test_scheduler.py 104 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
hlky's avatar
hlky committed
15
import inspect
16
17
import json
import os
Patrick von Platen's avatar
Patrick von Platen committed
18
import tempfile
Patrick von Platen's avatar
Patrick von Platen committed
19
import unittest
20
from typing import Dict, List, Tuple
Patrick von Platen's avatar
Patrick von Platen committed
21

Patrick von Platen's avatar
Patrick von Platen committed
22
23
import numpy as np
import torch
Will Berman's avatar
Will Berman committed
24
import torch.nn.functional as F
Patrick von Platen's avatar
Patrick von Platen committed
25

26
import diffusers
27
28
29
from diffusers import (
    DDIMScheduler,
    DDPMScheduler,
30
    DPMSolverMultistepScheduler,
31
    DPMSolverSinglestepScheduler,
hlky's avatar
hlky committed
32
33
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
34
    HeunDiscreteScheduler,
35
    IPNDMScheduler,
36
37
    KDPM2AncestralDiscreteScheduler,
    KDPM2DiscreteScheduler,
38
39
40
    LMSDiscreteScheduler,
    PNDMScheduler,
    ScoreSdeVeScheduler,
Will Berman's avatar
Will Berman committed
41
    VQDiffusionScheduler,
42
    logging,
43
)
44
45
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
46
from diffusers.utils import deprecate, torch_device
47
from diffusers.utils.testing_utils import CaptureLogger
Patrick von Platen's avatar
Patrick von Platen committed
48
49
50
51
52


torch.backends.cuda.matmul.allow_tf32 = False


53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
class SchedulerObject(SchedulerMixin, ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        e=[1, 3],
    ):
        pass


class SchedulerObject2(SchedulerMixin, ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        f=[1, 3],
    ):
        pass


class SchedulerObject3(SchedulerMixin, ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        e=[1, 3],
        f=[1, 3],
    ):
        pass


class SchedulerBaseTests(unittest.TestCase):
    def test_save_load_from_different_config(self):
        obj = SchedulerObject()

        # mock add obj class to `diffusers`
        setattr(diffusers, "SchedulerObject", SchedulerObject)
        logger = logging.get_logger("diffusers.configuration_utils")

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
            with CaptureLogger(logger) as cap_logger_1:
                config = SchedulerObject2.load_config(tmpdirname)
                new_obj_1 = SchedulerObject2.from_config(config)

            # now save a config parameter that is not expected
            with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f:
                data = json.load(f)
                data["unexpected"] = True

            with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f:
                json.dump(data, f)

            with CaptureLogger(logger) as cap_logger_2:
                config = SchedulerObject.load_config(tmpdirname)
                new_obj_2 = SchedulerObject.from_config(config)

            with CaptureLogger(logger) as cap_logger_3:
                config = SchedulerObject2.load_config(tmpdirname)
                new_obj_3 = SchedulerObject2.from_config(config)

        assert new_obj_1.__class__ == SchedulerObject2
        assert new_obj_2.__class__ == SchedulerObject
        assert new_obj_3.__class__ == SchedulerObject2

        assert cap_logger_1.out == ""
        assert (
            cap_logger_2.out
            == "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and"
            " will"
            " be ignored. Please verify your config.json configuration file.\n"
        )
        assert cap_logger_2.out.replace("SchedulerObject", "SchedulerObject2") == cap_logger_3.out

    def test_save_load_compatible_schedulers(self):
        SchedulerObject2._compatibles = ["SchedulerObject"]
        SchedulerObject._compatibles = ["SchedulerObject2"]

        obj = SchedulerObject()

        # mock add obj class to `diffusers`
        setattr(diffusers, "SchedulerObject", SchedulerObject)
        setattr(diffusers, "SchedulerObject2", SchedulerObject2)
        logger = logging.get_logger("diffusers.configuration_utils")

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)

            # now save a config parameter that is expected by another class, but not origin class
            with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f:
                data = json.load(f)
                data["f"] = [0, 0]
                data["unexpected"] = True

            with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f:
                json.dump(data, f)

            with CaptureLogger(logger) as cap_logger:
                config = SchedulerObject.load_config(tmpdirname)
                new_obj = SchedulerObject.from_config(config)

        assert new_obj.__class__ == SchedulerObject

        assert (
            cap_logger.out
            == "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and"
            " will"
            " be ignored. Please verify your config.json configuration file.\n"
        )

    def test_save_load_from_different_config_comp_schedulers(self):
        SchedulerObject3._compatibles = ["SchedulerObject", "SchedulerObject2"]
        SchedulerObject2._compatibles = ["SchedulerObject", "SchedulerObject3"]
        SchedulerObject._compatibles = ["SchedulerObject2", "SchedulerObject3"]

        obj = SchedulerObject()

        # mock add obj class to `diffusers`
        setattr(diffusers, "SchedulerObject", SchedulerObject)
        setattr(diffusers, "SchedulerObject2", SchedulerObject2)
        setattr(diffusers, "SchedulerObject3", SchedulerObject3)
        logger = logging.get_logger("diffusers.configuration_utils")
        logger.setLevel(diffusers.logging.INFO)

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)

            with CaptureLogger(logger) as cap_logger_1:
                config = SchedulerObject.load_config(tmpdirname)
                new_obj_1 = SchedulerObject.from_config(config)

            with CaptureLogger(logger) as cap_logger_2:
                config = SchedulerObject2.load_config(tmpdirname)
                new_obj_2 = SchedulerObject2.from_config(config)

            with CaptureLogger(logger) as cap_logger_3:
                config = SchedulerObject3.load_config(tmpdirname)
                new_obj_3 = SchedulerObject3.from_config(config)

        assert new_obj_1.__class__ == SchedulerObject
        assert new_obj_2.__class__ == SchedulerObject2
        assert new_obj_3.__class__ == SchedulerObject3

        assert cap_logger_1.out == ""
        assert cap_logger_2.out == "{'f'} was not found in config. Values will be initialized to default values.\n"
        assert cap_logger_3.out == "{'f'} was not found in config. Values will be initialized to default values.\n"


Patrick von Platen's avatar
Patrick von Platen committed
216
class SchedulerCommonTest(unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
217
218
    scheduler_classes = ()
    forward_default_kwargs = ()
Patrick von Platen's avatar
Patrick von Platen committed
219
220

    @property
221
    def dummy_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
222
223
224
225
226
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

227
        sample = torch.rand((batch_size, num_channels, height, width))
Patrick von Platen's avatar
Patrick von Platen committed
228

229
        return sample
Patrick von Platen's avatar
Patrick von Platen committed
230
231

    @property
232
    def dummy_sample_deter(self):
Patrick von Platen's avatar
Patrick von Platen committed
233
234
235
236
237
238
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        num_elems = batch_size * num_channels * height * width
239
        sample = torch.arange(num_elems)
240
241
        sample = sample.reshape(num_channels, height, width, batch_size)
        sample = sample / num_elems
242
        sample = sample.permute(3, 0, 1, 2)
Patrick von Platen's avatar
Patrick von Platen committed
243

244
        return sample
Patrick von Platen's avatar
Patrick von Platen committed
245
246
247
248
249

    def get_scheduler_config(self):
        raise NotImplementedError

    def dummy_model(self):
250
251
        def model(sample, t, *args):
            return sample * t / (t + 1)
Patrick von Platen's avatar
Patrick von Platen committed
252
253
254

        return model

Patrick von Platen's avatar
Patrick von Platen committed
255
256
257
    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)

258
259
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
260
        for scheduler_class in self.scheduler_classes:
261
            # TODO(Suraj) - delete the following two lines once DDPM, DDIM, and PNDM have timesteps casted to float by default
hlky's avatar
hlky committed
262
263
264
            if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
                time_step = float(time_step)

Patrick von Platen's avatar
Patrick von Platen committed
265
266
267
            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)

Will Berman's avatar
Will Berman committed
268
269
270
271
272
273
274
275
276
            if scheduler_class == VQDiffusionScheduler:
                num_vec_classes = scheduler_config["num_vec_classes"]
                sample = self.dummy_sample(num_vec_classes)
                model = self.dummy_model(num_vec_classes)
                residual = model(sample, time_step)
            else:
                sample = self.dummy_sample
                residual = 0.1 * sample

