline,
patil-suraj's avatar
patil-suraj committed
34
    LatentDiffusionUncondPipeline,
Patrick von Platen's avatar
Patrick von Platen committed
35
    NCSNpp,
Patrick von Platen's avatar
Patrick von Platen committed
36
    PNDMPipeline,
37
    PNDMScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
38
39
    ScoreSdeVePipeline,
    ScoreSdeVeScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
40
41
    ScoreSdeVpPipeline,
    ScoreSdeVpScheduler,
anton-l's avatar
anton-l committed
42
43
    UNetLDMModel,
    UNetModel,
44
    UNetUnconditionalModel,
patil-suraj's avatar
patil-suraj committed
45
    VQModel,
46
)
47
from diffusers.configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
48
from diffusers.pipeline_utils import DiffusionPipeline
Patrick von Platen's avatar
Patrick von Platen committed
49
from diffusers.testing_utils import floats_tensor, slow, torch_device
50
from diffusers.training_utils import EMAModel
51
52


Patrick von Platen's avatar
Patrick von Platen committed
53
torch.backends.cuda.matmul.allow_tf32 = False
54
55


56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
class ConfigTester(unittest.TestCase):
    def test_load_not_from_mixin(self):
        with self.assertRaises(ValueError):
            ConfigMixin.from_config("dummy_path")

    def test_save_load(self):
        class SampleObject(ConfigMixin):
            config_name = "config.json"

            def __init__(
                self,
                a=2,
                b=5,
                c=(2, 5),
                d="for diffusion",
                e=[1, 3],
            ):
73
                self.register_to_config(a=a, b=b, c=c, d=d, e=e)
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

        obj = SampleObject()
        config = obj.config

        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
            new_obj = SampleObject.from_config(tmpdirname)
            new_config = new_obj.config

Patrick von Platen's avatar
Patrick von Platen committed
89
90
91
92
        # unfreeze configs
        config = dict(config)
        new_config = dict(new_config)

93
94
95
96
97
        assert config.pop("c") == (2, 5)  # instantiated as tuple
        assert new_config.pop("c") == [2, 5]  # saved & loaded as list because of json
        assert config == new_config


patil-suraj's avatar
patil-suraj committed
98
class ModelTesterMixin:
99
    def test_from_pretrained_save_pretrained(self):
patil-suraj's avatar
patil-suraj committed
100
101
102
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
Patrick von Platen's avatar
Patrick von Platen committed
103
        model.to(torch_device)
patil-suraj's avatar
patil-suraj committed
104
        model.eval()
105
106
107

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
patil-suraj's avatar
patil-suraj committed
108
            new_model = self.model_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
109
            new_model.to(torch_device)
110

patil-suraj's avatar
patil-suraj committed
111
112
113
        with torch.no_grad():
            image = model(**inputs_dict)
            new_image = new_model(**inputs_dict)
114

patil-suraj's avatar
patil-suraj committed
115
        max_diff = (image - new_image).abs().sum().item()
Patrick von Platen's avatar
Patrick von Platen committed
116
        self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes")
117

patil-suraj's avatar
patil-suraj committed
118
    def test_determinism(self):
patil-suraj's avatar
patil-suraj committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            first = model(**inputs_dict)
            second = model(**inputs_dict)

        out_1 = first.cpu().numpy()
        out_2 = second.cpu().numpy()
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
133

patil-suraj's avatar
patil-suraj committed
134
    def test_output(self):
patil-suraj's avatar
patil-suraj committed
135
136
137
138
139
140
141
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)
142

patil-suraj's avatar
patil-suraj committed
143
        self.assertIsNotNone(output)
144
        expected_shape = inputs_dict["sample"].shape
patil-suraj's avatar
patil-suraj committed
145
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
146

patil-suraj's avatar
patil-suraj committed
147
    def test_forward_signature(self):
patil-suraj's avatar
patil-suraj committed
148
149
150
151
152
153
154
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        signature = inspect.signature(model.forward)
        # signature.parameters is an OrderedDict => so arg_names order is deterministic
        arg_names = [*signature.parameters.keys()]

155
        expected_arg_names = ["sample", "timesteps"]
patil-suraj's avatar
patil-suraj committed
156
        self.assertListEqual(arg_names[:2], expected_arg_names)
157

patil-suraj's avatar
patil-suraj committed
158
    def test_model_from_config(self):
patil-suraj's avatar
patil-suraj committed
159
160
161
162
163
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
164

patil-suraj's avatar
patil-suraj committed
165
166
167
168
169
170
171
        # test if the model can be loaded from the config
        # and has all the expected shape
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_config(tmpdirname)
            new_model = self.model_class.from_config(tmpdirname)
            new_model.to(torch_device)
            new_model.eval()
172

patil-suraj's avatar
patil-suraj committed
173
174
175
176
177
        # check if all paramters shape are the same
        for param_name in model.state_dict().keys():
            param_1 = model.state_dict()[param_name]
            param_2 = new_model.state_dict()[param_name]
            self.assertEqual(param_1.shape, param_2.shape)
178

patil-suraj's avatar
patil-suraj committed
179
180
181
        with torch.no_grad():
            output_1 = model(**inputs_dict)
            output_2 = new_model(**inputs_dict)
182

patil-suraj's avatar
patil-suraj committed
183
        self.assertEqual(output_1.shape, output_2.shape)
patil-suraj's avatar
patil-suraj committed
184
185

    def test_training(self):
patil-suraj's avatar
patil-suraj committed
186
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
187

patil-suraj's avatar
patil-suraj committed
188
189
190
191
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        output = model(**inputs_dict)
192
        noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
patil-suraj's avatar
patil-suraj committed
193
194
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
195

196
197
198
199
200
201
202
203
204
    def test_ema_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        ema_model = EMAModel(model, device=torch_device)

        output = model(**inputs_dict)
205
        noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
206
207
208
209
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
        ema_model.step(model)

patil-suraj's avatar
patil-suraj committed
210
211
212
213
214
215
216
217
218
219
220
221
222

class UnetModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNetModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

223
        return {"sample": noise, "timesteps": time_step}
224

patil-suraj's avatar
patil-suraj committed
225
    @property
Patrick von Platen's avatar
Patrick von Platen committed
226
    def input_shape(self):
patil-suraj's avatar
patil-suraj committed
227
        return (3, 32, 32)
228

patil-suraj's avatar
patil-suraj committed
229
    @property
Patrick von Platen's avatar
Patrick von Platen committed
230
    def output_shape(self):
patil-suraj's avatar
patil-suraj committed
231
        return (3, 32, 32)
patil-suraj's avatar
patil-suraj committed
232
233
234
235
236
237
238
239
240
241
242

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 32,
            "ch_mult": (1, 2),
            "num_res_blocks": 2,
            "attn_resolutions": (16,),
            "resolution": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
243

patil-suraj's avatar
patil-suraj committed
244
    def test_from_pretrained_hub(self):
patil-suraj's avatar
patil-suraj committed
245
246
247
        model, loading_info = UNetModel.from_pretrained("fusing/ddpm_dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)
patil-suraj's avatar
patil-suraj committed
248

patil-suraj's avatar
patil-suraj committed
249
        model.to(torch_device)
patil-suraj's avatar
patil-suraj committed
250
251
252
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"
253

patil-suraj's avatar
patil-suraj committed
254
255
256
257
258
259
260
    def test_output_pretrained(self):
        model = UNetModel.from_pretrained("fusing/ddpm_dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)
261

patil-suraj's avatar
patil-suraj committed
262
263
        noise = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
        time_step = torch.tensor([10])
264

patil-suraj's avatar
patil-suraj committed
265
266
        with torch.no_grad():
            output = model(noise, time_step)
267

patil-suraj's avatar
patil-suraj committed
268
269
        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
270
        expected_output_slice = torch.tensor([0.2891, -0.1899, 0.2595, -0.6214, 0.0968, -0.2622, 0.4688, 0.1311, 0.0053])
patil-suraj's avatar
patil-suraj committed
271
        # fmt: on
Patrick von Platen's avatar
Patrick von Platen committed
272
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
patil-suraj's avatar
patil-suraj committed
273

