test_scheduler.py 23.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Nathan Lambert's avatar
Nathan Lambert committed
15
import pdb
Patrick von Platen's avatar
Patrick von Platen committed
16
import tempfile
Patrick von Platen's avatar
Patrick von Platen committed
17
import unittest
Patrick von Platen's avatar
Patrick von Platen committed
18

Patrick von Platen's avatar
Patrick von Platen committed
19
20
21
import numpy as np
import torch

Nathan Lambert's avatar
Nathan Lambert committed
22
from diffusers import DDIMScheduler, DDPMScheduler, PNDMScheduler, ScoreSdeVeScheduler
Patrick von Platen's avatar
Patrick von Platen committed
23
24
25
26
27
28


torch.backends.cuda.matmul.allow_tf32 = False


class SchedulerCommonTest(unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
29
30
    scheduler_classes = ()
    forward_default_kwargs = ()
Patrick von Platen's avatar
Patrick von Platen committed
31
32

    @property
33
    def dummy_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
34
35
36
37
38
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

39
        sample = np.random.rand(batch_size, num_channels, height, width)
Patrick von Platen's avatar
Patrick von Platen committed
40

41
        return sample
Patrick von Platen's avatar
Patrick von Platen committed
42
43

    @property
44
    def dummy_sample_deter(self):
Patrick von Platen's avatar
Patrick von Platen committed
45
46
47
48
49
50
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        num_elems = batch_size * num_channels * height * width
51
52
53
54
        sample = np.arange(num_elems)
        sample = sample.reshape(num_channels, height, width, batch_size)
        sample = sample / num_elems
        sample = sample.transpose(3, 0, 1, 2)
Patrick von Platen's avatar
Patrick von Platen committed
55

56
        return sample
Patrick von Platen's avatar
Patrick von Platen committed
57
58
59
60
61

    def get_scheduler_config(self):
        raise NotImplementedError

    def dummy_model(self):
62
63
        def model(sample, t, *args):
            return sample * t / (t + 1)
Patrick von Platen's avatar
Patrick von Platen committed
64
65
66

        return model

Patrick von Platen's avatar
Patrick von Platen committed
67
68
69
    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)

70
71
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
72
73
        for scheduler_class in self.scheduler_classes:
            scheduler_class = self.scheduler_classes[0]
74
75
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
76
77
78
79
80
81
82
83

            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

84
85
86
87
88
89
90
91
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            output = scheduler.step(residual, time_step, sample, **kwargs)["prev_sample"]
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
92

Patrick von Platen's avatar
Patrick von Platen committed
93
            assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
94
95
96
97
98

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        kwargs.update(forward_kwargs)

99
100
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
101
        for scheduler_class in self.scheduler_classes:
102
103
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
104

Patrick von Platen's avatar
Patrick von Platen committed
105
            scheduler_class = self.scheduler_classes[0]
Patrick von Platen's avatar
Patrick von Platen committed
106
107
108
109
110
111
112
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

113
114
115
116
117
118
119
120
121
122
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            torch.manual_seed(0)
            output = scheduler.step(residual, time_step, sample, **kwargs)["prev_sample"]
            torch.manual_seed(0)
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
123

Patrick von Platen's avatar
Patrick von Platen committed
124
            assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
125

Patrick von Platen's avatar
Patrick von Platen committed
126
    def test_from_pretrained_save_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
127
128
        kwargs = dict(self.forward_default_kwargs)

129
130
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
131
        for scheduler_class in self.scheduler_classes:
132
133
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
134
135
136
137
138
139
140
141

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

142
143
144
145
146
147
148
149
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            output = scheduler.step(residual, 1, sample, **kwargs)["prev_sample"]
            new_output = new_scheduler.step(residual, 1, sample, **kwargs)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
150

Patrick von Platen's avatar
Patrick von Platen committed
151
            assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
152
153
154
155

    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

156
157
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
158
159
160
161
        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

162
163
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
164

165
166
167
168
169
170
171
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            output_0 = scheduler.step(residual, 0, sample, **kwargs)["prev_sample"]
            output_1 = scheduler.step(residual, 1, sample, **kwargs)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
172

173
            self.assertEqual(output_0.shape, sample.shape)
Patrick von Platen's avatar
Patrick von Platen committed
174
175
            self.assertEqual(output_0.shape, output_1.shape)

Patrick von Platen's avatar
Patrick von Platen committed
176
177
178
    def test_pytorch_equal_numpy(self):
        kwargs = dict(self.forward_default_kwargs)

179
180
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
181
        for scheduler_class in self.scheduler_classes:
182
183
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
184

185
186
            sample_pt = torch.tensor(sample)
            residual_pt = 0.1 * sample_pt
Patrick von Platen's avatar
Patrick von Platen committed
187
188
189
190
191
192

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            scheduler_pt = scheduler_class(tensor_format="pt", **scheduler_config)

193
194
195
196
197
198
199
200
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                scheduler_pt.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            output = scheduler.step(residual, 1, sample, **kwargs)["prev_sample"]
            output_pt = scheduler_pt.step(residual_pt, 1, sample_pt, **kwargs)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
201

Patrick von Platen's avatar
Patrick von Platen committed
202
            assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
203

Patrick von Platen's avatar
Patrick von Platen committed
204
205

class DDPMSchedulerTest(SchedulerCommonTest):
Patrick von Platen's avatar
Patrick von Platen committed
206
    scheduler_classes = (DDPMScheduler,)
Patrick von Platen's avatar
Patrick von Platen committed
207
208
209

    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
210
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
211
212
213
214
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
            "variance_type": "fixed_small",
Patrick von Platen's avatar
Patrick von Platen committed
215
            "clip_sample": True,
Patrick von Platen's avatar
Patrick von Platen committed
216
217
218
219
        }

        config.update(**kwargs)
        return config
Patrick von Platen's avatar
update  
Patrick von Platen committed
220

Patrick von Platen's avatar
Patrick von Platen committed
221
222
    def test_timesteps(self):
        for timesteps in [1, 5, 100, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
223
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
224
225
226
227
228
229
230
231
232
233
234
235
236

    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_variance_type(self):
        for variance in ["fixed_small", "fixed_large", "other"]:
            self.check_over_configs(variance_type=variance)

237
    def test_clip_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
238
239
        for clip_sample in [True, False]:
            self.check_over_configs(clip_sample=clip_sample)
Patrick von Platen's avatar
Patrick von Platen committed
240
241
242
243
244
245
246
247
248
249

    def test_time_indices(self):
        for t in [0, 500, 999]:
            self.check_over_forward(time_step=t)

    def test_variance(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

Patrick von Platen's avatar
Patrick von Platen committed
250
251
252
        assert np.sum(np.abs(scheduler.get_variance(0) - 0.0)) < 1e-5
        assert np.sum(np.abs(scheduler.get_variance(487) - 0.00979)) < 1e-5
        assert np.sum(np.abs(scheduler.get_variance(999) - 0.02)) < 1e-5
Patrick von Platen's avatar
Patrick von Platen committed
253
254
255

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
Patrick von Platen's avatar
Patrick von Platen committed
256
        scheduler_config = self.get_scheduler_config()
Patrick von Platen's avatar
Patrick von Platen committed
257
258
259
260
261
        scheduler = scheduler_class(**scheduler_config)

        num_trained_timesteps = len(scheduler)

        model = self.dummy_model()
262
        sample = self.dummy_sample_deter
Patrick von Platen's avatar
Patrick von Platen committed
263
264
265

        for t in reversed(range(num_trained_timesteps)):
            # 1. predict noise residual
266
            residual = model(sample, t)
Patrick von Platen's avatar
Patrick von Platen committed
267

268
            # 2. predict previous mean of sample x_t-1
269
            pred_prev_sample = scheduler.step(residual, t, sample)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
270
271

            if t > 0:
272
                noise = self.dummy_sample_deter
Patrick von Platen's avatar
Patrick von Platen committed
273
                variance = scheduler.get_variance(t) ** (0.5) * noise
Patrick von Platen's avatar
Patrick von Platen committed
274

275
            sample = pred_prev_sample + variance
Patrick von Platen's avatar
Patrick von Platen committed
276

277
278
        result_sum = np.sum(np.abs(sample))
        result_mean = np.mean(np.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
279

Patrick von Platen's avatar
Patrick von Platen committed
280
281
        assert abs(result_sum.item() - 732.9947) < 1e-2
        assert abs(result_mean.item() - 0.9544) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
282

Patrick von Platen's avatar
update  
Patrick von Platen committed
283

Patrick von Platen's avatar
Patrick von Platen committed
284
285
class DDIMSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (DDIMScheduler,)
286
    forward_default_kwargs = (("eta", 0.0), ("num_inference_steps", 50))
Patrick von Platen's avatar
update  
Patrick von Platen committed
287