Patrick von Platen's avatar
Patrick von Platen committed
277
278
            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
279
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
280

281
282
283
284
285
286
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

hlky's avatar
hlky committed
287
288
289
            # Set the seed before step() as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
290
            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
hlky's avatar
hlky committed
291
292
293

            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
294
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
295

296
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
297
298
299
300
301

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        kwargs.update(forward_kwargs)

302
303
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
304
        for scheduler_class in self.scheduler_classes:
hlky's avatar
hlky committed
305
306
307
            if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
                time_step = float(time_step)

Patrick von Platen's avatar
Patrick von Platen committed
308
309
310
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

Will Berman's avatar
Will Berman committed
311
312
313
314
315
316
317
318
319
            if scheduler_class == VQDiffusionScheduler:
                num_vec_classes = scheduler_config["num_vec_classes"]
                sample = self.dummy_sample(num_vec_classes)
                model = self.dummy_model(num_vec_classes)
                residual = model(sample, time_step)
            else:
                sample = self.dummy_sample
                residual = 0.1 * sample

Patrick von Platen's avatar
Patrick von Platen committed
320
321
            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
322
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
323

324
325
326
327
328
329
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

hlky's avatar
hlky committed
330
331
            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
332
            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
hlky's avatar
hlky committed
333
334
335

            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
336
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
337

338
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
339

340
    def test_from_save_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
341
342
        kwargs = dict(self.forward_default_kwargs)

343
344
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
345
        for scheduler_class in self.scheduler_classes:
Will Berman's avatar
Will Berman committed
346
347
348
            timestep = 1
            if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
                timestep = float(timestep)
Patrick von Platen's avatar
Patrick von Platen committed
349
350
351
352

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

Will Berman's avatar
Will Berman committed
353
354
355
356
357
358
359
360
            if scheduler_class == VQDiffusionScheduler:
                num_vec_classes = scheduler_config["num_vec_classes"]
                sample = self.dummy_sample(num_vec_classes)
                model = self.dummy_model(num_vec_classes)
                residual = model(sample, timestep)
            else:
                sample = self.dummy_sample
                residual = 0.1 * sample
hlky's avatar
hlky committed
361

Patrick von Platen's avatar
Patrick von Platen committed
362
363
            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
364
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
365

366
367
368
369
370
371
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

hlky's avatar
hlky committed
372
373
374
375
376
377
378
            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
            output = scheduler.step(residual, timestep, sample, **kwargs).prev_sample

            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
            new_output = new_scheduler.step(residual, timestep, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
379

380
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
381

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
    def test_compatibles(self):
        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()

            scheduler = scheduler_class(**scheduler_config)

            assert all(c is not None for c in scheduler.compatibles)

            for comp_scheduler_cls in scheduler.compatibles:
                comp_scheduler = comp_scheduler_cls.from_config(scheduler.config)
                assert comp_scheduler is not None

            new_scheduler = scheduler_class.from_config(comp_scheduler.config)

            new_scheduler_config = {k: v for k, v in new_scheduler.config.items() if k in scheduler.config}
            scheduler_diff = {k: v for k, v in new_scheduler.config.items() if k not in scheduler.config}

            # make sure that configs are essentially identical
            assert new_scheduler_config == dict(scheduler.config)

            # make sure that only differences are for configs that are not in init
            init_keys = inspect.signature(scheduler_class.__init__).parameters.keys()
            assert set(scheduler_diff.keys()).intersection(set(init_keys)) == set()

    def test_from_pretrained(self):
        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()

            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_pretrained(tmpdirname)
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)

            assert scheduler.config == new_scheduler.config

Patrick von Platen's avatar
Patrick von Platen committed
418
419
420
    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

421
422
        num_inference_steps = kwargs.pop("num_inference_steps", None)

hlky's avatar
hlky committed
423
424
425
        timestep_0 = 0
        timestep_1 = 1

Patrick von Platen's avatar
Patrick von Platen committed
426
        for scheduler_class in self.scheduler_classes:
hlky's avatar
hlky committed
427
428
429
430
            if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
                timestep_0 = float(timestep_0)
                timestep_1 = float(timestep_1)

Patrick von Platen's avatar
Patrick von Platen committed
431
432
433
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

Will Berman's avatar
Will Berman committed
434
435
436
437
438
439
440
441
            if scheduler_class == VQDiffusionScheduler:
                num_vec_classes = scheduler_config["num_vec_classes"]
                sample = self.dummy_sample(num_vec_classes)
                model = self.dummy_model(num_vec_classes)
                residual = model(sample, timestep_0)
            else:
                sample = self.dummy_sample
                residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
442

443
444
445
446
447
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

hlky's avatar
hlky committed
448
449
            output_0 = scheduler.step(residual, timestep_0, sample, **kwargs).prev_sample
            output_1 = scheduler.step(residual, timestep_1, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
450

451
            self.assertEqual(output_0.shape, sample.shape)
Patrick von Platen's avatar
Patrick von Platen committed
452
453
            self.assertEqual(output_0.shape, output_1.shape)

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
    def test_scheduler_outputs_equivalence(self):
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

        def recursive_check(tuple_object, dict_object):
            if isinstance(tuple_object, (List, Tuple)):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif isinstance(tuple_object, Dict):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif tuple_object is None:
                return
            else:
                self.assertTrue(
                    torch.allclose(
                        set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                    ),
                    msg=(
                        "Tuple and dict output are not equal. Difference:"
                        f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                        f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                        f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                    ),
                )

        kwargs = dict(self.forward_default_kwargs)
482
        num_inference_steps = kwargs.pop("num_inference_steps", 50)
483

484
485
486
487
        timestep = 0
        if len(self.scheduler_classes) > 0 and self.scheduler_classes[0] == IPNDMScheduler:
            timestep = 1

488
        for scheduler_class in self.scheduler_classes:
hlky's avatar
hlky committed
489
490
491
            if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
                timestep = float(timestep)

492
493
494
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

Will Berman's avatar
Will Berman committed
495
496
497
498
499
500
501
502
            if scheduler_class == VQDiffusionScheduler:
                num_vec_classes = scheduler_config["num_vec_classes"]
                sample = self.dummy_sample(num_vec_classes)
                model = self.dummy_model(num_vec_classes)
                residual = model(sample, timestep)
            else:
                sample = self.dummy_sample
                residual = 0.1 * sample
503
504
505
506
507
508

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

hlky's avatar
hlky committed
509
510
511
            # Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
512
            outputs_dict = scheduler.step(residual, timestep, sample, **kwargs)
513
514
515
516
517
518

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

hlky's avatar
hlky committed
519
520
521
            # Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
522
            outputs_tuple = scheduler.step(residual, timestep, sample, return_dict=False, **kwargs)
523
524
525

            recursive_check(outputs_tuple, outputs_dict)

526
527
528
529
    def test_scheduler_public_api(self):
        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)
Will Berman's avatar
Will Berman committed
530
531
532
533
534
535
536
537
538
539
540

            if scheduler_class != VQDiffusionScheduler:
                self.assertTrue(
                    hasattr(scheduler, "init_noise_sigma"),
                    f"{scheduler_class} does not implement a required attribute `init_noise_sigma`",
                )
                self.assertTrue(
                    hasattr(scheduler, "scale_model_input"),
                    f"{scheduler_class} does not implement a required class method `scale_model_input(sample,"
                    " timestep)`",
                )
541
542
543
544
545
            self.assertTrue(
                hasattr(scheduler, "step"),
                f"{scheduler_class} does not implement a required class method `step(...)`",
            )

Will Berman's avatar
Will Berman committed
546
547
548
549
            if scheduler_class != VQDiffusionScheduler:
                sample = self.dummy_sample
                scaled_sample = scheduler.scale_model_input(sample, 0.0)
                self.assertEqual(sample.shape, scaled_sample.shape)
550

551
552
553
554
555
556
    def test_add_noise_device(self):
        for scheduler_class in self.scheduler_classes:
            if scheduler_class == IPNDMScheduler:
                continue
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)
557
            scheduler.set_timesteps(100)
558
559
560
561
562
563

            sample = self.dummy_sample.to(torch_device)
            scaled_sample = scheduler.scale_model_input(sample, 0.0)
            self.assertEqual(sample.shape, scaled_sample.shape)

            noise = torch.randn_like(scaled_sample).to(torch_device)
564
            t = scheduler.timesteps[5][None]
565
566
567
            noised = scheduler.add_noise(scaled_sample, noise, t)
            self.assertEqual(noised.shape, scaled_sample.shape)

568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
    def test_deprecated_kwargs(self):
        for scheduler_class in self.scheduler_classes:
            has_kwarg_in_model_class = "kwargs" in inspect.signature(scheduler_class.__init__).parameters
            has_deprecated_kwarg = len(scheduler_class._deprecated_kwargs) > 0

            if has_kwarg_in_model_class and not has_deprecated_kwarg:
                raise ValueError(
                    f"{scheduler_class} has `**kwargs` in its __init__ method but has not defined any deprecated"
                    " kwargs under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if"
                    " there are no deprecated arguments or add the deprecated argument with `_deprecated_kwargs ="
                    " [<deprecated_argument>]`"
                )

            if not has_kwarg_in_model_class and has_deprecated_kwarg:
                raise ValueError(
                    f"{scheduler_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated"
                    " kwargs under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs`"
                    f" argument to {self.model_class}.__init__ if there are deprecated arguments or remove the"
                    " deprecated argument from `_deprecated_kwargs = [<deprecated_argument>]`"
                )

589
590
591
592
593
594
595
596
597
598
599
600
601
602
    def test_trained_betas(self):
        for scheduler_class in self.scheduler_classes:
            if scheduler_class == VQDiffusionScheduler:
                continue

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config, trained_betas=np.array([0.0, 0.1]))

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_pretrained(tmpdirname)
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)

            assert scheduler.betas.tolist() == new_scheduler.betas.tolist()

Patrick von Platen's avatar
Patrick von Platen committed
603
604

class DDPMSchedulerTest(SchedulerCommonTest):
Patrick von Platen's avatar
Patrick von Platen committed
605
    scheduler_classes = (DDPMScheduler,)
Patrick von Platen's avatar
Patrick von Platen committed
606
607
608

    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
609
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
610
611
612
613
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
            "variance_type": "fixed_small",
Patrick von Platen's avatar
Patrick von Platen committed
614
            "clip_sample": True,
Patrick von Platen's avatar
Patrick von Platen committed
615
616
617
618
        }

        config.update(**kwargs)
        return config
Patrick von Platen's avatar
update  
Patrick von Platen committed
619

Patrick von Platen's avatar
Patrick von Platen committed
620
621
    def test_timesteps(self):
        for timesteps in [1, 5, 100, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
622
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
623
624
625
626
627
628
629
630
631
632
633
634
635

    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_variance_type(self):
        for variance in ["fixed_small", "fixed_large", "other"]:
            self.check_over_configs(variance_type=variance)

636
    def test_clip_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
637
638
        for clip_sample in [True, False]:
            self.check_over_configs(clip_sample=clip_sample)
Patrick von Platen's avatar
Patrick von Platen committed
639

640
    def test_prediction_type(self):
641
        for prediction_type in ["epsilon", "sample", "v_prediction"]:
642
643
644
            self.check_over_configs(prediction_type=prediction_type)

    def test_deprecated_predict_epsilon(self):
645
        deprecate("remove this test", "0.12.0", "remove")
646
647
648
649
        for predict_epsilon in [True, False]:
            self.check_over_configs(predict_epsilon=predict_epsilon)

    def test_deprecated_epsilon(self):
650
        deprecate("remove this test", "0.12.0", "remove")
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()

        sample = self.dummy_sample_deter
        residual = 0.1 * self.dummy_sample_deter
        time_step = 4

        scheduler = scheduler_class(**scheduler_config)
        scheduler_eps = scheduler_class(predict_epsilon=False, **scheduler_config)

        kwargs = {}
        if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
            kwargs["generator"] = torch.Generator().manual_seed(0)
        output = scheduler.step(residual, time_step, sample, predict_epsilon=False, **kwargs).prev_sample

        kwargs = {}
        if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
            kwargs["generator"] = torch.Generator().manual_seed(0)
        output_eps = scheduler_eps.step(residual, time_step, sample, predict_epsilon=False, **kwargs).prev_sample

        assert (output - output_eps).abs().sum() < 1e-5

Patrick von Platen's avatar
Patrick von Platen committed
673
674
675
676
677
678
679
680
681
    def test_time_indices(self):
        for t in [0, 500, 999]:
            self.check_over_forward(time_step=t)

    def test_variance(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

682
683
684
685
        assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.00979)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1e-5

Patrick von Platen's avatar
Patrick von Platen committed
686
687
    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
Patrick von Platen's avatar
Patrick von Platen committed
688
        scheduler_config = self.get_scheduler_config()
Patrick von Platen's avatar
Patrick von Platen committed
689
690
691
692
693
        scheduler = scheduler_class(**scheduler_config)

        num_trained_timesteps = len(scheduler)

        model = self.dummy_model()
694
        sample = self.dummy_sample_deter
695
        generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
696
697
698

        for t in reversed(range(num_trained_timesteps)):
            # 1. predict noise residual
699
            residual = model(sample, t)
Patrick von Platen's avatar
Patrick von Platen committed
700

701
            # 2. predict previous mean of sample x_t-1
702
            pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
703

704
705
706
707
708
709
            # if t > 0:
            #     noise = self.dummy_sample_deter
            #     variance = scheduler.get_variance(t) ** (0.5) * noise
            #
            # sample = pred_prev_sample + variance
            sample = pred_prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
710

711
712
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
713

714
        assert abs(result_sum.item() - 258.9070) < 1e-2
715
        assert abs(result_mean.item() - 0.3374) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
716

717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
    def test_full_loop_with_v_prediction(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(prediction_type="v_prediction")
        scheduler = scheduler_class(**scheduler_config)

        num_trained_timesteps = len(scheduler)

        model = self.dummy_model()
        sample = self.dummy_sample_deter
        generator = torch.manual_seed(0)

        for t in reversed(range(num_trained_timesteps)):
            # 1. predict noise residual
            residual = model(sample, t)

            # 2. predict previous mean of sample x_t-1
            pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample

            # if t > 0:
            #     noise = self.dummy_sample_deter
            #     variance = scheduler.get_variance(t) ** (0.5) * noise
            #
            # sample = pred_prev_sample + variance
            sample = pred_prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 201.9864) < 1e-2
        assert abs(result_mean.item() - 0.2630) < 1e-3

Patrick von Platen's avatar
update  
Patrick von Platen committed
748

Patrick von Platen's avatar
Patrick von Platen committed
749
750
class DDIMSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (DDIMScheduler,)
751
    forward_default_kwargs = (("eta", 0.0), ("num_inference_steps", 50))
Patrick von Platen's avatar
update  
Patrick von Platen committed
752

Patrick von Platen's avatar
Patrick von Platen committed
753
754
    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
755
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
756
757
758
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
Patrick von Platen's avatar
Patrick von Platen committed
759
            "clip_sample": True,
Patrick von Platen's avatar
Patrick von Platen committed
760
        }
Patrick von Platen's avatar
Patrick von Platen committed
761

Patrick von Platen's avatar
Patrick von Platen committed
762
763
764
        config.update(**kwargs)
        return config

765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
    def full_loop(self, **config):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(**config)
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps, eta = 10, 0.0

        model = self.dummy_model()
        sample = self.dummy_sample_deter

        scheduler.set_timesteps(num_inference_steps)

        for t in scheduler.timesteps:
            residual = model(sample, t)
            sample = scheduler.step(residual, t, sample, eta).prev_sample

        return sample

Patrick von Platen's avatar
Patrick von Platen committed
783
    def test_timesteps(self):
784
        for timesteps in [100, 500, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
785
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
786

787
788
789
790
791
792
793
794
    def test_steps_offset(self):
        for steps_offset in [0, 1]:
            self.check_over_configs(steps_offset=steps_offset)

        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(steps_offset=1)
        scheduler = scheduler_class(**scheduler_config)
        scheduler.set_timesteps(5)
795
        assert torch.equal(scheduler.timesteps, torch.LongTensor([801, 601, 401, 201, 1]))
796

Patrick von Platen's avatar
Patrick von Platen committed
797
798
799
800
801
802
803
804
    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

805
806
807
808
    def test_prediction_type(self):
        for prediction_type in ["epsilon", "v_prediction"]:
            self.check_over_configs(prediction_type=prediction_type)

809
    def test_clip_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
810
811
        for clip_sample in [True, False]:
            self.check_over_configs(clip_sample=clip_sample)
Patrick von Platen's avatar
Patrick von Platen committed
812
813
814
815
816
817
818

    def test_time_indices(self):
        for t in [1, 10, 49]:
            self.check_over_forward(time_step=t)

    def test_inference_steps(self):
        for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]):
819
            self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
820
821
822
823
824
825
826

    def test_eta(self):
        for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0]):
            self.check_over_forward(time_step=t, eta=eta)

    def test_variance(self):
        scheduler_class = self.scheduler_classes[0]
Patrick von Platen's avatar
Patrick von Platen committed
827
        scheduler_config = self.get_scheduler_config()
Patrick von Platen's avatar
Patrick von Platen committed
828
829
        scheduler = scheduler_class(**scheduler_config)

830
831
832
833
834
835
        assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(420, 400) - 0.14771)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(980, 960) - 0.32460)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(487, 486) - 0.00979)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(999, 998) - 0.02)) < 1e-5
Patrick von Platen's avatar
Patrick von Platen committed
836
837

    def test_full_loop_no_noise(self):
838
        sample = self.full_loop()
Patrick von Platen's avatar
Patrick von Platen committed
839

840
841
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
842

843
844
        assert abs(result_sum.item() - 172.0067) < 1e-2
        assert abs(result_mean.item() - 0.223967) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
845

846
847
848
849
850
851
852
853
854
    def test_full_loop_with_v_prediction(self):
        sample = self.full_loop(prediction_type="v_prediction")

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 52.5302) < 1e-2
        assert abs(result_mean.item() - 0.0684) < 1e-3

855
856
857
858
859
    def test_full_loop_with_set_alpha_to_one(self):
        # We specify different beta, so that the first alpha is 0.99
        sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01)
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
860

861
862
        assert abs(result_sum.item() - 149.8295) < 1e-2
        assert abs(result_mean.item() - 0.1951) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
863

864
865
866
    def test_full_loop_with_no_set_alpha_to_one(self):
        # We specify different beta, so that the first alpha is 0.99
        sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01)
867
868
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
869

870
871
        assert abs(result_sum.item() - 149.0784) < 1e-2
        assert abs(result_mean.item() - 0.1941) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
872
873


874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
class DPMSolverSinglestepSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (DPMSolverSinglestepScheduler,)
    forward_default_kwargs = (("num_inference_steps", 25),)

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 1000,
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
            "solver_order": 2,
            "prediction_type": "epsilon",
            "thresholding": False,
            "sample_max_value": 1.0,
            "algorithm_type": "dpmsolver++",
            "solver_type": "midpoint",
        }

        config.update(**kwargs)
        return config

    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)
        sample = self.dummy_sample
        residual = 0.1 * sample
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)
            scheduler.set_timesteps(num_inference_steps)
            # copy over dummy past residuals
            scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
                new_scheduler.set_timesteps(num_inference_steps)
                # copy over dummy past residuals
                new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order]

            output, new_output = sample, sample
            for t in range(time_step, time_step + scheduler.config.solver_order + 1):
                output = scheduler.step(residual, t, output, **kwargs).prev_sample
                new_output = new_scheduler.step(residual, t, new_output, **kwargs).prev_sample

                assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

    def test_from_save_pretrained(self):
        pass

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)
        sample = self.dummy_sample
        residual = 0.1 * sample
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)
            scheduler.set_timesteps(num_inference_steps)

            # copy over dummy past residuals (must be after setting timesteps)
            scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
                # copy over dummy past residuals
                new_scheduler.set_timesteps(num_inference_steps)

                # copy over dummy past residual (must be after setting timesteps)
                new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order]

            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample

            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

    def full_loop(self, **config):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(**config)
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 10
        model = self.dummy_model()
        sample = self.dummy_sample_deter
        scheduler.set_timesteps(num_inference_steps)

        for i, t in enumerate(scheduler.timesteps):
            residual = model(sample, t)
            sample = scheduler.step(residual, t, sample).prev_sample

        return sample

    def test_timesteps(self):
        for timesteps in [25, 50, 100, 999, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_thresholding(self):
        self.check_over_configs(thresholding=False)
        for order in [1, 2, 3]:
            for solver_type in ["midpoint", "heun"]:
                for threshold in [0.5, 1.0, 2.0]:
                    for prediction_type in ["epsilon", "sample"]:
                        self.check_over_configs(
                            thresholding=True,
                            prediction_type=prediction_type,
                            sample_max_value=threshold,
                            algorithm_type="dpmsolver++",
                            solver_order=order,
                            solver_type=solver_type,
                        )

    def test_prediction_type(self):
        for prediction_type in ["epsilon", "v_prediction"]:
            self.check_over_configs(prediction_type=prediction_type)

    def test_solver_order_and_type(self):
        for algorithm_type in ["dpmsolver", "dpmsolver++"]:
            for solver_type in ["midpoint", "heun"]:
                for order in [1, 2, 3]:
                    for prediction_type in ["epsilon", "sample"]:
                        self.check_over_configs(
                            solver_order=order,
                            solver_type=solver_type,
                            prediction_type=prediction_type,
                            algorithm_type=algorithm_type,
                        )
                        sample = self.full_loop(
                            solver_order=order,
                            solver_type=solver_type,
                            prediction_type=prediction_type,
                            algorithm_type=algorithm_type,
                        )
                        assert not torch.isnan(sample).any(), "Samples have nan numbers"

    def test_lower_order_final(self):
        self.check_over_configs(lower_order_final=True)
        self.check_over_configs(lower_order_final=False)

    def test_inference_steps(self):
        for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
            self.check_over_forward(num_inference_steps=num_inference_steps, time_step=0)

    def test_full_loop_no_noise(self):
        sample = self.full_loop()
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_mean.item() - 0.2791) < 1e-3

    def test_full_loop_with_v_prediction(self):
        sample = self.full_loop(prediction_type="v_prediction")
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_mean.item() - 0.1453) < 1e-3

    def test_fp16_support(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(thresholding=True, dynamic_thresholding_ratio=0)
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 10
        model = self.dummy_model()
        sample = self.dummy_sample_deter.half()
        scheduler.set_timesteps(num_inference_steps)

        for i, t in enumerate(scheduler.timesteps):
            residual = model(sample, t)
            sample = scheduler.step(residual, t, sample).prev_sample

        assert sample.dtype == torch.float16


1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
class DPMSolverMultistepSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (DPMSolverMultistepScheduler,)
    forward_default_kwargs = (("num_inference_steps", 25),)

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 1000,
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
            "solver_order": 2,
1061
            "prediction_type": "epsilon",
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
            "thresholding": False,
            "sample_max_value": 1.0,
            "algorithm_type": "dpmsolver++",
            "solver_type": "midpoint",
            "lower_order_final": False,
        }

        config.update(**kwargs)
        return config

    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)
        sample = self.dummy_sample
        residual = 0.1 * sample
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)
            scheduler.set_timesteps(num_inference_steps)
            # copy over dummy past residuals
            scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
1088
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
                new_scheduler.set_timesteps(num_inference_steps)
                # copy over dummy past residuals
                new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order]

            output, new_output = sample, sample
            for t in range(time_step, time_step + scheduler.config.solver_order + 1):
                output = scheduler.step(residual, t, output, **kwargs).prev_sample
                new_output = new_scheduler.step(residual, t, new_output, **kwargs).prev_sample

                assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

1100
    def test_from_save_pretrained(self):
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
        pass

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)
        sample = self.dummy_sample
        residual = 0.1 * sample
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)
            scheduler.set_timesteps(num_inference_steps)

            # copy over dummy past residuals (must be after setting timesteps)
            scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
1120
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
                # copy over dummy past residuals
                new_scheduler.set_timesteps(num_inference_steps)

                # copy over dummy past residual (must be after setting timesteps)
                new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order]

            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample

            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

    def full_loop(self, **config):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(**config)
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 10
        model = self.dummy_model()
        sample = self.dummy_sample_deter
        scheduler.set_timesteps(num_inference_steps)

        for i, t in enumerate(scheduler.timesteps):
            residual = model(sample, t)
            sample = scheduler.step(residual, t, sample).prev_sample

        return sample

    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            # copy over dummy past residuals (must be done after set_timesteps)
            dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]
            scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]

            time_step_0 = scheduler.timesteps[5]
            time_step_1 = scheduler.timesteps[6]

            output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample
            output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

    def test_timesteps(self):
        for timesteps in [25, 50, 100, 999, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_thresholding(self):
        self.check_over_configs(thresholding=False)
        for order in [1, 2, 3]:
            for solver_type in ["midpoint", "heun"]:
                for threshold in [0.5, 1.0, 2.0]:
1187
                    for prediction_type in ["epsilon", "sample"]:
1188
1189
                        self.check_over_configs(
                            thresholding=True,
1190
                            prediction_type=prediction_type,
1191
1192
1193
1194
1195
1196
                            sample_max_value=threshold,
                            algorithm_type="dpmsolver++",
                            solver_order=order,
                            solver_type=solver_type,
                        )

1197
1198
1199
1200
    def test_prediction_type(self):
        for prediction_type in ["epsilon", "v_prediction"]:
            self.check_over_configs(prediction_type=prediction_type)

1201
1202
1203
1204
    def test_solver_order_and_type(self):
        for algorithm_type in ["dpmsolver", "dpmsolver++"]:
            for solver_type in ["midpoint", "heun"]:
                for order in [1, 2, 3]:
1205
                    for prediction_type in ["epsilon", "sample"]:
1206
1207
1208
                        self.check_over_configs(
                            solver_order=order,
                            solver_type=solver_type,
1209
                            prediction_type=prediction_type,
1210
1211
1212
1213
1214
                            algorithm_type=algorithm_type,
                        )
                        sample = self.full_loop(
                            solver_order=order,
                            solver_type=solver_type,
1215
                            prediction_type=prediction_type,
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
                            algorithm_type=algorithm_type,
                        )
                        assert not torch.isnan(sample).any(), "Samples have nan numbers"

    def test_lower_order_final(self):
        self.check_over_configs(lower_order_final=True)
        self.check_over_configs(lower_order_final=False)

    def test_inference_steps(self):
        for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
            self.check_over_forward(num_inference_steps=num_inference_steps, time_step=0)

    def test_full_loop_no_noise(self):
        sample = self.full_loop()
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_mean.item() - 0.3301) < 1e-3

1234
1235
1236
1237
1238
1239
    def test_full_loop_with_v_prediction(self):
        sample = self.full_loop(prediction_type="v_prediction")
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_mean.item() - 0.2251) < 1e-3

1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
    def test_fp16_support(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(thresholding=True, dynamic_thresholding_ratio=0)
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 10
        model = self.dummy_model()
        sample = self.dummy_sample_deter.half()
        scheduler.set_timesteps(num_inference_steps)

        for i, t in enumerate(scheduler.timesteps):
            residual = model(sample, t)
            sample = scheduler.step(residual, t, sample).prev_sample

        assert sample.dtype == torch.float16

1256

Patrick von Platen's avatar
Patrick von Platen committed
1257
1258
1259
1260
1261
1262
class PNDMSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (PNDMScheduler,)
    forward_default_kwargs = (("num_inference_steps", 50),)

    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
1263
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
1264
1265
1266
1267
1268
1269
1270
1271
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
        }

        config.update(**kwargs)
        return config

1272
    def check_over_configs(self, time_step=0, **config):
Patrick von Platen's avatar
Patrick von Platen committed
1273
        kwargs = dict(self.forward_default_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
1274
        num_inference_steps = kwargs.pop("num_inference_steps", None)
1275
1276
        sample = self.dummy_sample
        residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
1277
1278
1279
1280
1281
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)
Patrick von Platen's avatar
Patrick von Platen committed
1282
            scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
1283
1284
1285
1286
1287
            # copy over dummy past residuals
            scheduler.ets = dummy_past_residuals[:]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
1288
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
1289
                new_scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
1290
1291
1292
                # copy over dummy past residuals
                new_scheduler.ets = dummy_past_residuals[:]

1293
1294
            output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
1295

1296
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
1297

1298
1299
            output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
1300

1301
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
1302

1303
    def test_from_save_pretrained(self):
1304
1305
1306
        pass

    def check_over_forward(self, time_step=0, **forward_kwargs):
Patrick von Platen's avatar
Patrick von Platen committed
1307
        kwargs = dict(self.forward_default_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
1308
        num_inference_steps = kwargs.pop("num_inference_steps", None)
1309
1310
        sample = self.dummy_sample
        residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
1311
1312
1313
1314
1315
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)
Patrick von Platen's avatar
Patrick von Platen committed
1316
            scheduler.set_timesteps(num_inference_steps)
1317

Nathan Lambert's avatar
Nathan Lambert committed
1318
            # copy over dummy past residuals (must be after setting timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
1319
1320
1321
1322
            scheduler.ets = dummy_past_residuals[:]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
1323
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
1324
                # copy over dummy past residuals
Patrick von Platen's avatar
Patrick von Platen committed
1325
                new_scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
1326

Nathan Lambert's avatar
Nathan Lambert committed
1327
1328
1329
                # copy over dummy past residual (must be after setting timesteps)
                new_scheduler.ets = dummy_past_residuals[:]

1330
1331
            output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
1332

1333
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
1334

1335
1336
            output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
1337

1338
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
1339

1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
    def full_loop(self, **config):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(**config)
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 10
        model = self.dummy_model()
        sample = self.dummy_sample_deter
        scheduler.set_timesteps(num_inference_steps)

        for i, t in enumerate(scheduler.prk_timesteps):
            residual = model(sample, t)
            sample = scheduler.step_prk(residual, t, sample).prev_sample

        for i, t in enumerate(scheduler.plms_timesteps):
            residual = model(sample, t)
            sample = scheduler.step_plms(residual, t, sample).prev_sample

        return sample

1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

Nathan Lambert's avatar
Nathan Lambert committed
1377
1378
1379
1380
            # copy over dummy past residuals (must be done after set_timesteps)
            dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
            scheduler.ets = dummy_past_residuals[:]

1381
1382
            output_0 = scheduler.step_prk(residual, 0, sample, **kwargs).prev_sample
            output_1 = scheduler.step_prk(residual, 1, sample, **kwargs).prev_sample
1383
1384
1385
1386

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

1387
1388
            output_0 = scheduler.step_plms(residual, 0, sample, **kwargs).prev_sample
            output_1 = scheduler.step_plms(residual, 1, sample, **kwargs).prev_sample
1389
1390
1391
1392

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

Patrick von Platen's avatar
Patrick von Platen committed
1393
1394
    def test_timesteps(self):
        for timesteps in [100, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
1395
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
1396

1397
1398
1399
1400
1401
1402
1403
1404
    def test_steps_offset(self):
        for steps_offset in [0, 1]:
            self.check_over_configs(steps_offset=steps_offset)

        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(steps_offset=1)
        scheduler = scheduler_class(**scheduler_config)
        scheduler.set_timesteps(10)
1405
        assert torch.equal(
1406
            scheduler.timesteps,
1407
1408
1409
1410
            torch.LongTensor(
                [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]
            ),
        )
1411

Patrick von Platen's avatar
Patrick von Platen committed
1412
    def test_betas(self):
1413
        for beta_start, beta_end in zip([0.0001, 0.001], [0.002, 0.02]):
Patrick von Platen's avatar
Patrick von Platen committed
1414
1415
1416
1417
1418
1419
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

1420
1421
1422
1423
    def test_prediction_type(self):
        for prediction_type in ["epsilon", "v_prediction"]:
            self.check_over_configs(prediction_type=prediction_type)

Patrick von Platen's avatar
Patrick von Platen committed
1424
1425
1426
1427
1428
1429
    def test_time_indices(self):
        for t in [1, 5, 10]:
            self.check_over_forward(time_step=t)

    def test_inference_steps(self):
        for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]):
1430
            self.check_over_forward(num_inference_steps=num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
1431

1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
    def test_pow_of_3_inference_steps(self):
        # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3
        num_inference_steps = 27

        for scheduler_class in self.scheduler_classes:
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            scheduler.set_timesteps(num_inference_steps)

            # before power of 3 fix, would error on first step, so we only need to do two
            for i, t in enumerate(scheduler.prk_timesteps[:2]):
                sample = scheduler.step_prk(residual, t, sample).prev_sample

1449
    def test_inference_plms_no_past_residuals(self):
Patrick von Platen's avatar
Patrick von Platen committed
1450
1451
1452
1453
1454
        with self.assertRaises(ValueError):
            scheduler_class = self.scheduler_classes[0]
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

1455
            scheduler.step_plms(self.dummy_sample, 1, self.dummy_sample).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
1456
1457

    def test_full_loop_no_noise(self):
1458
1459
1460
        sample = self.full_loop()
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
1461

1462
1463
        assert abs(result_sum.item() - 198.1318) < 1e-2
        assert abs(result_mean.item() - 0.2580) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
1464

1465
1466
1467
1468
1469
1470
1471
1472
    def test_full_loop_with_v_prediction(self):
        sample = self.full_loop(prediction_type="v_prediction")
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 67.3986) < 1e-2
        assert abs(result_mean.item() - 0.0878) < 1e-3

1473
1474
1475
1476
1477
    def test_full_loop_with_set_alpha_to_one(self):
        # We specify different beta, so that the first alpha is 0.99
        sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01)
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
1478

1479
1480
        assert abs(result_sum.item() - 230.0399) < 1e-2
        assert abs(result_mean.item() - 0.2995) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
1481

1482
1483
1484
    def test_full_loop_with_no_set_alpha_to_one(self):
        # We specify different beta, so that the first alpha is 0.99
        sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01)
1485
1486
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
1487

1488
1489
        assert abs(result_sum.item() - 186.9482) < 1e-2
        assert abs(result_mean.item() - 0.2434) < 1e-3
Nathan Lambert's avatar
Nathan Lambert committed
1490
1491


1492
1493
class ScoreSdeVeSchedulerTest(unittest.TestCase):
    # TODO adapt with class SchedulerCommonTest (scheduler needs Numpy Integration)
Nathan Lambert's avatar
Nathan Lambert committed
1494
    scheduler_classes = (ScoreSdeVeScheduler,)
1495
    forward_default_kwargs = ()
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527

    @property
    def dummy_sample(self):
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        sample = torch.rand((batch_size, num_channels, height, width))

        return sample

    @property
    def dummy_sample_deter(self):
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        num_elems = batch_size * num_channels * height * width
        sample = torch.arange(num_elems)
        sample = sample.reshape(num_channels, height, width, batch_size)
        sample = sample / num_elems
        sample = sample.permute(3, 0, 1, 2)

        return sample

    def dummy_model(self):
        def model(sample, t, *args):
            return sample * t / (t + 1)

        return model
Nathan Lambert's avatar
Nathan Lambert committed
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 2000,
            "snr": 0.15,
            "sigma_min": 0.01,
            "sigma_max": 1348,
            "sampling_eps": 1e-5,
        }

        config.update(**kwargs)
        return config

    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)

        for scheduler_class in self.scheduler_classes:
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
1553
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
Nathan Lambert's avatar
Nathan Lambert committed
1554

1555
1556
1557
1558
1559
1560
            output = scheduler.step_pred(
                residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
            new_output = new_scheduler.step_pred(
                residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
1561

1562
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
1563

1564
1565
1566
1567
            output = scheduler.step_correct(residual, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
            new_output = new_scheduler.step_correct(
                residual, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
1568

1569
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        kwargs.update(forward_kwargs)

        for scheduler_class in self.scheduler_classes:
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
1584
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
Nathan Lambert's avatar
Nathan Lambert committed
1585

1586
1587
1588
1589
1590
1591
            output = scheduler.step_pred(
                residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
            new_output = new_scheduler.step_pred(
                residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
1592

1593
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
1594

1595
1596
1597
1598
            output = scheduler.step_correct(residual, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
            new_output = new_scheduler.step_correct(
                residual, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
1599

1600
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610

    def test_timesteps(self):
        for timesteps in [10, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_sigmas(self):
        for sigma_min, sigma_max in zip([0.0001, 0.001, 0.01], [1, 100, 1000]):
            self.check_over_configs(sigma_min=sigma_min, sigma_max=sigma_max)

    def test_time_indices(self):
1611
        for t in [0.1, 0.5, 0.75]:
Nathan Lambert's avatar
Nathan Lambert committed
1612
1613
1614
            self.check_over_forward(time_step=t)

    def test_full_loop_no_noise(self):
1615
1616
        kwargs = dict(self.forward_default_kwargs)

Nathan Lambert's avatar
Nathan Lambert committed
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 3

        model = self.dummy_model()
        sample = self.dummy_sample_deter

        scheduler.set_sigmas(num_inference_steps)
1627
        scheduler.set_timesteps(num_inference_steps)
1628
        generator = torch.manual_seed(0)
Nathan Lambert's avatar
Nathan Lambert committed
1629
1630
1631
1632

        for i, t in enumerate(scheduler.timesteps):
            sigma_t = scheduler.sigmas[i]

1633
            for _ in range(scheduler.config.correct_steps):
Nathan Lambert's avatar
Nathan Lambert committed
1634
                with torch.no_grad():
1635
                    model_output = model(sample, sigma_t)
1636
                sample = scheduler.step_correct(model_output, sample, generator=generator, **kwargs).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
1637
1638

            with torch.no_grad():
1639
                model_output = model(sample, sigma_t)
Patrick von Platen's avatar
Patrick von Platen committed
1640

1641
            output = scheduler.step_pred(model_output, t, sample, generator=generator, **kwargs)
1642
            sample, _ = output.prev_sample, output.prev_sample_mean
Patrick von Platen's avatar
Patrick von Platen committed
1643

1644
1645
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
1646

1647
1648
        assert np.isclose(result_sum.item(), 14372758528.0)
        assert np.isclose(result_mean.item(), 18714530.0)
Patrick von Platen's avatar
Patrick von Platen committed
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666

    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

1667
1668
            output_0 = scheduler.step_pred(residual, 0, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
            output_1 = scheduler.step_pred(residual, 1, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
1669
1670
1671

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693


class LMSDiscreteSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (LMSDiscreteScheduler,)
    num_inference_steps = 10

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 1100,
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
        }

        config.update(**kwargs)
        return config

    def test_timesteps(self):
        for timesteps in [10, 50, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_betas(self):
1694
        for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
1695
1696
1697
1698
1699
1700
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "scaled_linear"]:
            self.check_over_configs(beta_schedule=schedule)

1701
1702
1703
1704
    def test_prediction_type(self):
        for prediction_type in ["epsilon", "v_prediction"]:
            self.check_over_configs(prediction_type=prediction_type)

1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
    def test_time_indices(self):
        for t in [0, 500, 800]:
            self.check_over_forward(time_step=t)

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps)

        model = self.dummy_model()
1717
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
1718
1719

        for i, t in enumerate(scheduler.timesteps):
1720
            sample = scheduler.scale_model_input(sample, t)
1721
1722
1723

            model_output = model(sample, t)

1724
            output = scheduler.step(model_output, t, sample)
1725
1726
1727
1728
1729
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

1730
        assert abs(result_sum.item() - 1006.388) < 1e-2
1731
        assert abs(result_mean.item() - 1.31) < 1e-3
1732

1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
    def test_full_loop_with_v_prediction(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(prediction_type="v_prediction")
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps)

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma

        for i, t in enumerate(scheduler.timesteps):
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 0.0017) < 1e-2
        assert abs(result_mean.item() - 2.2676e-06) < 1e-3

1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
    def test_full_loop_device(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps, device=torch_device)

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
        sample = sample.to(torch_device)

        for i, t in enumerate(scheduler.timesteps):
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 1006.388) < 1e-2
        assert abs(result_mean.item() - 1.31) < 1e-3

1782

hlky's avatar
hlky committed
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
class EulerDiscreteSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (EulerDiscreteScheduler,)
    num_inference_steps = 10

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 1100,
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
        }

        config.update(**kwargs)
        return config

    def test_timesteps(self):
        for timesteps in [10, 50, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_betas(self):
        for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "scaled_linear"]:
            self.check_over_configs(beta_schedule=schedule)

1810
1811
1812
1813
    def test_prediction_type(self):
        for prediction_type in ["epsilon", "v_prediction"]:
            self.check_over_configs(prediction_type=prediction_type)

hlky's avatar
hlky committed
1814
1815
1816
1817
1818
1819
1820
    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps)

1821
1822
1823
1824
1825
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
hlky's avatar
hlky committed
1826
1827
1828

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
Patrick von Platen's avatar
Patrick von Platen committed
1829
        sample = sample.to(torch_device)
hlky's avatar
hlky committed
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844

        for i, t in enumerate(scheduler.timesteps):
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample, generator=generator)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 10.0807) < 1e-2
        assert abs(result_mean.item() - 0.0131) < 1e-3

1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
    def test_full_loop_with_v_prediction(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(prediction_type="v_prediction")
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps)

        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
        sample = sample.to(torch_device)

        for i, t in enumerate(scheduler.timesteps):
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample, generator=generator)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 0.0002) < 1e-2
        assert abs(result_mean.item() - 2.2676e-06) < 1e-3

1876
1877
1878
1879
1880
1881
1882
    def test_full_loop_device(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps, device=torch_device)

1883
1884
1885
1886
1887
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
        sample = sample.to(torch_device)

        for t in scheduler.timesteps:
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample, generator=generator)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 10.0807) < 1e-2
        assert abs(result_mean.item() - 0.0131) < 1e-3

hlky's avatar
hlky committed
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934

class EulerAncestralDiscreteSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (EulerAncestralDiscreteScheduler,)
    num_inference_steps = 10

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 1100,
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
        }

        config.update(**kwargs)
        return config

    def test_timesteps(self):
        for timesteps in [10, 50, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_betas(self):
        for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "scaled_linear"]:
            self.check_over_configs(beta_schedule=schedule)

1935
1936
1937
1938
    def test_prediction_type(self):
        for prediction_type in ["epsilon", "v_prediction"]:
            self.check_over_configs(prediction_type=prediction_type)

hlky's avatar
hlky committed
1939
1940
1941
1942
1943
1944
1945
    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps)

1946
1947
1948
1949
1950
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
hlky's avatar
hlky committed
1951
1952
1953

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
Patrick von Platen's avatar
Patrick von Platen committed
1954
        sample = sample.to(torch_device)
hlky's avatar
hlky committed
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965

        for i, t in enumerate(scheduler.timesteps):
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample, generator=generator)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
1966

1967
        if torch_device in ["cpu", "mps"]:
Patrick von Platen's avatar
Patrick von Platen committed
1968
1969
1970
1971
1972
1973
            assert abs(result_sum.item() - 152.3192) < 1e-2
            assert abs(result_mean.item() - 0.1983) < 1e-3
        else:
            # CUDA
            assert abs(result_sum.item() - 144.8084) < 1e-2
            assert abs(result_mean.item() - 0.18855) < 1e-3
hlky's avatar
hlky committed
1974

1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
    def test_full_loop_with_v_prediction(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(prediction_type="v_prediction")
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps)

        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
        sample = sample.to(torch_device)

        for i, t in enumerate(scheduler.timesteps):
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample, generator=generator)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        if torch_device in ["cpu", "mps"]:
            assert abs(result_sum.item() - 108.4439) < 1e-2
            assert abs(result_mean.item() - 0.1412) < 1e-3
        else:
            # CUDA
            assert abs(result_sum.item() - 102.5807) < 1e-2
            assert abs(result_mean.item() - 0.1335) < 1e-3

2011
2012
2013
2014
2015
2016
2017
    def test_full_loop_device(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps, device=torch_device)

2018
2019
2020
2021
2022
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
        sample = sample.to(torch_device)

        for t in scheduler.timesteps:
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample, generator=generator)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
2038
2039

        if str(torch_device).startswith("cpu"):
2040
2041
2042
            # The following sum varies between 148 and 156 on mps. Why?
            assert abs(result_sum.item() - 152.3192) < 1e-2
            assert abs(result_mean.item() - 0.1983) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
2043
        elif str(torch_device).startswith("mps"):
2044
2045
            # Larger tolerance on mps
            assert abs(result_mean.item() - 0.1983) < 1e-2
Patrick von Platen's avatar
Patrick von Platen committed
2046
2047
2048
2049
        else:
            # CUDA
            assert abs(result_sum.item() - 144.8084) < 1e-2
            assert abs(result_mean.item() - 0.18855) < 1e-3
2050

hlky's avatar
hlky committed
2051

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
class IPNDMSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (IPNDMScheduler,)
    forward_default_kwargs = (("num_inference_steps", 50),)

    def get_scheduler_config(self, **kwargs):
        config = {"num_train_timesteps": 1000}
        config.update(**kwargs)
        return config

    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)
        sample = self.dummy_sample
        residual = 0.1 * sample
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)
            scheduler.set_timesteps(num_inference_steps)
            # copy over dummy past residuals
            scheduler.ets = dummy_past_residuals[:]

            if time_step is None:
                time_step = scheduler.timesteps[len(scheduler.timesteps) // 2]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
2080
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
                new_scheduler.set_timesteps(num_inference_steps)
                # copy over dummy past residuals
                new_scheduler.ets = dummy_past_residuals[:]

            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample

            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample

            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

2095
    def test_from_save_pretrained(self):
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
        pass

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)
        sample = self.dummy_sample
        residual = 0.1 * sample
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)
            scheduler.set_timesteps(num_inference_steps)

            # copy over dummy past residuals (must be after setting timesteps)
            scheduler.ets = dummy_past_residuals[:]

            if time_step is None:
                time_step = scheduler.timesteps[len(scheduler.timesteps) // 2]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
2118
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
                # copy over dummy past residuals
                new_scheduler.set_timesteps(num_inference_steps)

                # copy over dummy past residual (must be after setting timesteps)
                new_scheduler.ets = dummy_past_residuals[:]

            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample

            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample

            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

    def full_loop(self, **config):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(**config)
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 10
        model = self.dummy_model()
        sample = self.dummy_sample_deter
        scheduler.set_timesteps(num_inference_steps)

        for i, t in enumerate(scheduler.timesteps):
            residual = model(sample, t)
            sample = scheduler.step(residual, t, sample).prev_sample

        for i, t in enumerate(scheduler.timesteps):
            residual = model(sample, t)
            sample = scheduler.step(residual, t, sample).prev_sample

        return sample

    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            # copy over dummy past residuals (must be done after set_timesteps)
            dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
            scheduler.ets = dummy_past_residuals[:]

            time_step_0 = scheduler.timesteps[5]
            time_step_1 = scheduler.timesteps[6]

            output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample
            output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

            output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample
            output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

    def test_timesteps(self):
        for timesteps in [100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps, time_step=None)

    def test_inference_steps(self):
        for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]):
            self.check_over_forward(num_inference_steps=num_inference_steps, time_step=None)

    def test_full_loop_no_noise(self):
        sample = self.full_loop()
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_mean.item() - 2540529) < 10
Will Berman's avatar
Will Berman committed
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253


class VQDiffusionSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (VQDiffusionScheduler,)

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_vec_classes": 4097,
            "num_train_timesteps": 100,
        }

        config.update(**kwargs)
        return config

    def dummy_sample(self, num_vec_classes):
        batch_size = 4
        height = 8
        width = 8

        sample = torch.randint(0, num_vec_classes, (batch_size, height * width))

        return sample

    @property
    def dummy_sample_deter(self):
        assert False

    def dummy_model(self, num_vec_classes):
        def model(sample, t, *args):
            batch_size, num_latent_pixels = sample.shape
            logits = torch.rand((batch_size, num_vec_classes - 1, num_latent_pixels))
            return_value = F.log_softmax(logits.double(), dim=1).float()
            return return_value

        return model

    def test_timesteps(self):
        for timesteps in [2, 5, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_num_vec_classes(self):
        for num_vec_classes in [5, 100, 1000, 4000]:
            self.check_over_configs(num_vec_classes=num_vec_classes)

    def test_time_indices(self):
        for t in [0, 50, 99]:
            self.check_over_forward(time_step=t)

    def test_add_noise_device(self):
        pass
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282


class HeunDiscreteSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (HeunDiscreteScheduler,)
    num_inference_steps = 10

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 1100,
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
        }

        config.update(**kwargs)
        return config

    def test_timesteps(self):
        for timesteps in [10, 50, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_betas(self):
        for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "scaled_linear"]:
            self.check_over_configs(beta_schedule=schedule)

2283
2284
2285
2286
    def test_prediction_type(self):
        for prediction_type in ["epsilon", "v_prediction"]:
            self.check_over_configs(prediction_type=prediction_type)

2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps)

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
        sample = sample.to(torch_device)

        for i, t in enumerate(scheduler.timesteps):
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        if torch_device in ["cpu", "mps"]:
            assert abs(result_sum.item() - 0.1233) < 1e-2
            assert abs(result_mean.item() - 0.0002) < 1e-3
        else:
            # CUDA
            assert abs(result_sum.item() - 0.1233) < 1e-2
            assert abs(result_mean.item() - 0.0002) < 1e-3

2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
    def test_full_loop_with_v_prediction(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(prediction_type="v_prediction")
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps)

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
        sample = sample.to(torch_device)

        for i, t in enumerate(scheduler.timesteps):
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        if torch_device in ["cpu", "mps"]:
            assert abs(result_sum.item() - 4.6934e-07) < 1e-2
            assert abs(result_mean.item() - 6.1112e-10) < 1e-3
        else:
            # CUDA
            assert abs(result_sum.item() - 4.693428650170972e-07) < 1e-2
            assert abs(result_mean.item() - 0.0002) < 1e-3

2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
    def test_full_loop_device(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps, device=torch_device)

        model = self.dummy_model()
        sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma

        for t in scheduler.timesteps:
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        if str(torch_device).startswith("cpu"):
            # The following sum varies between 148 and 156 on mps. Why?
            assert abs(result_sum.item() - 0.1233) < 1e-2
            assert abs(result_mean.item() - 0.0002) < 1e-3
        elif str(torch_device).startswith("mps"):
            # Larger tolerance on mps
            assert abs(result_mean.item() - 0.0002) < 1e-2
        else:
            # CUDA
            assert abs(result_sum.item() - 0.1233) < 1e-2
            assert abs(result_mean.item() - 0.0002) < 1e-3
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645


class KDPM2DiscreteSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (KDPM2DiscreteScheduler,)
    num_inference_steps = 10

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 1100,
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
        }

        config.update(**kwargs)
        return config

    def test_timesteps(self):
        for timesteps in [10, 50, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_betas(self):
        for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "scaled_linear"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_prediction_type(self):
        for prediction_type in ["epsilon", "v_prediction"]:
            self.check_over_configs(prediction_type=prediction_type)

    def test_full_loop_with_v_prediction(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(prediction_type="v_prediction")
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps)

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
        sample = sample.to(torch_device)

        for i, t in enumerate(scheduler.timesteps):
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        if torch_device in ["cpu", "mps"]:
            assert abs(result_sum.item() - 4.6934e-07) < 1e-2
            assert abs(result_mean.item() - 6.1112e-10) < 1e-3
        else:
            # CUDA
            assert abs(result_sum.item() - 4.693428650170972e-07) < 1e-2
            assert abs(result_mean.item() - 0.0002) < 1e-3

    def test_full_loop_no_noise(self):
        if torch_device == "mps":
            return
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps)

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
        sample = sample.to(torch_device)

        for i, t in enumerate(scheduler.timesteps):
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        if torch_device in ["cpu", "mps"]:
            assert abs(result_sum.item() - 20.4125) < 1e-2
            assert abs(result_mean.item() - 0.0266) < 1e-3
        else:
            # CUDA
            assert abs(result_sum.item() - 20.4125) < 1e-2
            assert abs(result_mean.item() - 0.0266) < 1e-3

    def test_full_loop_device(self):
        if torch_device == "mps":
            return
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps, device=torch_device)

        model = self.dummy_model()
        sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma

        for t in scheduler.timesteps:
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        if str(torch_device).startswith("cpu"):
            # The following sum varies between 148 and 156 on mps. Why?
            assert abs(result_sum.item() - 20.4125) < 1e-2
            assert abs(result_mean.item() - 0.0266) < 1e-3
        else:
            # CUDA
            assert abs(result_sum.item() - 20.4125) < 1e-2
            assert abs(result_mean.item() - 0.0266) < 1e-3


class KDPM2AncestralDiscreteSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (KDPM2AncestralDiscreteScheduler,)
    num_inference_steps = 10

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 1100,
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
        }

        config.update(**kwargs)
        return config

    def test_timesteps(self):
        for timesteps in [10, 50, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_betas(self):
        for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "scaled_linear"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_full_loop_no_noise(self):
        if torch_device == "mps":
            return
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps)

        generator = torch.Generator(device=torch_device).manual_seed(0)

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
        sample = sample.to(torch_device)

        for i, t in enumerate(scheduler.timesteps):
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample, generator=generator)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        if torch_device in ["cpu", "mps"]:
            assert abs(result_sum.item() - 13849.3945) < 1e-2
            assert abs(result_mean.item() - 18.0331) < 5e-3
        else:
            # CUDA
            assert abs(result_sum.item() - 13913.0449) < 1e-2
            assert abs(result_mean.item() - 18.1159) < 5e-3

    def test_prediction_type(self):
        for prediction_type in ["epsilon", "v_prediction"]:
            self.check_over_configs(prediction_type=prediction_type)

    def test_full_loop_with_v_prediction(self):
        if torch_device == "mps":
            return
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(prediction_type="v_prediction")
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps)

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
        sample = sample.to(torch_device)

        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)

        for i, t in enumerate(scheduler.timesteps):
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample, generator=generator)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        if torch_device in ["cpu", "mps"]:
            assert abs(result_sum.item() - 328.9970) < 1e-2
            assert abs(result_mean.item() - 0.4284) < 1e-3
        else:
            # CUDA
            assert abs(result_sum.item() - 327.8027) < 1e-2
            assert abs(result_mean.item() - 0.4268) < 1e-3

    def test_full_loop_device(self):
        if torch_device == "mps":
            return
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps, device=torch_device)

        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)

        model = self.dummy_model()
        sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma

        for t in scheduler.timesteps:
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample, generator=generator)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        if str(torch_device).startswith("cpu"):
            assert abs(result_sum.item() - 13849.3945) < 1e-2
            assert abs(result_mean.item() - 18.0331) < 5e-3
        else:
            # CUDA
            assert abs(result_sum.item() - 13913.0332) < 1e-1
            assert abs(result_mean.item() - 18.1159) < 1e-3