274

Patrick von Platen's avatar
Patrick von Platen committed
275
276
class GlideSuperResUNetTests(ModelTesterMixin, unittest.TestCase):
    model_class = GlideSuperResUNetModel
patil-suraj's avatar
patil-suraj committed
277
278
279
280
281
282
283
284
285
286
287
288

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 6
        sizes = (32, 32)
        low_res_size = (4, 4)

        noise = torch.randn((batch_size, num_channels // 2) + sizes).to(torch_device)
        low_res = torch.randn((batch_size, 3) + low_res_size).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

289
        return {"sample": noise, "timesteps": time_step, "low_res": low_res}
290

patil-suraj's avatar
patil-suraj committed
291
    @property
Patrick von Platen's avatar
Patrick von Platen committed
292
    def input_shape(self):
patil-suraj's avatar
patil-suraj committed
293
        return (3, 32, 32)
294

patil-suraj's avatar
patil-suraj committed
295
    @property
Patrick von Platen's avatar
Patrick von Platen committed
296
    def output_shape(self):
patil-suraj's avatar
patil-suraj committed
297
        return (6, 32, 32)
298

patil-suraj's avatar
patil-suraj committed
299
300
301
    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "attention_resolutions": (2,),
302
            "channel_mult": (1, 2),
patil-suraj's avatar
patil-suraj committed
303
304
305
306
307
308
309
310
            "in_channels": 6,
            "out_channels": 6,
            "model_channels": 32,
            "num_head_channels": 8,
            "num_heads_upsample": 1,
            "num_res_blocks": 2,
            "resblock_updown": True,
            "resolution": 32,
311
            "use_scale_shift_norm": True,
patil-suraj's avatar
patil-suraj committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_output(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

        output, _ = torch.split(output, 3, dim=1)
326

patil-suraj's avatar
patil-suraj committed
327
        self.assertIsNotNone(output)
328
        expected_shape = inputs_dict["sample"].shape
patil-suraj's avatar
patil-suraj committed
329
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
330

patil-suraj's avatar
patil-suraj committed
331
    def test_from_pretrained_hub(self):
Patrick von Platen's avatar
Patrick von Platen committed
332
        model, loading_info = GlideSuperResUNetModel.from_pretrained(
333
334
            "fusing/glide-super-res-dummy", output_loading_info=True
        )
patil-suraj's avatar
patil-suraj committed
335
336
337
338
339
340
341
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"
342

patil-suraj's avatar
patil-suraj committed
343
    def test_output_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
344
        model = GlideSuperResUNetModel.from_pretrained("fusing/glide-super-res-dummy")
patil-suraj's avatar
patil-suraj committed
345
346
347
348

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)
349

350
        noise = torch.randn(1, 3, 64, 64)
patil-suraj's avatar
patil-suraj committed
351
352
        low_res = torch.randn(1, 3, 4, 4)
        time_step = torch.tensor([42] * noise.shape[0])
353

patil-suraj's avatar
patil-suraj committed
354
355
        with torch.no_grad():
            output = model(noise, time_step, low_res)
356

patil-suraj's avatar
patil-suraj committed
357
358
359
        output, _ = torch.split(output, 3, dim=1)
        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
360
        expected_output_slice = torch.tensor([-22.8782, -23.2652, -15.3966, -22.8034, -23.3159, -15.5640, -15.3970, -15.4614, - 10.4370])
patil-suraj's avatar
patil-suraj committed
361
362
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
patil-suraj's avatar
patil-suraj committed
363

anton-l's avatar
anton-l committed
364

Patrick von Platen's avatar
Patrick von Platen committed
365
366
class GlideTextToImageUNetModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = GlideTextToImageUNetModel
367
368
369
370
371
372
373
374
375
376
377
378
379

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)
        transformer_dim = 32
        seq_len = 16

        noise = torch.randn((batch_size, num_channels) + sizes).to(torch_device)
        emb = torch.randn((batch_size, seq_len, transformer_dim)).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

380
        return {"sample": noise, "timesteps": time_step, "transformer_out": emb}
381
382

    @property
Patrick von Platen's avatar
Patrick von Platen committed
383
    def input_shape(self):
384
385
386
        return (3, 32, 32)

    @property
Patrick von Platen's avatar
Patrick von Platen committed
387
    def output_shape(self):
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
        return (6, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "attention_resolutions": (2,),
            "channel_mult": (1, 2),
            "in_channels": 3,
            "out_channels": 6,
            "model_channels": 32,
            "num_head_channels": 8,
            "num_heads_upsample": 1,
            "num_res_blocks": 2,
            "resblock_updown": True,
            "resolution": 32,
            "use_scale_shift_norm": True,
            "transformer_dim": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_output(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

        output, _ = torch.split(output, 3, dim=1)

        self.assertIsNotNone(output)
420
        expected_shape = inputs_dict["sample"].shape
421
422
423
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

    def test_from_pretrained_hub(self):
Patrick von Platen's avatar
Patrick von Platen committed
424
        model, loading_info = GlideTextToImageUNetModel.from_pretrained(
425
426
427
428
429
430
431
432
433
434
435
            "fusing/unet-glide-text2im-dummy", output_loading_info=True
        )
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
436
        model = GlideTextToImageUNetModel.from_pretrained("fusing/unet-glide-text2im-dummy")
437
438
439
440
441
442
443
444
445
446
447

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn((1, model.config.in_channels, model.config.resolution, model.config.resolution)).to(
            torch_device
        )
        emb = torch.randn((1, 16, model.config.transformer_dim)).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

Patrick von Platen's avatar
Patrick von Platen committed
448
        model.to(torch_device)
449
450
451
452
        with torch.no_grad():
            output = model(noise, time_step, emb)

        output, _ = torch.split(output, 3, dim=1)
Patrick von Platen's avatar
Patrick von Platen committed
453
        output_slice = output[0, -1, -3:, -3:].cpu().flatten()
454
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
455
        expected_output_slice = torch.tensor([2.7766, -10.3558, -14.9149, -0.9376, -14.9175, -17.7679, -5.5565, -12.9521, -12.9845])
456
457
458
459
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))


patil-suraj's avatar
patil-suraj committed
460
class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase):
461
    model_class = UNetUnconditionalModel
patil-suraj's avatar
patil-suraj committed
462
463
464
465
466
467
468
469
470
471

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 4
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

472
        return {"sample": noise, "timesteps": time_step}
patil-suraj's avatar
patil-suraj committed
473
474

    @property
Patrick von Platen's avatar
Patrick von Platen committed
475
    def input_shape(self):
patil-suraj's avatar
patil-suraj committed
476
477
478
        return (4, 32, 32)

    @property
Patrick von Platen's avatar
Patrick von Platen committed
479
    def output_shape(self):
patil-suraj's avatar
patil-suraj committed
480
481
482
483
484
485
486
487
488
        return (4, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "image_size": 32,
            "in_channels": 4,
            "out_channels": 4,
            "num_res_blocks": 2,
            "attention_resolutions": (16,),
489
            "block_input_channels": [32, 32],
Patrick von Platen's avatar
Patrick von Platen committed
490
            "block_output_channels": [32, 64],
491
            "num_head_channels": 32,
patil-suraj's avatar
patil-suraj committed
492
            "conv_resample": True,
493
494
            "down_blocks": ("UNetResDownBlock2D", "UNetResDownBlock2D"),
            "up_blocks": ("UNetResUpBlock2D", "UNetResUpBlock2D"),
patil-suraj's avatar
patil-suraj committed
495
496
497
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
anton-l's avatar
anton-l committed
498

patil-suraj's avatar
patil-suraj committed
499
    def test_from_pretrained_hub(self):
500
        model, loading_info = UNetUnconditionalModel.from_pretrained("fusing/unet-ldm-dummy", output_loading_info=True)
patil-suraj's avatar
patil-suraj committed
501
502
503
504
505
506
507
508
509
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
510
        model = UNetUnconditionalModel.from_pretrained("fusing/unet-ldm-dummy")
patil-suraj's avatar
patil-suraj committed
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
        time_step = torch.tensor([10] * noise.shape[0])

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800])
        # fmt: on

        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

Patrick von Platen's avatar
Patrick von Platen committed
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
    def test_output_pretrained_spatial_transformer(self):
        model = UNetLDMModel.from_pretrained("fusing/unet-ldm-dummy-spatial")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
        context = torch.ones((1, 16, 64), dtype=torch.float32)
        time_step = torch.tensor([10] * noise.shape[0])

        with torch.no_grad():
            output = model(noise, time_step, context=context)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([61.3445, 56.9005, 29.4339, 59.5497, 60.7375, 34.1719, 48.1951, 42.6569, 25.0890])
        # fmt: on

        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

patil-suraj's avatar
patil-suraj committed
552

553
554
555
556
557
558
559
560
561
562
563
564
class NCSNppModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = NCSNpp

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [10]).to(torch_device)

565
        return {"sample": noise, "timesteps": time_step}
566
567

    @property
Patrick von Platen's avatar
Patrick von Platen committed
568
    def input_shape(self):
569
570
571
        return (3, 32, 32)

    @property
Patrick von Platen's avatar
Patrick von Platen committed
572
    def output_shape(self):
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "image_size": 32,
            "ch_mult": [1, 2, 2, 2],
            "nf": 32,
            "fir": True,
            "progressive": "output_skip",
            "progressive_combine": "sum",
            "progressive_input": "input_skip",
            "scale_by_sigma": True,
            "skip_rescale": True,
            "embedding_type": "fourier",
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_from_pretrained_hub(self):
        model, loading_info = NCSNpp.from_pretrained("fusing/cifar10-ncsnpp-ve", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained_ve_small(self):
        model = NCSNpp.from_pretrained("fusing/ncsnpp-cifar10-ve-dummy")
        model.eval()
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

Patrick von Platen's avatar
Patrick von Platen committed
614
615
        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)
616
617
618
619
620
621

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
622
        expected_output_slice = torch.tensor([0.1315, 0.0741, 0.0393, 0.0455, 0.0556, 0.0180, -0.0832, -0.0644, -0.0856])
623
624
        # fmt: on

Patrick von Platen's avatar
Patrick von Platen committed
625
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
626
627
628
629
630
631
632
633
634
635
636
637
638
639

    def test_output_pretrained_ve_large(self):
        model = NCSNpp.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy")
        model.eval()
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

Patrick von Platen's avatar
Patrick von Platen committed
640
641
        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)
642
643
644
645
646
647

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
648
        expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256])
649
650
        # fmt: on

Patrick von Platen's avatar
Patrick von Platen committed
651
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
652
653

    def test_output_pretrained_vp(self):
Patrick von Platen's avatar
Patrick von Platen committed
654
        model = NCSNpp.from_pretrained("fusing/cifar10-ddpmpp-vp")
655
656
657
658
659
660
661
662
663
664
665
        model.eval()
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

Patrick von Platen's avatar
Patrick von Platen committed
666
        noise = torch.randn((batch_size, num_channels) + sizes).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
667
        time_step = torch.tensor(batch_size * [9.0]).to(torch_device)
668
669
670
671
672
673

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
674
        expected_output_slice = torch.tensor([0.3303, -0.2275, -2.8872, -0.1309, -1.2861, 3.4567, -1.0083, 2.5325, -1.3866])
675
676
        # fmt: on

Patrick von Platen's avatar
Patrick von Platen committed
677
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
678
679


patil-suraj's avatar
patil-suraj committed
680
681
682
683
684
685
686
687
688
689
690
class VQModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = VQModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

691
        return {"sample": image}
patil-suraj's avatar
patil-suraj committed
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 64,
            "out_ch": 3,
            "num_res_blocks": 1,
            "attn_resolutions": [],
            "in_channels": 3,
            "resolution": 32,
            "z_channels": 3,
            "n_embed": 256,
            "embed_dim": 3,
            "sane_index_shape": False,
            "ch_mult": (1,),
            "dropout": 0.0,
            "double_z": False,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_training(self):
        pass

    def test_from_pretrained_hub(self):
        model, loading_info = VQModel.from_pretrained("fusing/vqgan-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = VQModel.from_pretrained("fusing/vqgan-dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        image = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
        with torch.no_grad():
            output = model(image)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
Patrick von Platen's avatar
up  
Patrick von Platen committed
750
        expected_output_slice = torch.tensor([-1.1321, 0.1056, 0.3505, -0.6461, -0.2014, 0.0419, -0.5763, -0.8462, -0.4218])
patil-suraj's avatar
patil-suraj committed
751
        # fmt: on
Patrick von Platen's avatar
up  
Patrick von Platen committed
752
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
patil-suraj's avatar
patil-suraj committed
753
754


patil-suraj's avatar
patil-suraj committed
755
756
757
758
759
760
761
762
763
764
765
class AutoEncoderKLTests(ModelTesterMixin, unittest.TestCase):
    model_class = AutoencoderKL

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

766
        return {"sample": image}
patil-suraj's avatar
patil-suraj committed
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 64,
            "ch_mult": (1,),
            "embed_dim": 4,
            "in_channels": 3,
            "num_res_blocks": 1,
            "out_ch": 3,
            "resolution": 32,
            "z_channels": 4,
patil-suraj's avatar
patil-suraj committed
786
            "attn_resolutions": [],
patil-suraj's avatar
patil-suraj committed
787
788
789
790
791
792
793
794
795
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_training(self):
        pass
patil-suraj's avatar
patil-suraj committed
796

patil-suraj's avatar
patil-suraj committed
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
    def test_from_pretrained_hub(self):
        model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        image = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
        with torch.no_grad():
            output = model(image, sample_posterior=True)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
Patrick von Platen's avatar
up  
Patrick von Platen committed
821
        expected_output_slice = torch.tensor([-0.0814, -0.0229, -0.1320, -0.4123, -0.0366, -0.3473, 0.0438, -0.1662, 0.1750])
patil-suraj's avatar
patil-suraj committed
822
        # fmt: on
Patrick von Platen's avatar
up  
Patrick von Platen committed
823
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
patil-suraj's avatar
patil-suraj committed
824
825


826
827
828
829
class PipelineTesterMixin(unittest.TestCase):
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
Patrick von Platen's avatar
Patrick von Platen committed
830
        schedular = DDPMScheduler(timesteps=10)
831

Patrick von Platen's avatar
Patrick von Platen committed
832
        ddpm = DDPMPipeline(model, schedular)
833
834
835

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
836
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
837
838

        generator = torch.manual_seed(0)
839

patil-suraj's avatar
patil-suraj committed
840
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
841
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
842
        new_image = new_ddpm(generator=generator)
843
844
845
846
847
848
849

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
850
        ddpm = DDPMPipeline.from_pretrained(model_path)
851
852
853
854
855
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)

        ddpm.noise_scheduler.num_timesteps = 10
        ddpm_from_hub.noise_scheduler.num_timesteps = 10

Patrick von Platen's avatar
Patrick von Platen committed
856
        generator = torch.manual_seed(0)
857

patil-suraj's avatar
patil-suraj committed
858
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
859
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
860
        new_image = ddpm_from_hub(generator=generator)
861
862

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
863
864
865
866
867

    @slow
    def test_ddpm_cifar10(self):
        model_id = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
868
        unet = UNetModel.from_pretrained(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
869
        noise_scheduler = DDPMScheduler.from_config(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
870
        noise_scheduler = noise_scheduler.set_format("pt")
Patrick von Platen's avatar
Patrick von Platen committed
871

Patrick von Platen's avatar
Patrick von Platen committed
872
        ddpm = DDPMPipeline(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
873
874

        generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
875
876
877
878
879
        image = ddpm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
Patrick von Platen's avatar
Patrick von Platen committed
880
881
882
        expected_slice = torch.tensor(
            [-0.5712, -0.6215, -0.5953, -0.5438, -0.4775, -0.4539, -0.5172, -0.4872, -0.5105]
        )
Patrick von Platen's avatar
Patrick von Platen committed
883
884
885
886
887
888
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        model_id = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
889
        unet = UNetModel.from_pretrained(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
890
        noise_scheduler = DDIMScheduler(tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
891

Patrick von Platen's avatar
Patrick von Platen committed
892
        ddim = DDIMPipeline(unet=unet, noise_scheduler=noise_scheduler)
893
894

        generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
895
896
897
898
899
        image = ddim(generator=generator, eta=0.0)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
Patrick von Platen's avatar
Patrick von Platen committed
900
        expected_slice = torch.tensor(
901
            [-0.6553, -0.6765, -0.6799, -0.6749, -0.7006, -0.6974, -0.6991, -0.7116, -0.7094]
Patrick von Platen's avatar
Patrick von Platen committed
902
        )
Patrick von Platen's avatar
Patrick von Platen committed
903
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
patil-suraj's avatar
patil-suraj committed
904

Patrick von Platen's avatar
Patrick von Platen committed
905
906
907
908
909
910
911
    @slow
    def test_pndm_cifar10(self):
        model_id = "fusing/ddpm-cifar10"

        unet = UNetModel.from_pretrained(model_id)
        noise_scheduler = PNDMScheduler(tensor_format="pt")

Patrick von Platen's avatar
Patrick von Platen committed
912
        pndm = PNDMPipeline(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
913
        generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
914
915
916
917
918
919
        image = pndm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor(
Patrick von Platen's avatar
Patrick von Platen committed
920
            [-0.6872, -0.7071, -0.7188, -0.7057, -0.7515, -0.7191, -0.7377, -0.7565, -0.7500]
Patrick von Platen's avatar
Patrick von Platen committed
921
922
923
        )
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

patil-suraj's avatar
patil-suraj committed
924
    @slow
patil-suraj's avatar
patil-suraj committed
925
    @unittest.skip("Skipping for now as it takes too long")
patil-suraj's avatar
patil-suraj committed
926
927
    def test_ldm_text2img(self):
        model_id = "fusing/latent-diffusion-text2im-large"
Patrick von Platen's avatar
Patrick von Platen committed
928
        ldm = LatentDiffusionPipeline.from_pretrained(model_id)
patil-suraj's avatar
patil-suraj committed
929
930
931
932
933
934
935
936
937

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, num_inference_steps=20)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 256, 256)
        expected_slice = torch.tensor([0.7295, 0.7358, 0.7256, 0.7435, 0.7095, 0.6884, 0.7325, 0.6921, 0.6458])
Patrick von Platen's avatar
update  
Patrick von Platen committed
938
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
939

patil-suraj's avatar
patil-suraj committed
940
941
942
943
944
945
946
    @slow
    def test_ldm_text2img_fast(self):
        model_id = "fusing/latent-diffusion-text2im-large"
        ldm = LatentDiffusionPipeline.from_pretrained(model_id)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
947
        image = ldm([prompt], generator=generator, num_inference_steps=1)
patil-suraj's avatar
patil-suraj committed
948
949
950
951

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 256, 256)
patil-suraj's avatar
patil-suraj committed
952
        expected_slice = torch.tensor([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344])
patil-suraj's avatar
patil-suraj committed
953
954
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

anton-l's avatar
anton-l committed
955
956
957
    @slow
    def test_glide_text2img(self):
        model_id = "fusing/glide-base"
Patrick von Platen's avatar
Patrick von Platen committed
958
        glide = GlidePipeline.from_pretrained(model_id)
anton-l's avatar
anton-l committed
959
960
961
962
963
964
965
966
967
968
969

        prompt = "a pencil sketch of a corgi"
        generator = torch.manual_seed(0)
        image = glide(prompt, generator=generator, num_inference_steps_upscale=20)

        image_slice = image[0, :3, :3, -1].cpu()

        assert image.shape == (1, 256, 256, 3)
        expected_slice = torch.tensor([0.7119, 0.7073, 0.6460, 0.7780, 0.7423, 0.6926, 0.7378, 0.7189, 0.7784])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

Patrick von Platen's avatar
Patrick von Platen committed
970
971
972
973
974
975
976
    @slow
    def test_score_sde_ve_pipeline(self):
        model = NCSNpp.from_pretrained("fusing/ffhq_ncsnpp")
        scheduler = ScoreSdeVeScheduler.from_config("fusing/ffhq_ncsnpp")

        sde_ve = ScoreSdeVePipeline(model=model, scheduler=scheduler)

977
        torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
978
979
        image = sde_ve(num_inference_steps=2)

980
981
        expected_image_sum = 3382849024.0
        expected_image_mean = 1075.3788
Patrick von Platen's avatar
Patrick von Platen committed
982
983
984
985

        assert (image.abs().sum() - expected_image_sum).abs().cpu().item() < 1e-2
        assert (image.abs().mean() - expected_image_mean).abs().cpu().item() < 1e-4

Patrick von Platen's avatar
Patrick von Platen committed
986
987
    @slow
    def test_score_sde_vp_pipeline(self):
Patrick von Platen's avatar
Patrick von Platen committed
988
989
        model = NCSNpp.from_pretrained("fusing/cifar10-ddpmpp-vp")
        scheduler = ScoreSdeVpScheduler.from_config("fusing/cifar10-ddpmpp-vp")
Patrick von Platen's avatar
Patrick von Platen committed
990
991
992
993
994
995
996
997
998
999
1000
1001

        sde_vp = ScoreSdeVpPipeline(model=model, scheduler=scheduler)

        torch.manual_seed(0)
        image = sde_vp(num_inference_steps=10)

        expected_image_sum = 4183.2012
        expected_image_mean = 1.3617

        assert (image.abs().sum() - expected_image_sum).abs().cpu().item() < 1e-2
        assert (image.abs().mean() - expected_image_mean).abs().cpu().item() < 1e-4

patil-suraj's avatar
patil-suraj committed
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
    @slow
    def test_ldm_uncond(self):
        ldm = LatentDiffusionUncondPipeline.from_pretrained("fusing/latent-diffusion-celeba-256")

        generator = torch.manual_seed(0)
        image = ldm(generator=generator, num_inference_steps=5)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 256, 256)
patil-suraj's avatar
patil-suraj committed
1012
1013
1014
        expected_slice = torch.tensor(
            [-0.1202, -0.1005, -0.0635, -0.0520, -0.1282, -0.0838, -0.0981, -0.1318, -0.1106]
        )
patil-suraj's avatar
patil-suraj committed
1015
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2