Patrick von Platen's avatar
Patrick von Platen committed
288
289
    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
290
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
291
292
293
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
Patrick von Platen's avatar
Patrick von Platen committed
294
            "clip_sample": True,
Patrick von Platen's avatar
Patrick von Platen committed
295
        }
Patrick von Platen's avatar
Patrick von Platen committed
296

Patrick von Platen's avatar
Patrick von Platen committed
297
298
299
300
        config.update(**kwargs)
        return config

    def test_timesteps(self):
301
        for timesteps in [100, 500, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
302
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
303
304
305
306
307
308
309
310
311

    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

312
    def test_clip_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
313
314
        for clip_sample in [True, False]:
            self.check_over_configs(clip_sample=clip_sample)
Patrick von Platen's avatar
Patrick von Platen committed
315
316
317
318
319
320
321

    def test_time_indices(self):
        for t in [1, 10, 49]:
            self.check_over_forward(time_step=t)

    def test_inference_steps(self):
        for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]):
322
            self.check_over_forward(num_inference_steps=num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
323
324
325
326
327
328
329

    def test_eta(self):
        for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0]):
            self.check_over_forward(time_step=t, eta=eta)

    def test_variance(self):
        scheduler_class = self.scheduler_classes[0]
Patrick von Platen's avatar
Patrick von Platen committed
330
        scheduler_config = self.get_scheduler_config()
Patrick von Platen's avatar
Patrick von Platen committed
331
332
        scheduler = scheduler_class(**scheduler_config)

333
334
335
336
337
338
        assert np.sum(np.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
        assert np.sum(np.abs(scheduler._get_variance(420, 400) - 0.14771)) < 1e-5
        assert np.sum(np.abs(scheduler._get_variance(980, 960) - 0.32460)) < 1e-5
        assert np.sum(np.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
        assert np.sum(np.abs(scheduler._get_variance(487, 486) - 0.00979)) < 1e-5
        assert np.sum(np.abs(scheduler._get_variance(999, 998) - 0.02)) < 1e-5
Patrick von Platen's avatar
Patrick von Platen committed
339
340
341
342
343
344

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

345
        num_inference_steps, eta = 10, 0.0
Patrick von Platen's avatar
Patrick von Platen committed
346
347

        model = self.dummy_model()
348
        sample = self.dummy_sample_deter
Patrick von Platen's avatar
Patrick von Platen committed
349

350
351
352
        scheduler.set_timesteps(num_inference_steps)
        for t in scheduler.timesteps:
            residual = model(sample, t)
Patrick von Platen's avatar
Patrick von Platen committed
353

354
            sample = scheduler.step(residual, t, sample, eta)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
355

356
357
        result_sum = np.sum(np.abs(sample))
        result_mean = np.mean(np.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
358

359
360
        assert abs(result_sum.item() - 172.0067) < 1e-2
        assert abs(result_mean.item() - 0.223967) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
361
362
363
364
365
366
367
368


class PNDMSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (PNDMScheduler,)
    forward_default_kwargs = (("num_inference_steps", 50),)

    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
369
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
370
371
372
373
374
375
376
377
378
379
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
        }

        config.update(**kwargs)
        return config

    def check_over_configs_pmls(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)
380
381
        sample = self.dummy_sample
        residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_class = self.scheduler_classes[0]
            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)
            # copy over dummy past residuals
            scheduler.ets = dummy_past_residuals[:]
            scheduler.set_plms_mode()

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)
                # copy over dummy past residuals
                new_scheduler.ets = dummy_past_residuals[:]
                new_scheduler.set_plms_mode()

399
400
            output = scheduler.step(residual, time_step, sample, **kwargs)["prev_sample"]
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
401
402
403
404
405
406

            assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

    def check_over_forward_pmls(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        kwargs.update(forward_kwargs)
407
408
        sample = self.dummy_sample
        residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_class = self.scheduler_classes[0]
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)
            # copy over dummy past residuals
            scheduler.ets = dummy_past_residuals[:]
            scheduler.set_plms_mode()

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)
                # copy over dummy past residuals
                new_scheduler.ets = dummy_past_residuals[:]
                new_scheduler.set_plms_mode()

426
427
            output = scheduler.step(residual, time_step, sample, **kwargs)["prev_sample"]
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
428
429
430
431
432

            assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

    def test_timesteps(self):
        for timesteps in [100, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
433
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
434
435
436

    def test_timesteps_pmls(self):
        for timesteps in [100, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
437
            self.check_over_configs_pmls(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478

    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01], [0.002, 0.02, 0.2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_betas_pmls(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01], [0.002, 0.02, 0.2]):
            self.check_over_configs_pmls(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_schedules_pmls(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_time_indices(self):
        for t in [1, 5, 10]:
            self.check_over_forward(time_step=t)

    def test_time_indices_pmls(self):
        for t in [1, 5, 10]:
            self.check_over_forward_pmls(time_step=t)

    def test_inference_steps(self):
        for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]):
            self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)

    def test_inference_steps_pmls(self):
        for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]):
            self.check_over_forward_pmls(time_step=t, num_inference_steps=num_inference_steps)

    def test_inference_pmls_no_past_residuals(self):
        with self.assertRaises(ValueError):
            scheduler_class = self.scheduler_classes[0]
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            scheduler.set_plms_mode()

479
            scheduler.step(self.dummy_sample, 1, self.dummy_sample, 50)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
480
481
482
483
484
485
486
487

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 10
        model = self.dummy_model()
488
        sample = self.dummy_sample_deter
Patrick von Platen's avatar
Patrick von Platen committed
489
490
491
492

        prk_time_steps = scheduler.get_prk_time_steps(num_inference_steps)
        for t in range(len(prk_time_steps)):
            t_orig = prk_time_steps[t]
493
            residual = model(sample, t_orig)
Patrick von Platen's avatar
Patrick von Platen committed
494

495
            sample = scheduler.step_prk(residual, t, sample, num_inference_steps)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
496
497
498
499

        timesteps = scheduler.get_time_steps(num_inference_steps)
        for t in range(len(timesteps)):
            t_orig = timesteps[t]
500
            residual = model(sample, t_orig)
Patrick von Platen's avatar
Patrick von Platen committed
501

502
            sample = scheduler.step_plms(residual, t, sample, num_inference_steps)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
503

504
505
        result_sum = np.sum(np.abs(sample))
        result_mean = np.mean(np.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
506
507
508

        assert abs(result_sum.item() - 199.1169) < 1e-2
        assert abs(result_mean.item() - 0.2593) < 1e-3
Nathan Lambert's avatar
Nathan Lambert committed
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620


class ScoreSdeVeSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (ScoreSdeVeScheduler,)

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 2000,
            "snr": 0.15,
            "sigma_min": 0.01,
            "sigma_max": 1348,
            "sampling_eps": 1e-5,
            "tensor_format": "np",  # TODO add test for tensor formats
        }

        config.update(**kwargs)
        return config

    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)

        for scheduler_class in self.scheduler_classes:
            scheduler_class = self.scheduler_classes[0]
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

            output = scheduler.step_pred(residual, sample, time_step, **kwargs)
            new_output = new_scheduler.step_pred(residual, sample, time_step, **kwargs)

            assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

            output = scheduler.step_correct(residual, sample, **kwargs)
            new_output = new_scheduler.step_correct(residual, sample, **kwargs)

            assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical"

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        kwargs.update(forward_kwargs)

        for scheduler_class in self.scheduler_classes:
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_class = self.scheduler_classes[0]
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

            output = scheduler.step_pred(residual, sample, time_step, **kwargs)
            new_output = new_scheduler.step_pred(residual, sample, time_step, **kwargs)

            assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

            output = scheduler.step_correct(residual, sample, **kwargs)
            new_output = new_scheduler.step_correct(residual, sample, **kwargs)

            assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical"

    def test_timesteps(self):
        for timesteps in [10, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_sigmas(self):
        for sigma_min, sigma_max in zip([0.0001, 0.001, 0.01], [1, 100, 1000]):
            self.check_over_configs(sigma_min=sigma_min, sigma_max=sigma_max)

    def test_time_indices(self):
        for t in [1, 5, 10]:
            self.check_over_forward(time_step=t)

    def test_full_loop_no_noise(self):
        np.random.seed(0)
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 3

        model = self.dummy_model()
        sample = self.dummy_sample_deter

        scheduler.set_sigmas(num_inference_steps)

        for i, t in enumerate(scheduler.timesteps):
            sigma_t = scheduler.sigmas[i]

            for _ in range(scheduler.correct_steps):
                with torch.no_grad():
                    result = model(sample, sigma_t)
                sample = scheduler.step_correct(result, sample)

            with torch.no_grad():
                result = model(sample, sigma_t)

            sample, sample_mean = scheduler.step_pred(result, sample, t)

        result_sum = np.sum(np.abs(sample))
        result_mean = np.mean(np.abs(sample))

        assert abs(result_sum.item() - 10629923278.7104) < 1e-2
        assert abs(result_mean.item() - 13841045.9358) < 1e-3