test_scheduler.py 27.1 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Patrick von Platen's avatar
Patrick von Platen committed
15
import tempfile
Patrick von Platen's avatar
Patrick von Platen committed
16
import unittest
Patrick von Platen's avatar
Patrick von Platen committed
17

Patrick von Platen's avatar
Patrick von Platen committed
18
19
20
import numpy as np
import torch

Nathan Lambert's avatar
Nathan Lambert committed
21
from diffusers import DDIMScheduler, DDPMScheduler, PNDMScheduler, ScoreSdeVeScheduler
Patrick von Platen's avatar
Patrick von Platen committed
22
23
24
25
26
27


torch.backends.cuda.matmul.allow_tf32 = False


class SchedulerCommonTest(unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
28
29
    scheduler_classes = ()
    forward_default_kwargs = ()
Patrick von Platen's avatar
Patrick von Platen committed
30
31

    @property
32
    def dummy_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
33
34
35
36
37
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

38
        sample = np.random.rand(batch_size, num_channels, height, width)
Patrick von Platen's avatar
Patrick von Platen committed
39

40
        return sample
Patrick von Platen's avatar
Patrick von Platen committed
41
42

    @property
43
    def dummy_sample_deter(self):
Patrick von Platen's avatar
Patrick von Platen committed
44
45
46
47
48
49
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        num_elems = batch_size * num_channels * height * width
50
51
52
53
        sample = np.arange(num_elems)
        sample = sample.reshape(num_channels, height, width, batch_size)
        sample = sample / num_elems
        sample = sample.transpose(3, 0, 1, 2)
Patrick von Platen's avatar
Patrick von Platen committed
54

55
        return sample
Patrick von Platen's avatar
Patrick von Platen committed
56
57
58
59
60

    def get_scheduler_config(self):
        raise NotImplementedError

    def dummy_model(self):
61
62
        def model(sample, t, *args):
            return sample * t / (t + 1)
Patrick von Platen's avatar
Patrick von Platen committed
63
64
65

        return model

Patrick von Platen's avatar
Patrick von Platen committed
66
67
68
    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)

69
70
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
71
72
        for scheduler_class in self.scheduler_classes:
            scheduler_class = self.scheduler_classes[0]
73
74
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
75
76
77
78
79
80
81
82

            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

83
84
85
86
87
88
89
90
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            output = scheduler.step(residual, time_step, sample, **kwargs)["prev_sample"]
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
91

Patrick von Platen's avatar
Patrick von Platen committed
92
            assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
93
94
95
96
97

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        kwargs.update(forward_kwargs)

98
99
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
100
        for scheduler_class in self.scheduler_classes:
101
102
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
103

Patrick von Platen's avatar
Patrick von Platen committed
104
            scheduler_class = self.scheduler_classes[0]
Patrick von Platen's avatar
Patrick von Platen committed
105
106
107
108
109
110
111
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

112
113
114
115
116
117
118
119
120
121
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            torch.manual_seed(0)
            output = scheduler.step(residual, time_step, sample, **kwargs)["prev_sample"]
            torch.manual_seed(0)
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
122

Patrick von Platen's avatar
Patrick von Platen committed
123
            assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
124

Patrick von Platen's avatar
Patrick von Platen committed
125
    def test_from_pretrained_save_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
126
127
        kwargs = dict(self.forward_default_kwargs)

128
129
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
130
        for scheduler_class in self.scheduler_classes:
131
132
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
133
134
135
136
137
138
139
140

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

141
142
143
144
145
146
147
148
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            output = scheduler.step(residual, 1, sample, **kwargs)["prev_sample"]
            new_output = new_scheduler.step(residual, 1, sample, **kwargs)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
149

Patrick von Platen's avatar
Patrick von Platen committed
150
            assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
151
152
153
154

    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

155
156
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
157
158
159
160
        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

161
162
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
163

164
165
166
167
168
169
170
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            output_0 = scheduler.step(residual, 0, sample, **kwargs)["prev_sample"]
            output_1 = scheduler.step(residual, 1, sample, **kwargs)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
171

172
            self.assertEqual(output_0.shape, sample.shape)
Patrick von Platen's avatar
Patrick von Platen committed
173
174
            self.assertEqual(output_0.shape, output_1.shape)

Patrick von Platen's avatar
Patrick von Platen committed
175
176
177
    def test_pytorch_equal_numpy(self):
        kwargs = dict(self.forward_default_kwargs)

178
179
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
180
        for scheduler_class in self.scheduler_classes:
181
182
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
183

184
185
            sample_pt = torch.tensor(sample)
            residual_pt = 0.1 * sample_pt
Patrick von Platen's avatar
Patrick von Platen committed
186
187
188
189
190
191

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            scheduler_pt = scheduler_class(tensor_format="pt", **scheduler_config)

192
193
194
195
196
197
198
199
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                scheduler_pt.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            output = scheduler.step(residual, 1, sample, **kwargs)["prev_sample"]
            output_pt = scheduler_pt.step(residual_pt, 1, sample_pt, **kwargs)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
200

Patrick von Platen's avatar
Patrick von Platen committed
201
            assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
202

Patrick von Platen's avatar
Patrick von Platen committed
203
204

class DDPMSchedulerTest(SchedulerCommonTest):
Patrick von Platen's avatar
Patrick von Platen committed
205
    scheduler_classes = (DDPMScheduler,)
Patrick von Platen's avatar
Patrick von Platen committed
206
207
208

    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
209
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
210
211
212
213
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
            "variance_type": "fixed_small",
Patrick von Platen's avatar
Patrick von Platen committed
214
            "clip_sample": True,
Patrick von Platen's avatar
Patrick von Platen committed
215
216
217
218
        }

        config.update(**kwargs)
        return config
Patrick von Platen's avatar
update  
Patrick von Platen committed
219

Patrick von Platen's avatar
Patrick von Platen committed
220
221
    def test_timesteps(self):
        for timesteps in [1, 5, 100, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
222
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
223
224
225
226
227
228
229
230
231
232
233
234
235

    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_variance_type(self):
        for variance in ["fixed_small", "fixed_large", "other"]:
            self.check_over_configs(variance_type=variance)

236
    def test_clip_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
237
238
        for clip_sample in [True, False]:
            self.check_over_configs(clip_sample=clip_sample)
Patrick von Platen's avatar
Patrick von Platen committed
239
240
241
242
243
244
245
246
247
248

    def test_time_indices(self):
        for t in [0, 500, 999]:
            self.check_over_forward(time_step=t)

    def test_variance(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

Patrick von Platen's avatar
Patrick von Platen committed
249
250
251
        assert np.sum(np.abs(scheduler.get_variance(0) - 0.0)) < 1e-5
        assert np.sum(np.abs(scheduler.get_variance(487) - 0.00979)) < 1e-5
        assert np.sum(np.abs(scheduler.get_variance(999) - 0.02)) < 1e-5
Patrick von Platen's avatar
Patrick von Platen committed
252
253
254

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
Patrick von Platen's avatar
Patrick von Platen committed
255
        scheduler_config = self.get_scheduler_config()
Patrick von Platen's avatar
Patrick von Platen committed
256
257
258
259
260
        scheduler = scheduler_class(**scheduler_config)

        num_trained_timesteps = len(scheduler)

        model = self.dummy_model()
261
        sample = self.dummy_sample_deter
Patrick von Platen's avatar
Patrick von Platen committed
262
263
264

        for t in reversed(range(num_trained_timesteps)):
            # 1. predict noise residual
265
            residual = model(sample, t)
Patrick von Platen's avatar
Patrick von Platen committed
266

267
            # 2. predict previous mean of sample x_t-1
268
            pred_prev_sample = scheduler.step(residual, t, sample)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
269
270

            if t > 0:
271
                noise = self.dummy_sample_deter
Patrick von Platen's avatar
Patrick von Platen committed
272
                variance = scheduler.get_variance(t) ** (0.5) * noise
Patrick von Platen's avatar
Patrick von Platen committed
273

274
            sample = pred_prev_sample + variance
Patrick von Platen's avatar
Patrick von Platen committed
275

276
277
        result_sum = np.sum(np.abs(sample))
        result_mean = np.mean(np.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
278

Patrick von Platen's avatar
Patrick von Platen committed
279
280
        assert abs(result_sum.item() - 732.9947) < 1e-2
        assert abs(result_mean.item() - 0.9544) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
281

Patrick von Platen's avatar
update  
Patrick von Platen committed
282

Patrick von Platen's avatar
Patrick von Platen committed
283
284
class DDIMSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (DDIMScheduler,)
285
    forward_default_kwargs = (("eta", 0.0), ("num_inference_steps", 50))
Patrick von Platen's avatar
update  
Patrick von Platen committed
286

Patrick von Platen's avatar
Patrick von Platen committed
287
288
    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
289
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
290
291
292
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
Patrick von Platen's avatar
Patrick von Platen committed
293
            "clip_sample": True,
Patrick von Platen's avatar
Patrick von Platen committed
294
        }
Patrick von Platen's avatar
Patrick von Platen committed
295

Patrick von Platen's avatar
Patrick von Platen committed
296
297
298
299
        config.update(**kwargs)
        return config

    def test_timesteps(self):
300
        for timesteps in [100, 500, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
301
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
302
303
304
305
306
307
308
309
310

    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

311
    def test_clip_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
312
313
        for clip_sample in [True, False]:
            self.check_over_configs(clip_sample=clip_sample)
Patrick von Platen's avatar
Patrick von Platen committed
314
315
316
317
318
319
320

    def test_time_indices(self):
        for t in [1, 10, 49]:
            self.check_over_forward(time_step=t)

    def test_inference_steps(self):
        for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]):
321
            self.check_over_forward(num_inference_steps=num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
322
323
324
325
326
327
328

    def test_eta(self):
        for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0]):
            self.check_over_forward(time_step=t, eta=eta)

    def test_variance(self):
        scheduler_class = self.scheduler_classes[0]
Patrick von Platen's avatar
Patrick von Platen committed
329
        scheduler_config = self.get_scheduler_config()
Patrick von Platen's avatar
Patrick von Platen committed
330
331
        scheduler = scheduler_class(**scheduler_config)

332
333
334
335
336
337
        assert np.sum(np.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
        assert np.sum(np.abs(scheduler._get_variance(420, 400) - 0.14771)) < 1e-5
        assert np.sum(np.abs(scheduler._get_variance(980, 960) - 0.32460)) < 1e-5
        assert np.sum(np.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
        assert np.sum(np.abs(scheduler._get_variance(487, 486) - 0.00979)) < 1e-5
        assert np.sum(np.abs(scheduler._get_variance(999, 998) - 0.02)) < 1e-5
Patrick von Platen's avatar
Patrick von Platen committed
338
339
340
341
342
343

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

344
        num_inference_steps, eta = 10, 0.0
Patrick von Platen's avatar
Patrick von Platen committed
345
346

        model = self.dummy_model()
347
        sample = self.dummy_sample_deter
Patrick von Platen's avatar
Patrick von Platen committed
348

349
350
351
        scheduler.set_timesteps(num_inference_steps)
        for t in scheduler.timesteps:
            residual = model(sample, t)
Patrick von Platen's avatar
Patrick von Platen committed
352

353
            sample = scheduler.step(residual, t, sample, eta)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
354

355
356
        result_sum = np.sum(np.abs(sample))
        result_mean = np.mean(np.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
357

358
359
        assert abs(result_sum.item() - 172.0067) < 1e-2
        assert abs(result_mean.item() - 0.223967) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
360
361
362
363
364
365
366
367


class PNDMSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (PNDMScheduler,)
    forward_default_kwargs = (("num_inference_steps", 50),)

    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
368
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
369
370
371
372
373
374
375
376
377
378
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
        }

        config.update(**kwargs)
        return config

    def check_over_configs_pmls(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)
379
380
        sample = self.dummy_sample
        residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_class = self.scheduler_classes[0]
            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)
            # copy over dummy past residuals
            scheduler.ets = dummy_past_residuals[:]
            scheduler.set_plms_mode()

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)
                # copy over dummy past residuals
                new_scheduler.ets = dummy_past_residuals[:]
                new_scheduler.set_plms_mode()

398
399
            output = scheduler.step(residual, time_step, sample, **kwargs)["prev_sample"]
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
400
401
402
403
404
405

            assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

    def check_over_forward_pmls(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        kwargs.update(forward_kwargs)
406
407
        sample = self.dummy_sample
        residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_class = self.scheduler_classes[0]
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)
            # copy over dummy past residuals
            scheduler.ets = dummy_past_residuals[:]
            scheduler.set_plms_mode()

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)
                # copy over dummy past residuals
                new_scheduler.ets = dummy_past_residuals[:]
                new_scheduler.set_plms_mode()

425
426
            output = scheduler.step(residual, time_step, sample, **kwargs)["prev_sample"]
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
427
428
429
430
431

            assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

    def test_timesteps(self):
        for timesteps in [100, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
432
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
433
434
435

    def test_timesteps_pmls(self):
        for timesteps in [100, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
436
            self.check_over_configs_pmls(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477

    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01], [0.002, 0.02, 0.2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_betas_pmls(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01], [0.002, 0.02, 0.2]):
            self.check_over_configs_pmls(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_schedules_pmls(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_time_indices(self):
        for t in [1, 5, 10]:
            self.check_over_forward(time_step=t)

    def test_time_indices_pmls(self):
        for t in [1, 5, 10]:
            self.check_over_forward_pmls(time_step=t)

    def test_inference_steps(self):
        for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]):
            self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)

    def test_inference_steps_pmls(self):
        for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]):
            self.check_over_forward_pmls(time_step=t, num_inference_steps=num_inference_steps)

    def test_inference_pmls_no_past_residuals(self):
        with self.assertRaises(ValueError):
            scheduler_class = self.scheduler_classes[0]
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            scheduler.set_plms_mode()

478
            scheduler.step(self.dummy_sample, 1, self.dummy_sample, 50)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
479
480
481
482
483
484
485
486

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 10
        model = self.dummy_model()
487
        sample = self.dummy_sample_deter
Patrick von Platen's avatar
Patrick von Platen committed
488
489
490
491

        prk_time_steps = scheduler.get_prk_time_steps(num_inference_steps)
        for t in range(len(prk_time_steps)):
            t_orig = prk_time_steps[t]
492
            residual = model(sample, t_orig)
Patrick von Platen's avatar
Patrick von Platen committed
493

494
            sample = scheduler.step_prk(residual, t, sample, num_inference_steps)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
495
496
497
498

        timesteps = scheduler.get_time_steps(num_inference_steps)
        for t in range(len(timesteps)):
            t_orig = timesteps[t]
499
            residual = model(sample, t_orig)
Patrick von Platen's avatar
Patrick von Platen committed
500

501
            sample = scheduler.step_plms(residual, t, sample, num_inference_steps)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
502

503
504
        result_sum = np.sum(np.abs(sample))
        result_mean = np.mean(np.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
505
506
507

        assert abs(result_sum.item() - 199.1169) < 1e-2
        assert abs(result_mean.item() - 0.2593) < 1e-3
Nathan Lambert's avatar
Nathan Lambert committed
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619


class ScoreSdeVeSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (ScoreSdeVeScheduler,)

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 2000,
            "snr": 0.15,
            "sigma_min": 0.01,
            "sigma_max": 1348,
            "sampling_eps": 1e-5,
            "tensor_format": "np",  # TODO add test for tensor formats
        }

        config.update(**kwargs)
        return config

    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)

        for scheduler_class in self.scheduler_classes:
            scheduler_class = self.scheduler_classes[0]
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

            output = scheduler.step_pred(residual, sample, time_step, **kwargs)
            new_output = new_scheduler.step_pred(residual, sample, time_step, **kwargs)

            assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

            output = scheduler.step_correct(residual, sample, **kwargs)
            new_output = new_scheduler.step_correct(residual, sample, **kwargs)

            assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical"

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        kwargs.update(forward_kwargs)

        for scheduler_class in self.scheduler_classes:
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_class = self.scheduler_classes[0]
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

            output = scheduler.step_pred(residual, sample, time_step, **kwargs)
            new_output = new_scheduler.step_pred(residual, sample, time_step, **kwargs)

            assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

            output = scheduler.step_correct(residual, sample, **kwargs)
            new_output = new_scheduler.step_correct(residual, sample, **kwargs)

            assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical"

    def test_timesteps(self):
        for timesteps in [10, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_sigmas(self):
        for sigma_min, sigma_max in zip([0.0001, 0.001, 0.01], [1, 100, 1000]):
            self.check_over_configs(sigma_min=sigma_min, sigma_max=sigma_max)

    def test_time_indices(self):
        for t in [1, 5, 10]:
            self.check_over_forward(time_step=t)

    def test_full_loop_no_noise(self):
        np.random.seed(0)
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 3

        model = self.dummy_model()
        sample = self.dummy_sample_deter

        scheduler.set_sigmas(num_inference_steps)

        for i, t in enumerate(scheduler.timesteps):
            sigma_t = scheduler.sigmas[i]

            for _ in range(scheduler.correct_steps):
                with torch.no_grad():
                    result = model(sample, sigma_t)
                sample = scheduler.step_correct(result, sample)

            with torch.no_grad():
                result = model(sample, sigma_t)

            sample, sample_mean = scheduler.step_pred(result, sample, t)

        result_sum = np.sum(np.abs(sample))
        result_mean = np.mean(np.abs(sample))

        assert abs(result_sum.item() - 10629923278.7104) < 1e-2
        assert abs(result_mean.item() - 13841045.9358) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697

    def test_from_pretrained_save_pretrained(self):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            output = scheduler.step_pred(residual, 1, sample, **kwargs)["prev_sample"]
            new_output = new_scheduler.step_pred(residual, 1, sample, **kwargs)["prev_sample"]

            assert np.sum(np.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            output_0 = scheduler.step_pred(residual, 0, sample, **kwargs)["prev_sample"]
            output_1 = scheduler.step_pred(residual, 1, sample, **kwargs)["prev_sample"]

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

    def test_pytorch_equal_numpy(self):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            sample = self.dummy_sample
            residual = 0.1 * sample

            sample_pt = torch.tensor(sample)
            residual_pt = 0.1 * sample_pt

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            scheduler_pt = scheduler_class(tensor_format="pt", **scheduler_config)

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                scheduler_pt.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            output = scheduler.step_pred(residual, 1, sample, **kwargs)["prev_sample"]
            output_pt = scheduler_pt.step_pred(residual_pt, 1, sample_pt, **kwargs)["prev_sample"]

            assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical"