Unverified Commit 8e74efad authored by Cheng Lu's avatar Cheng Lu Committed by GitHub
Browse files

Add Singlestep DPM-Solver (singlestep high-order schedulers) (#1442)



* add singlestep dpmsolver

* fix a style typo

* fix a style typo

* add docs

* finish
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
parent 6a7f1f09
...@@ -70,6 +70,12 @@ Original paper can be found [here](https://arxiv.org/abs/2010.02502). ...@@ -70,6 +70,12 @@ Original paper can be found [here](https://arxiv.org/abs/2010.02502).
[[autodoc]] DDPMScheduler [[autodoc]] DDPMScheduler
#### Singlestep DPM-Solver
Original paper can be found [here](https://arxiv.org/abs/2206.00927) and the [improved version](https://arxiv.org/abs/2211.01095). The original implementation can be found [here](https://github.com/LuChengTHU/dpm-solver).
[[autodoc]] DPMSolverSinglestepScheduler
#### Multistep DPM-Solver #### Multistep DPM-Solver
Original paper can be found [here](https://arxiv.org/abs/2206.00927) and the [improved version](https://arxiv.org/abs/2211.01095). The original implementation can be found [here](https://github.com/LuChengTHU/dpm-solver). Original paper can be found [here](https://arxiv.org/abs/2206.00927) and the [improved version](https://arxiv.org/abs/2211.01095). The original implementation can be found [here](https://github.com/LuChengTHU/dpm-solver).
......
...@@ -44,6 +44,7 @@ if is_torch_available(): ...@@ -44,6 +44,7 @@ if is_torch_available():
DDIMScheduler, DDIMScheduler,
DDPMScheduler, DDPMScheduler,
DPMSolverMultistepScheduler, DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler, EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler, EulerDiscreteScheduler,
HeunDiscreteScheduler, HeunDiscreteScheduler,
......
...@@ -20,6 +20,7 @@ if is_torch_available(): ...@@ -20,6 +20,7 @@ if is_torch_available():
from .scheduling_ddim import DDIMScheduler from .scheduling_ddim import DDIMScheduler
from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm import DDPMScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler
......
This diff is collapsed.
...@@ -90,6 +90,7 @@ _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS = [ ...@@ -90,6 +90,7 @@ _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS = [
"HeunDiscreteScheduler", "HeunDiscreteScheduler",
"EulerAncestralDiscreteScheduler", "EulerAncestralDiscreteScheduler",
"DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler",
"DPMSolverSinglestepScheduler",
] ]
......
...@@ -362,6 +362,21 @@ class DPMSolverMultistepScheduler(metaclass=DummyObject): ...@@ -362,6 +362,21 @@ class DPMSolverMultistepScheduler(metaclass=DummyObject):
requires_backends(cls, ["torch"]) requires_backends(cls, ["torch"])
class DPMSolverSinglestepScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class EulerAncestralDiscreteScheduler(metaclass=DummyObject): class EulerAncestralDiscreteScheduler(metaclass=DummyObject):
_backends = ["torch"] _backends = ["torch"]
......
...@@ -28,6 +28,7 @@ from diffusers import ( ...@@ -28,6 +28,7 @@ from diffusers import (
DDIMScheduler, DDIMScheduler,
DDPMScheduler, DDPMScheduler,
DPMSolverMultistepScheduler, DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler, EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler, EulerDiscreteScheduler,
HeunDiscreteScheduler, HeunDiscreteScheduler,
...@@ -870,6 +871,182 @@ class DDIMSchedulerTest(SchedulerCommonTest): ...@@ -870,6 +871,182 @@ class DDIMSchedulerTest(SchedulerCommonTest):
assert abs(result_mean.item() - 0.1941) < 1e-3 assert abs(result_mean.item() - 0.1941) < 1e-3
class DPMSolverSinglestepSchedulerTest(SchedulerCommonTest):
scheduler_classes = (DPMSolverSinglestepScheduler,)
forward_default_kwargs = (("num_inference_steps", 25),)
def get_scheduler_config(self, **kwargs):
config = {
"num_train_timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"solver_order": 2,
"prediction_type": "epsilon",
"thresholding": False,
"sample_max_value": 1.0,
"algorithm_type": "dpmsolver++",
"solver_type": "midpoint",
}
config.update(**kwargs)
return config
def check_over_configs(self, time_step=0, **config):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
sample = self.dummy_sample
residual = 0.1 * sample
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residuals
scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
new_scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residuals
new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order]
output, new_output = sample, sample
for t in range(time_step, time_step + scheduler.config.solver_order + 1):
output = scheduler.step(residual, t, output, **kwargs).prev_sample
new_output = new_scheduler.step(residual, t, new_output, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def test_from_save_pretrained(self):
pass
def check_over_forward(self, time_step=0, **forward_kwargs):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
sample = self.dummy_sample
residual = 0.1 * sample
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residuals (must be after setting timesteps)
scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
# copy over dummy past residuals
new_scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residual (must be after setting timesteps)
new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order]
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def full_loop(self, **config):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
num_inference_steps = 10
model = self.dummy_model()
sample = self.dummy_sample_deter
scheduler.set_timesteps(num_inference_steps)
for i, t in enumerate(scheduler.timesteps):
residual = model(sample, t)
sample = scheduler.step(residual, t, sample).prev_sample
return sample
def test_timesteps(self):
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_thresholding(self):
self.check_over_configs(thresholding=False)
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=True,
prediction_type=prediction_type,
sample_max_value=threshold,
algorithm_type="dpmsolver++",
solver_order=order,
solver_type=solver_type,
)
def test_prediction_type(self):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=prediction_type)
def test_solver_order_and_type(self):
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=order,
solver_type=solver_type,
prediction_type=prediction_type,
algorithm_type=algorithm_type,
)
sample = self.full_loop(
solver_order=order,
solver_type=solver_type,
prediction_type=prediction_type,
algorithm_type=algorithm_type,
)
assert not torch.isnan(sample).any(), "Samples have nan numbers"
def test_lower_order_final(self):
self.check_over_configs(lower_order_final=True)
self.check_over_configs(lower_order_final=False)
def test_inference_steps(self):
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=num_inference_steps, time_step=0)
def test_full_loop_no_noise(self):
sample = self.full_loop()
result_mean = torch.mean(torch.abs(sample))
assert abs(result_mean.item() - 0.2791) < 1e-3
def test_full_loop_with_v_prediction(self):
sample = self.full_loop(prediction_type="v_prediction")
result_mean = torch.mean(torch.abs(sample))
assert abs(result_mean.item() - 0.1453) < 1e-3
def test_fp16_support(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config(thresholding=True, dynamic_thresholding_ratio=0)
scheduler = scheduler_class(**scheduler_config)
num_inference_steps = 10
model = self.dummy_model()
sample = self.dummy_sample_deter.half()
scheduler.set_timesteps(num_inference_steps)
for i, t in enumerate(scheduler.timesteps):
residual = model(sample, t)
sample = scheduler.step(residual, t, sample).prev_sample
assert sample.dtype == torch.float16
class DPMSolverMultistepSchedulerTest(SchedulerCommonTest): class DPMSolverMultistepSchedulerTest(SchedulerCommonTest):
scheduler_classes = (DPMSolverMultistepScheduler,) scheduler_classes = (DPMSolverMultistepScheduler,)
forward_default_kwargs = (("num_inference_steps", 25),) forward_default_kwargs = (("num_inference_steps", 25),)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment