test_scheduler.py 29.3 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
import pdb
Patrick von Platen's avatar
Patrick von Platen committed
16
import tempfile
Patrick von Platen's avatar
Patrick von Platen committed
17
import unittest
Patrick von Platen's avatar
Patrick von Platen committed
18

Patrick von Platen's avatar
Patrick von Platen committed
19
20
21
import numpy as np
import torch

Nathan Lambert's avatar
Nathan Lambert committed
22
from diffusers import DDIMScheduler, DDPMScheduler, PNDMScheduler, ScoreSdeVeScheduler
Patrick von Platen's avatar
Patrick von Platen committed
23
24
25
26
27
28


torch.backends.cuda.matmul.allow_tf32 = False


class SchedulerCommonTest(unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
29
30
    scheduler_classes = ()
    forward_default_kwargs = ()
Patrick von Platen's avatar
Patrick von Platen committed
31
32

    @property
33
    def dummy_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
34
35
36
37
38
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

39
        sample = torch.rand((batch_size, num_channels, height, width))
Patrick von Platen's avatar
Patrick von Platen committed
40

41
        return sample
Patrick von Platen's avatar
Patrick von Platen committed
42
43

    @property
44
    def dummy_sample_deter(self):
Patrick von Platen's avatar
Patrick von Platen committed
45
46
47
48
49
50
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        num_elems = batch_size * num_channels * height * width
51
        sample = torch.arange(num_elems)
52
53
        sample = sample.reshape(num_channels, height, width, batch_size)
        sample = sample / num_elems
54
        sample = sample.permute(3, 0, 1, 2)
Patrick von Platen's avatar
Patrick von Platen committed
55

56
        return sample
Patrick von Platen's avatar
Patrick von Platen committed
57
58
59
60
61

    def get_scheduler_config(self):
        raise NotImplementedError

    def dummy_model(self):
62
63
        def model(sample, t, *args):
            return sample * t / (t + 1)
Patrick von Platen's avatar
Patrick von Platen committed
64
65
66

        return model

Patrick von Platen's avatar
Patrick von Platen committed
67
68
69
    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)

70
71
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
72
        for scheduler_class in self.scheduler_classes:
73
74
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
75
76
77
78
79
80
81
82

            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

83
84
85
86
87
88
89
90
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            output = scheduler.step(residual, time_step, sample, **kwargs)["prev_sample"]
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
91

92
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
93
94
95
96
97

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        kwargs.update(forward_kwargs)

98
99
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
100
        for scheduler_class in self.scheduler_classes:
101
102
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
103
104
105
106
107
108
109
110

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

111
112
113
114
115
116
117
118
119
120
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            torch.manual_seed(0)
            output = scheduler.step(residual, time_step, sample, **kwargs)["prev_sample"]
            torch.manual_seed(0)
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
121

122
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
123

Patrick von Platen's avatar
Patrick von Platen committed
124
    def test_from_pretrained_save_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
125
126
        kwargs = dict(self.forward_default_kwargs)

127
128
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
129
        for scheduler_class in self.scheduler_classes:
130
131
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
132
133
134
135
136
137
138
139

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

140
141
142
143
144
145
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

146
            torch.manual_seed(0)
147
            output = scheduler.step(residual, 1, sample, **kwargs)["prev_sample"]
148
            torch.manual_seed(0)
149
            new_output = new_scheduler.step(residual, 1, sample, **kwargs)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
150

151
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
152
153
154
155

    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

156
157
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
158
159
160
161
        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

162
163
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
164

165
166
167
168
169
170
171
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            output_0 = scheduler.step(residual, 0, sample, **kwargs)["prev_sample"]
            output_1 = scheduler.step(residual, 1, sample, **kwargs)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
172

173
            self.assertEqual(output_0.shape, sample.shape)
Patrick von Platen's avatar
Patrick von Platen committed
174
175
            self.assertEqual(output_0.shape, output_1.shape)

Patrick von Platen's avatar
Patrick von Platen committed
176
177
178
    def test_pytorch_equal_numpy(self):
        kwargs = dict(self.forward_default_kwargs)

179
180
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
181
        for scheduler_class in self.scheduler_classes:
182
            sample_pt = self.dummy_sample
183
            residual_pt = 0.1 * sample_pt
Patrick von Platen's avatar
Patrick von Platen committed
184

185
186
187
            sample = sample_pt.numpy()
            residual = 0.1 * sample

Patrick von Platen's avatar
Patrick von Platen committed
188
            scheduler_config = self.get_scheduler_config()
189
            scheduler = scheduler_class(tensor_format="np", **scheduler_config)
Patrick von Platen's avatar
Patrick von Platen committed
190
191
192

            scheduler_pt = scheduler_class(tensor_format="pt", **scheduler_config)

193
194
195
196
197
198
199
200
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                scheduler_pt.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            output = scheduler.step(residual, 1, sample, **kwargs)["prev_sample"]
            output_pt = scheduler_pt.step(residual_pt, 1, sample_pt, **kwargs)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
201

Patrick von Platen's avatar
Patrick von Platen committed
202
            assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
203

Patrick von Platen's avatar
Patrick von Platen committed
204
205

class DDPMSchedulerTest(SchedulerCommonTest):
Patrick von Platen's avatar
Patrick von Platen committed
206
    scheduler_classes = (DDPMScheduler,)
Patrick von Platen's avatar
Patrick von Platen committed
207
208
209

    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
210
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
211
212
213
214
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
            "variance_type": "fixed_small",
Patrick von Platen's avatar
Patrick von Platen committed
215
            "clip_sample": True,
216
            "tensor_format": "pt",
Patrick von Platen's avatar
Patrick von Platen committed
217
218
219
220
        }

        config.update(**kwargs)
        return config
Patrick von Platen's avatar
update  
Patrick von Platen committed
221

Patrick von Platen's avatar
Patrick von Platen committed
222
223
    def test_timesteps(self):
        for timesteps in [1, 5, 100, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
224
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
225
226
227
228
229
230
231
232
233
234
235
236
237

    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_variance_type(self):
        for variance in ["fixed_small", "fixed_large", "other"]:
            self.check_over_configs(variance_type=variance)

238
    def test_clip_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
239
240
        for clip_sample in [True, False]:
            self.check_over_configs(clip_sample=clip_sample)
Patrick von Platen's avatar
Patrick von Platen committed
241
242
243
244
245
246
247
248
249
250

    def test_time_indices(self):
        for t in [0, 500, 999]:
            self.check_over_forward(time_step=t)

    def test_variance(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

251
252
253
254
255
256
257
        assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.00979)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1e-5

    # TODO Make DDPM Numpy compatible
    def test_pytorch_equal_numpy(self):
        pass
Patrick von Platen's avatar
Patrick von Platen committed
258
259
260

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
Patrick von Platen's avatar
Patrick von Platen committed
261
        scheduler_config = self.get_scheduler_config()
Patrick von Platen's avatar
Patrick von Platen committed
262
263
264
265
266
        scheduler = scheduler_class(**scheduler_config)

        num_trained_timesteps = len(scheduler)

        model = self.dummy_model()
267
        sample = self.dummy_sample_deter
Patrick von Platen's avatar
Patrick von Platen committed
268
269
270

        for t in reversed(range(num_trained_timesteps)):
            # 1. predict noise residual
271
            residual = model(sample, t)
Patrick von Platen's avatar
Patrick von Platen committed
272

273
            # 2. predict previous mean of sample x_t-1
274
            pred_prev_sample = scheduler.step(residual, t, sample)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
275

276
277
278
279
280
281
            # if t > 0:
            #     noise = self.dummy_sample_deter
            #     variance = scheduler.get_variance(t) ** (0.5) * noise
            #
            # sample = pred_prev_sample + variance
            sample = pred_prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
282

283
284
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
285

286
287
        assert abs(result_sum.item() - 259.0883) < 1e-2
        assert abs(result_mean.item() - 0.3374) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
288

Patrick von Platen's avatar
update  
Patrick von Platen committed
289

Patrick von Platen's avatar
Patrick von Platen committed
290
291
class DDIMSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (DDIMScheduler,)
292
    forward_default_kwargs = (("eta", 0.0), ("num_inference_steps", 50))
Patrick von Platen's avatar
update  
Patrick von Platen committed
293

Patrick von Platen's avatar
Patrick von Platen committed
294
295
    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
296
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
297
298
299
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
Patrick von Platen's avatar
Patrick von Platen committed
300
            "clip_sample": True,
Patrick von Platen's avatar
Patrick von Platen committed
301
        }
Patrick von Platen's avatar
Patrick von Platen committed
302

Patrick von Platen's avatar
Patrick von Platen committed
303
304
305
306
        config.update(**kwargs)
        return config

    def test_timesteps(self):
307
        for timesteps in [100, 500, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
308
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
309
310
311
312
313
314
315
316
317

    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

318
    def test_clip_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
319
320
        for clip_sample in [True, False]:
            self.check_over_configs(clip_sample=clip_sample)
Patrick von Platen's avatar
Patrick von Platen committed
321
322
323
324
325
326
327

    def test_time_indices(self):
        for t in [1, 10, 49]:
            self.check_over_forward(time_step=t)

    def test_inference_steps(self):
        for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]):
328
            self.check_over_forward(num_inference_steps=num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
329
330
331
332
333
334
335

    def test_eta(self):
        for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0]):
            self.check_over_forward(time_step=t, eta=eta)

    def test_variance(self):
        scheduler_class = self.scheduler_classes[0]
Patrick von Platen's avatar
Patrick von Platen committed
336
        scheduler_config = self.get_scheduler_config()
Patrick von Platen's avatar
Patrick von Platen committed
337
338
        scheduler = scheduler_class(**scheduler_config)

339
340
341
342
343
344
        assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(420, 400) - 0.14771)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(980, 960) - 0.32460)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(487, 486) - 0.00979)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(999, 998) - 0.02)) < 1e-5
Patrick von Platen's avatar
Patrick von Platen committed
345
346
347
348
349
350

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

351
        num_inference_steps, eta = 10, 0.0
Patrick von Platen's avatar
Patrick von Platen committed
352
353

        model = self.dummy_model()
354
        sample = self.dummy_sample_deter
Patrick von Platen's avatar
Patrick von Platen committed
355

356
357
358
        scheduler.set_timesteps(num_inference_steps)
        for t in scheduler.timesteps:
            residual = model(sample, t)
Patrick von Platen's avatar
Patrick von Platen committed
359

360
            sample = scheduler.step(residual, t, sample, eta)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
361

362
363
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
364

365
366
        assert abs(result_sum.item() - 172.0067) < 1e-2
        assert abs(result_mean.item() - 0.223967) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
367
368
369
370
371
372
373
374


class PNDMSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (PNDMScheduler,)
    forward_default_kwargs = (("num_inference_steps", 50),)

    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
375
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
376
377
378
379
380
381
382
383
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
        }

        config.update(**kwargs)
        return config

384
    def check_over_configs(self, time_step=0, **config):
Patrick von Platen's avatar
Patrick von Platen committed
385
        kwargs = dict(self.forward_default_kwargs)
386
387
        sample = self.dummy_sample
        residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
388
389
390
391
392
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)
393
            scheduler.set_timesteps(kwargs["num_inference_steps"])
Patrick von Platen's avatar
Patrick von Platen committed
394
395
396
397
398
399
            # copy over dummy past residuals
            scheduler.ets = dummy_past_residuals[:]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)
400
                new_scheduler.set_timesteps(kwargs["num_inference_steps"])
Patrick von Platen's avatar
Patrick von Platen committed
401
402
403
                # copy over dummy past residuals
                new_scheduler.ets = dummy_past_residuals[:]

404
405
            output = scheduler.step_prk(residual, time_step, sample, **kwargs)["prev_sample"]
            new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
406

407
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
408

409
410
411
            output = scheduler.step_plms(residual, time_step, sample, **kwargs)["prev_sample"]
            new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs)["prev_sample"]

412
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
413
414
415
416
417

    def test_from_pretrained_save_pretrained(self):
        pass

    def check_over_forward(self, time_step=0, **forward_kwargs):
Patrick von Platen's avatar
Patrick von Platen committed
418
419
        kwargs = dict(self.forward_default_kwargs)
        kwargs.update(forward_kwargs)
420
421
        sample = self.dummy_sample
        residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
422
423
424
425
426
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)
427
428
            scheduler.set_timesteps(kwargs["num_inference_steps"])

Patrick von Platen's avatar
Patrick von Platen committed
429
430
431
432
433
434
435
436
            # copy over dummy past residuals
            scheduler.ets = dummy_past_residuals[:]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)
                # copy over dummy past residuals
                new_scheduler.ets = dummy_past_residuals[:]
437
                new_scheduler.set_timesteps(kwargs["num_inference_steps"])
Patrick von Platen's avatar
Patrick von Platen committed
438

439
440
441
            output = scheduler.step_prk(residual, time_step, sample, **kwargs)["prev_sample"]
            new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs)["prev_sample"]

442
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
443
444
445

            output = scheduler.step_plms(residual, time_step, sample, **kwargs)["prev_sample"]
            new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
446

447
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
448

449
450
451
452
453
    def test_pytorch_equal_numpy(self):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
454
            sample_pt = self.dummy_sample
455
456
457
            residual_pt = 0.1 * sample_pt
            dummy_past_residuals_pt = [residual_pt + 0.2, residual_pt + 0.15, residual_pt + 0.1, residual_pt + 0.05]

458
459
460
461
            sample = sample_pt.numpy()
            residual = 0.1 * sample
            dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

462
            scheduler_config = self.get_scheduler_config()
463
            scheduler = scheduler_class(tensor_format="np", **scheduler_config)
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
            # copy over dummy past residuals
            scheduler.ets = dummy_past_residuals[:]

            scheduler_pt = scheduler_class(tensor_format="pt", **scheduler_config)
            # copy over dummy past residuals
            scheduler_pt.ets = dummy_past_residuals_pt[:]

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                scheduler_pt.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            output = scheduler.step_prk(residual, 1, sample, num_inference_steps, **kwargs)["prev_sample"]
            output_pt = scheduler_pt.step_prk(residual_pt, 1, sample_pt, num_inference_steps, **kwargs)["prev_sample"]
            assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical"

            output = scheduler.step_plms(residual, 1, sample, num_inference_steps, **kwargs)["prev_sample"]
            output_pt = scheduler_pt.step_plms(residual_pt, 1, sample_pt, num_inference_steps, **kwargs)["prev_sample"]

            assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical"

    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample
            # copy over dummy past residuals
            dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
            scheduler.ets = dummy_past_residuals[:]

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            output_0 = scheduler.step_prk(residual, 0, sample, num_inference_steps, **kwargs)["prev_sample"]
            output_1 = scheduler.step_prk(residual, 1, sample, num_inference_steps, **kwargs)["prev_sample"]

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

            output_0 = scheduler.step_plms(residual, 0, sample, num_inference_steps, **kwargs)["prev_sample"]
            output_1 = scheduler.step_plms(residual, 1, sample, num_inference_steps, **kwargs)["prev_sample"]

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

Patrick von Platen's avatar
Patrick von Platen committed
518
519
    def test_timesteps(self):
        for timesteps in [100, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
520
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537

    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01], [0.002, 0.02, 0.2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_time_indices(self):
        for t in [1, 5, 10]:
            self.check_over_forward(time_step=t)

    def test_inference_steps(self):
        for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]):
            self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)

538
    def test_inference_plms_no_past_residuals(self):
Patrick von Platen's avatar
Patrick von Platen committed
539
540
541
542
543
        with self.assertRaises(ValueError):
            scheduler_class = self.scheduler_classes[0]
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

544
            scheduler.step_plms(self.dummy_sample, 1, self.dummy_sample, 50)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
545
546
547
548
549
550
551
552

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 10
        model = self.dummy_model()
553
        sample = self.dummy_sample_deter
554
        scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
555

556
557
558
        for i, t in enumerate(scheduler.prk_timesteps):
            residual = model(sample, t)
            sample = scheduler.step_prk(residual, i, sample, num_inference_steps)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
559

560
561
562
        for i, t in enumerate(scheduler.plms_timesteps):
            residual = model(sample, t)
            sample = scheduler.step_plms(residual, i, sample, num_inference_steps)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
563

564
565
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
566
567
568

        assert abs(result_sum.item() - 199.1169) < 1e-2
        assert abs(result_mean.item() - 0.2593) < 1e-3
Nathan Lambert's avatar
Nathan Lambert committed
569
570


571
572
class ScoreSdeVeSchedulerTest(unittest.TestCase):
    # TODO adapt with class SchedulerCommonTest (scheduler needs Numpy Integration)
Nathan Lambert's avatar
Nathan Lambert committed
573
    scheduler_classes = (ScoreSdeVeScheduler,)
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
    forward_default_kwargs = (("seed", 0),)

    @property
    def dummy_sample(self):
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        sample = torch.rand((batch_size, num_channels, height, width))

        return sample

    @property
    def dummy_sample_deter(self):
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        num_elems = batch_size * num_channels * height * width
        sample = torch.arange(num_elems)
        sample = sample.reshape(num_channels, height, width, batch_size)
        sample = sample / num_elems
        sample = sample.permute(3, 0, 1, 2)

        return sample

    def dummy_model(self):
        def model(sample, t, *args):
            return sample * t / (t + 1)

        return model
Nathan Lambert's avatar
Nathan Lambert committed
607
608
609
610
611
612
613
614

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 2000,
            "snr": 0.15,
            "sigma_min": 0.01,
            "sigma_max": 1348,
            "sampling_eps": 1e-5,
615
            "tensor_format": "pt",  # TODO add test for tensor formats
Nathan Lambert's avatar
Nathan Lambert committed
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
        }

        config.update(**kwargs)
        return config

    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)

        for scheduler_class in self.scheduler_classes:
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

635
636
            output = scheduler.step_pred(residual, time_step, sample, **kwargs)["prev_sample"]
            new_output = new_scheduler.step_pred(residual, time_step, sample, **kwargs)["prev_sample"]
Nathan Lambert's avatar
Nathan Lambert committed
637

638
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
639

640
641
            output = scheduler.step_correct(residual, sample, **kwargs)["prev_sample"]
            new_output = new_scheduler.step_correct(residual, sample, **kwargs)["prev_sample"]
Nathan Lambert's avatar
Nathan Lambert committed
642

643
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        kwargs.update(forward_kwargs)

        for scheduler_class in self.scheduler_classes:
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

660
661
            output = scheduler.step_pred(residual, time_step, sample, **kwargs)["prev_sample"]
            new_output = new_scheduler.step_pred(residual, time_step, sample, **kwargs)["prev_sample"]
Nathan Lambert's avatar
Nathan Lambert committed
662

663
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
664

665
666
            output = scheduler.step_correct(residual, sample, **kwargs)["prev_sample"]
            new_output = new_scheduler.step_correct(residual, sample, **kwargs)["prev_sample"]
Nathan Lambert's avatar
Nathan Lambert committed
667

668
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
669
670
671
672
673
674
675
676
677
678

    def test_timesteps(self):
        for timesteps in [10, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_sigmas(self):
        for sigma_min, sigma_max in zip([0.0001, 0.001, 0.01], [1, 100, 1000]):
            self.check_over_configs(sigma_min=sigma_min, sigma_max=sigma_max)

    def test_time_indices(self):
679
        for t in [0.1, 0.5, 0.75]:
Nathan Lambert's avatar
Nathan Lambert committed
680
681
682
            self.check_over_forward(time_step=t)

    def test_full_loop_no_noise(self):
683
684
        kwargs = dict(self.forward_default_kwargs)

Nathan Lambert's avatar
Nathan Lambert committed
685
686
687
688
689
690
691
692
693
694
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 3

        model = self.dummy_model()
        sample = self.dummy_sample_deter

        scheduler.set_sigmas(num_inference_steps)
695
        scheduler.set_timesteps(num_inference_steps)
Nathan Lambert's avatar
Nathan Lambert committed
696
697
698
699
700
701

        for i, t in enumerate(scheduler.timesteps):
            sigma_t = scheduler.sigmas[i]

            for _ in range(scheduler.correct_steps):
                with torch.no_grad():
702
703
                    model_output = model(sample, sigma_t)
                sample = scheduler.step_correct(model_output, sample, **kwargs)["prev_sample"]
Nathan Lambert's avatar
Nathan Lambert committed
704
705

            with torch.no_grad():
706
                model_output = model(sample, sigma_t)
Patrick von Platen's avatar
Patrick von Platen committed
707

708
709
            output = scheduler.step_pred(model_output, t, sample, **kwargs)
            sample, sample_mean = output["prev_sample"], output["prev_sample_mean"]
Patrick von Platen's avatar
Patrick von Platen committed
710

711
712
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
713

714
715
        assert abs(result_sum.item() - 14379591680.0) < 1e-2
        assert abs(result_mean.item() - 18723426.0) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738

    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            output_0 = scheduler.step_pred(residual, 0, sample, **kwargs)["prev_sample"]
            output_1 = scheduler.step_pred(residual, 1, sample, **kwargs)["prev_sample"]

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)