test_scheduler.py 79.4 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
hlky's avatar
hlky committed
15
import inspect
16
17
import json
import os
Patrick von Platen's avatar
Patrick von Platen committed
18
import tempfile
Patrick von Platen's avatar
Patrick von Platen committed
19
import unittest
20
from typing import Dict, List, Tuple
Patrick von Platen's avatar
Patrick von Platen committed
21

Patrick von Platen's avatar
Patrick von Platen committed
22
23
import numpy as np
import torch
Will Berman's avatar
Will Berman committed
24
import torch.nn.functional as F
Patrick von Platen's avatar
Patrick von Platen committed
25

26
import diffusers
27
28
29
from diffusers import (
    DDIMScheduler,
    DDPMScheduler,
30
    DPMSolverMultistepScheduler,
hlky's avatar
hlky committed
31
32
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
33
    HeunDiscreteScheduler,
34
35
36
37
    IPNDMScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
    ScoreSdeVeScheduler,
Will Berman's avatar
Will Berman committed
38
    VQDiffusionScheduler,
39
    logging,
40
)
41
42
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
43
from diffusers.utils import deprecate, torch_device
44
from diffusers.utils.testing_utils import CaptureLogger
Patrick von Platen's avatar
Patrick von Platen committed
45
46
47
48
49


torch.backends.cuda.matmul.allow_tf32 = False


50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
class SchedulerObject(SchedulerMixin, ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        e=[1, 3],
    ):
        pass


class SchedulerObject2(SchedulerMixin, ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        f=[1, 3],
    ):
        pass


class SchedulerObject3(SchedulerMixin, ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        e=[1, 3],
        f=[1, 3],
    ):
        pass


class SchedulerBaseTests(unittest.TestCase):
    def test_save_load_from_different_config(self):
        obj = SchedulerObject()

        # mock add obj class to `diffusers`
        setattr(diffusers, "SchedulerObject", SchedulerObject)
        logger = logging.get_logger("diffusers.configuration_utils")

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
            with CaptureLogger(logger) as cap_logger_1:
                config = SchedulerObject2.load_config(tmpdirname)
                new_obj_1 = SchedulerObject2.from_config(config)

            # now save a config parameter that is not expected
            with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f:
                data = json.load(f)
                data["unexpected"] = True

            with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f:
                json.dump(data, f)

            with CaptureLogger(logger) as cap_logger_2:
                config = SchedulerObject.load_config(tmpdirname)
                new_obj_2 = SchedulerObject.from_config(config)

            with CaptureLogger(logger) as cap_logger_3:
                config = SchedulerObject2.load_config(tmpdirname)
                new_obj_3 = SchedulerObject2.from_config(config)

        assert new_obj_1.__class__ == SchedulerObject2
        assert new_obj_2.__class__ == SchedulerObject
        assert new_obj_3.__class__ == SchedulerObject2

        assert cap_logger_1.out == ""
        assert (
            cap_logger_2.out
            == "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and"
            " will"
            " be ignored. Please verify your config.json configuration file.\n"
        )
        assert cap_logger_2.out.replace("SchedulerObject", "SchedulerObject2") == cap_logger_3.out

    def test_save_load_compatible_schedulers(self):
        SchedulerObject2._compatibles = ["SchedulerObject"]
        SchedulerObject._compatibles = ["SchedulerObject2"]

        obj = SchedulerObject()

        # mock add obj class to `diffusers`
        setattr(diffusers, "SchedulerObject", SchedulerObject)
        setattr(diffusers, "SchedulerObject2", SchedulerObject2)
        logger = logging.get_logger("diffusers.configuration_utils")

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)

            # now save a config parameter that is expected by another class, but not origin class
            with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f:
                data = json.load(f)
                data["f"] = [0, 0]
                data["unexpected"] = True

            with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f:
                json.dump(data, f)

            with CaptureLogger(logger) as cap_logger:
                config = SchedulerObject.load_config(tmpdirname)
                new_obj = SchedulerObject.from_config(config)

        assert new_obj.__class__ == SchedulerObject

        assert (
            cap_logger.out
            == "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and"
            " will"
            " be ignored. Please verify your config.json configuration file.\n"
        )

    def test_save_load_from_different_config_comp_schedulers(self):
        SchedulerObject3._compatibles = ["SchedulerObject", "SchedulerObject2"]
        SchedulerObject2._compatibles = ["SchedulerObject", "SchedulerObject3"]
        SchedulerObject._compatibles = ["SchedulerObject2", "SchedulerObject3"]

        obj = SchedulerObject()

        # mock add obj class to `diffusers`
        setattr(diffusers, "SchedulerObject", SchedulerObject)
        setattr(diffusers, "SchedulerObject2", SchedulerObject2)
        setattr(diffusers, "SchedulerObject3", SchedulerObject3)
        logger = logging.get_logger("diffusers.configuration_utils")
        logger.setLevel(diffusers.logging.INFO)

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)

            with CaptureLogger(logger) as cap_logger_1:
                config = SchedulerObject.load_config(tmpdirname)
                new_obj_1 = SchedulerObject.from_config(config)

            with CaptureLogger(logger) as cap_logger_2:
                config = SchedulerObject2.load_config(tmpdirname)
                new_obj_2 = SchedulerObject2.from_config(config)

            with CaptureLogger(logger) as cap_logger_3:
                config = SchedulerObject3.load_config(tmpdirname)
                new_obj_3 = SchedulerObject3.from_config(config)

        assert new_obj_1.__class__ == SchedulerObject
        assert new_obj_2.__class__ == SchedulerObject2
        assert new_obj_3.__class__ == SchedulerObject3

        assert cap_logger_1.out == ""
        assert cap_logger_2.out == "{'f'} was not found in config. Values will be initialized to default values.\n"
        assert cap_logger_3.out == "{'f'} was not found in config. Values will be initialized to default values.\n"


Patrick von Platen's avatar
Patrick von Platen committed
213
class SchedulerCommonTest(unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
214
215
    scheduler_classes = ()
    forward_default_kwargs = ()
Patrick von Platen's avatar
Patrick von Platen committed
216
217

    @property
218
    def dummy_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
219
220
221
222
223
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

224
        sample = torch.rand((batch_size, num_channels, height, width))
Patrick von Platen's avatar
Patrick von Platen committed
225

226
        return sample
Patrick von Platen's avatar
Patrick von Platen committed
227
228

    @property
229
    def dummy_sample_deter(self):
Patrick von Platen's avatar
Patrick von Platen committed
230
231
232
233
234
235
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        num_elems = batch_size * num_channels * height * width
236
        sample = torch.arange(num_elems)
237
238
        sample = sample.reshape(num_channels, height, width, batch_size)
        sample = sample / num_elems
239
        sample = sample.permute(3, 0, 1, 2)
Patrick von Platen's avatar
Patrick von Platen committed
240

241
        return sample
Patrick von Platen's avatar
Patrick von Platen committed
242
243
244
245
246

    def get_scheduler_config(self):
        raise NotImplementedError

    def dummy_model(self):
247
248
        def model(sample, t, *args):
            return sample * t / (t + 1)
Patrick von Platen's avatar
Patrick von Platen committed
249
250
251

        return model

Patrick von Platen's avatar
Patrick von Platen committed
252
253
254
    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)

255
256
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
257
        for scheduler_class in self.scheduler_classes:
258
            # TODO(Suraj) - delete the following two lines once DDPM, DDIM, and PNDM have timesteps casted to float by default
hlky's avatar
hlky committed
259
260
261
            if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
                time_step = float(time_step)

Patrick von Platen's avatar
Patrick von Platen committed
262
263
264
            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)

Will Berman's avatar
Will Berman committed
265
266
267
268
269
270
271
272
273
            if scheduler_class == VQDiffusionScheduler:
                num_vec_classes = scheduler_config["num_vec_classes"]
                sample = self.dummy_sample(num_vec_classes)
                model = self.dummy_model(num_vec_classes)
                residual = model(sample, time_step)
            else:
                sample = self.dummy_sample
                residual = 0.1 * sample

Patrick von Platen's avatar
Patrick von Platen committed
274
275
            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
276
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
277

278
279
280
281
282
283
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

hlky's avatar
hlky committed
284
285
286
            # Set the seed before step() as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
287
            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
hlky's avatar
hlky committed
288
289
290

            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
291
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
292

293
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
294
295
296
297
298

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        kwargs.update(forward_kwargs)

299
300
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
301
        for scheduler_class in self.scheduler_classes:
hlky's avatar
hlky committed
302
303
304
            if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
                time_step = float(time_step)

Patrick von Platen's avatar
Patrick von Platen committed
305
306
307
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

Will Berman's avatar
Will Berman committed
308
309
310
311
312
313
314
315
316
            if scheduler_class == VQDiffusionScheduler:
                num_vec_classes = scheduler_config["num_vec_classes"]
                sample = self.dummy_sample(num_vec_classes)
                model = self.dummy_model(num_vec_classes)
                residual = model(sample, time_step)
            else:
                sample = self.dummy_sample
                residual = 0.1 * sample

Patrick von Platen's avatar
Patrick von Platen committed
317
318
            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
319
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
320

321
322
323
324
325
326
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

hlky's avatar
hlky committed
327
328
            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
329
            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
hlky's avatar
hlky committed
330
331
332

            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
333
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
334

335
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
336

Patrick von Platen's avatar
Patrick von Platen committed
337
    def test_from_pretrained_save_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
338
339
        kwargs = dict(self.forward_default_kwargs)

340
341
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
342
        for scheduler_class in self.scheduler_classes:
Will Berman's avatar
Will Berman committed
343
344
345
            timestep = 1
            if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
                timestep = float(timestep)
Patrick von Platen's avatar
Patrick von Platen committed
346
347
348
349

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

Will Berman's avatar
Will Berman committed
350
351
352
353
354
355
356
357
            if scheduler_class == VQDiffusionScheduler:
                num_vec_classes = scheduler_config["num_vec_classes"]
                sample = self.dummy_sample(num_vec_classes)
                model = self.dummy_model(num_vec_classes)
                residual = model(sample, timestep)
            else:
                sample = self.dummy_sample
                residual = 0.1 * sample
hlky's avatar
hlky committed
358

Patrick von Platen's avatar
Patrick von Platen committed
359
360
            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
361
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
362

363
364
365
366
367
368
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

hlky's avatar
hlky committed
369
370
371
372
373
374
375
            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
            output = scheduler.step(residual, timestep, sample, **kwargs).prev_sample

            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
            new_output = new_scheduler.step(residual, timestep, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
376

377
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
378

379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
    def test_compatibles(self):
        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()

            scheduler = scheduler_class(**scheduler_config)

            assert all(c is not None for c in scheduler.compatibles)

            for comp_scheduler_cls in scheduler.compatibles:
                comp_scheduler = comp_scheduler_cls.from_config(scheduler.config)
                assert comp_scheduler is not None

            new_scheduler = scheduler_class.from_config(comp_scheduler.config)

            new_scheduler_config = {k: v for k, v in new_scheduler.config.items() if k in scheduler.config}
            scheduler_diff = {k: v for k, v in new_scheduler.config.items() if k not in scheduler.config}

            # make sure that configs are essentially identical
            assert new_scheduler_config == dict(scheduler.config)

            # make sure that only differences are for configs that are not in init
            init_keys = inspect.signature(scheduler_class.__init__).parameters.keys()
            assert set(scheduler_diff.keys()).intersection(set(init_keys)) == set()

    def test_from_pretrained(self):
        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()

            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_pretrained(tmpdirname)
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)

            assert scheduler.config == new_scheduler.config

Patrick von Platen's avatar
Patrick von Platen committed
415
416
417
    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

418
419
        num_inference_steps = kwargs.pop("num_inference_steps", None)

hlky's avatar
hlky committed
420
421
422
        timestep_0 = 0
        timestep_1 = 1

Patrick von Platen's avatar
Patrick von Platen committed
423
        for scheduler_class in self.scheduler_classes:
hlky's avatar
hlky committed
424
425
426
427
            if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
                timestep_0 = float(timestep_0)
                timestep_1 = float(timestep_1)

Patrick von Platen's avatar
Patrick von Platen committed
428
429
430
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

Will Berman's avatar
Will Berman committed
431
432
433
434
435
436
437
438
            if scheduler_class == VQDiffusionScheduler:
                num_vec_classes = scheduler_config["num_vec_classes"]
                sample = self.dummy_sample(num_vec_classes)
                model = self.dummy_model(num_vec_classes)
                residual = model(sample, timestep_0)
            else:
                sample = self.dummy_sample
                residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
439

440
441
442
443
444
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

hlky's avatar
hlky committed
445
446
            output_0 = scheduler.step(residual, timestep_0, sample, **kwargs).prev_sample
            output_1 = scheduler.step(residual, timestep_1, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
447

448
            self.assertEqual(output_0.shape, sample.shape)
Patrick von Platen's avatar
Patrick von Platen committed
449
450
            self.assertEqual(output_0.shape, output_1.shape)

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
    def test_scheduler_outputs_equivalence(self):
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

        def recursive_check(tuple_object, dict_object):
            if isinstance(tuple_object, (List, Tuple)):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif isinstance(tuple_object, Dict):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif tuple_object is None:
                return
            else:
                self.assertTrue(
                    torch.allclose(
                        set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                    ),
                    msg=(
                        "Tuple and dict output are not equal. Difference:"
                        f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                        f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                        f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                    ),
                )

        kwargs = dict(self.forward_default_kwargs)
479
        num_inference_steps = kwargs.pop("num_inference_steps", 50)
480

481
482
483
484
        timestep = 0
        if len(self.scheduler_classes) > 0 and self.scheduler_classes[0] == IPNDMScheduler:
            timestep = 1

485
        for scheduler_class in self.scheduler_classes:
hlky's avatar
hlky committed
486
487
488
            if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
                timestep = float(timestep)

489
490
491
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

Will Berman's avatar
Will Berman committed
492
493
494
495
496
497
498
499
            if scheduler_class == VQDiffusionScheduler:
                num_vec_classes = scheduler_config["num_vec_classes"]
                sample = self.dummy_sample(num_vec_classes)
                model = self.dummy_model(num_vec_classes)
                residual = model(sample, timestep)
            else:
                sample = self.dummy_sample
                residual = 0.1 * sample
500
501
502
503
504
505

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

hlky's avatar
hlky committed
506
507
508
            # Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
509
            outputs_dict = scheduler.step(residual, timestep, sample, **kwargs)
510
511
512
513
514
515

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

hlky's avatar
hlky committed
516
517
518
            # Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.Generator().manual_seed(0)
519
            outputs_tuple = scheduler.step(residual, timestep, sample, return_dict=False, **kwargs)
520
521
522

            recursive_check(outputs_tuple, outputs_dict)

523
524
525
526
    def test_scheduler_public_api(self):
        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)
Will Berman's avatar
Will Berman committed
527
528
529
530
531
532
533
534
535
536
537

            if scheduler_class != VQDiffusionScheduler:
                self.assertTrue(
                    hasattr(scheduler, "init_noise_sigma"),
                    f"{scheduler_class} does not implement a required attribute `init_noise_sigma`",
                )
                self.assertTrue(
                    hasattr(scheduler, "scale_model_input"),
                    f"{scheduler_class} does not implement a required class method `scale_model_input(sample,"
                    " timestep)`",
                )
538
539
540
541
542
            self.assertTrue(
                hasattr(scheduler, "step"),
                f"{scheduler_class} does not implement a required class method `step(...)`",
            )

Will Berman's avatar
Will Berman committed
543
544
545
546
            if scheduler_class != VQDiffusionScheduler:
                sample = self.dummy_sample
                scaled_sample = scheduler.scale_model_input(sample, 0.0)
                self.assertEqual(sample.shape, scaled_sample.shape)
547

548
549
550
551
552
553
554
    def test_add_noise_device(self):
        for scheduler_class in self.scheduler_classes:
            if scheduler_class == IPNDMScheduler:
                # Skip until #990 is addressed
                continue
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)
555
            scheduler.set_timesteps(100)
556
557
558
559
560
561

            sample = self.dummy_sample.to(torch_device)
            scaled_sample = scheduler.scale_model_input(sample, 0.0)
            self.assertEqual(sample.shape, scaled_sample.shape)

            noise = torch.randn_like(scaled_sample).to(torch_device)
562
            t = scheduler.timesteps[5][None]
563
564
565
            noised = scheduler.add_noise(scaled_sample, noise, t)
            self.assertEqual(noised.shape, scaled_sample.shape)

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
    def test_deprecated_kwargs(self):
        for scheduler_class in self.scheduler_classes:
            has_kwarg_in_model_class = "kwargs" in inspect.signature(scheduler_class.__init__).parameters
            has_deprecated_kwarg = len(scheduler_class._deprecated_kwargs) > 0

            if has_kwarg_in_model_class and not has_deprecated_kwarg:
                raise ValueError(
                    f"{scheduler_class} has `**kwargs` in its __init__ method but has not defined any deprecated"
                    " kwargs under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if"
                    " there are no deprecated arguments or add the deprecated argument with `_deprecated_kwargs ="
                    " [<deprecated_argument>]`"
                )

            if not has_kwarg_in_model_class and has_deprecated_kwarg:
                raise ValueError(
                    f"{scheduler_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated"
                    " kwargs under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs`"
                    f" argument to {self.model_class}.__init__ if there are deprecated arguments or remove the"
                    " deprecated argument from `_deprecated_kwargs = [<deprecated_argument>]`"
                )

587
588
589
590
591
592
593
594
595
596
597
598
599
600
    def test_trained_betas(self):
        for scheduler_class in self.scheduler_classes:
            if scheduler_class == VQDiffusionScheduler:
                continue

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config, trained_betas=np.array([0.0, 0.1]))

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_pretrained(tmpdirname)
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)

            assert scheduler.betas.tolist() == new_scheduler.betas.tolist()

Patrick von Platen's avatar
Patrick von Platen committed
601
602

class DDPMSchedulerTest(SchedulerCommonTest):
Patrick von Platen's avatar
Patrick von Platen committed
603
    scheduler_classes = (DDPMScheduler,)
Patrick von Platen's avatar
Patrick von Platen committed
604
605
606

    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
607
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
608
609
610
611
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
            "variance_type": "fixed_small",
Patrick von Platen's avatar
Patrick von Platen committed
612
            "clip_sample": True,
Patrick von Platen's avatar
Patrick von Platen committed
613
614
615
616
        }

        config.update(**kwargs)
        return config
Patrick von Platen's avatar
update  
Patrick von Platen committed
617

Patrick von Platen's avatar
Patrick von Platen committed
618
619
    def test_timesteps(self):
        for timesteps in [1, 5, 100, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
620
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
621
622
623
624
625
626
627
628
629
630
631
632
633

    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_variance_type(self):
        for variance in ["fixed_small", "fixed_large", "other"]:
            self.check_over_configs(variance_type=variance)

634
    def test_clip_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
635
636
        for clip_sample in [True, False]:
            self.check_over_configs(clip_sample=clip_sample)
Patrick von Platen's avatar
Patrick von Platen committed
637

638
639
640
641
642
643
    def test_prediction_type(self):
        for prediction_type in ["epsilon", "sample"]:
            self.check_over_configs(prediction_type=prediction_type)

    def test_deprecated_predict_epsilon(self):
        deprecate("remove this test", "0.10.0", "remove")
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
        for predict_epsilon in [True, False]:
            self.check_over_configs(predict_epsilon=predict_epsilon)

    def test_deprecated_epsilon(self):
        deprecate("remove this test", "0.10.0", "remove")
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()

        sample = self.dummy_sample_deter
        residual = 0.1 * self.dummy_sample_deter
        time_step = 4

        scheduler = scheduler_class(**scheduler_config)
        scheduler_eps = scheduler_class(predict_epsilon=False, **scheduler_config)

        kwargs = {}
        if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
            kwargs["generator"] = torch.Generator().manual_seed(0)
        output = scheduler.step(residual, time_step, sample, predict_epsilon=False, **kwargs).prev_sample

        kwargs = {}
        if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
            kwargs["generator"] = torch.Generator().manual_seed(0)
        output_eps = scheduler_eps.step(residual, time_step, sample, predict_epsilon=False, **kwargs).prev_sample

        assert (output - output_eps).abs().sum() < 1e-5

Patrick von Platen's avatar
Patrick von Platen committed
671
672
673
674
675
676
677
678
679
    def test_time_indices(self):
        for t in [0, 500, 999]:
            self.check_over_forward(time_step=t)

    def test_variance(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

680
681
682
683
        assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.00979)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1e-5

Patrick von Platen's avatar
Patrick von Platen committed
684
685
    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
Patrick von Platen's avatar
Patrick von Platen committed
686
        scheduler_config = self.get_scheduler_config()
Patrick von Platen's avatar
Patrick von Platen committed
687
688
689
690
691
        scheduler = scheduler_class(**scheduler_config)

        num_trained_timesteps = len(scheduler)

        model = self.dummy_model()
692
        sample = self.dummy_sample_deter
693
        generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
694
695
696

        for t in reversed(range(num_trained_timesteps)):
            # 1. predict noise residual
697
            residual = model(sample, t)
Patrick von Platen's avatar
Patrick von Platen committed
698

699
            # 2. predict previous mean of sample x_t-1
700
            pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
701

702
703
704
705
706
707
            # if t > 0:
            #     noise = self.dummy_sample_deter
            #     variance = scheduler.get_variance(t) ** (0.5) * noise
            #
            # sample = pred_prev_sample + variance
            sample = pred_prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
708

709
710
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
711

712
        assert abs(result_sum.item() - 258.9070) < 1e-2
713
        assert abs(result_mean.item() - 0.3374) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
714

Patrick von Platen's avatar
update  
Patrick von Platen committed
715

Patrick von Platen's avatar
Patrick von Platen committed
716
717
class DDIMSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (DDIMScheduler,)
718
    forward_default_kwargs = (("eta", 0.0), ("num_inference_steps", 50))
Patrick von Platen's avatar
update  
Patrick von Platen committed
719

Patrick von Platen's avatar
Patrick von Platen committed
720
721
    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
722
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
723
724
725
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
Patrick von Platen's avatar
Patrick von Platen committed
726
            "clip_sample": True,
Patrick von Platen's avatar
Patrick von Platen committed
727
        }
Patrick von Platen's avatar
Patrick von Platen committed
728

Patrick von Platen's avatar
Patrick von Platen committed
729
730
731
        config.update(**kwargs)
        return config

732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
    def full_loop(self, **config):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(**config)
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps, eta = 10, 0.0

        model = self.dummy_model()
        sample = self.dummy_sample_deter

        scheduler.set_timesteps(num_inference_steps)

        for t in scheduler.timesteps:
            residual = model(sample, t)
            sample = scheduler.step(residual, t, sample, eta).prev_sample

        return sample

Patrick von Platen's avatar
Patrick von Platen committed
750
    def test_timesteps(self):
751
        for timesteps in [100, 500, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
752
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
753

754
755
756
757
758
759
760
761
    def test_steps_offset(self):
        for steps_offset in [0, 1]:
            self.check_over_configs(steps_offset=steps_offset)

        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(steps_offset=1)
        scheduler = scheduler_class(**scheduler_config)
        scheduler.set_timesteps(5)
762
        assert torch.equal(scheduler.timesteps, torch.LongTensor([801, 601, 401, 201, 1]))
763

Patrick von Platen's avatar
Patrick von Platen committed
764
765
766
767
768
769
770
771
    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

772
    def test_clip_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
773
774
        for clip_sample in [True, False]:
            self.check_over_configs(clip_sample=clip_sample)
Patrick von Platen's avatar
Patrick von Platen committed
775
776
777
778
779
780
781

    def test_time_indices(self):
        for t in [1, 10, 49]:
            self.check_over_forward(time_step=t)

    def test_inference_steps(self):
        for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]):
782
            self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
783
784
785
786
787
788
789

    def test_eta(self):
        for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0]):
            self.check_over_forward(time_step=t, eta=eta)

    def test_variance(self):
        scheduler_class = self.scheduler_classes[0]
Patrick von Platen's avatar
Patrick von Platen committed
790
        scheduler_config = self.get_scheduler_config()
Patrick von Platen's avatar
Patrick von Platen committed
791
792
        scheduler = scheduler_class(**scheduler_config)

793
794
795
796
797
798
        assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(420, 400) - 0.14771)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(980, 960) - 0.32460)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(487, 486) - 0.00979)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(999, 998) - 0.02)) < 1e-5
Patrick von Platen's avatar
Patrick von Platen committed
799
800

    def test_full_loop_no_noise(self):
801
        sample = self.full_loop()
Patrick von Platen's avatar
Patrick von Platen committed
802

803
804
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
805

806
807
        assert abs(result_sum.item() - 172.0067) < 1e-2
        assert abs(result_mean.item() - 0.223967) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
808

809
810
811
812
813
    def test_full_loop_with_set_alpha_to_one(self):
        # We specify different beta, so that the first alpha is 0.99
        sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01)
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
814

815
816
        assert abs(result_sum.item() - 149.8295) < 1e-2
        assert abs(result_mean.item() - 0.1951) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
817

818
819
820
    def test_full_loop_with_no_set_alpha_to_one(self):
        # We specify different beta, so that the first alpha is 0.99
        sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01)
821
822
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
823

824
825
        assert abs(result_sum.item() - 149.0784) < 1e-2
        assert abs(result_mean.item() - 0.1941) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
826
827


828
829
830
831
832
833
834
835
836
837
838
class DPMSolverMultistepSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (DPMSolverMultistepScheduler,)
    forward_default_kwargs = (("num_inference_steps", 25),)

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 1000,
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
            "solver_order": 2,
839
            "prediction_type": "epsilon",
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
            "thresholding": False,
            "sample_max_value": 1.0,
            "algorithm_type": "dpmsolver++",
            "solver_type": "midpoint",
            "lower_order_final": False,
        }

        config.update(**kwargs)
        return config

    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)
        sample = self.dummy_sample
        residual = 0.1 * sample
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)
            scheduler.set_timesteps(num_inference_steps)
            # copy over dummy past residuals
            scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
866
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
                new_scheduler.set_timesteps(num_inference_steps)
                # copy over dummy past residuals
                new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order]

            output, new_output = sample, sample
            for t in range(time_step, time_step + scheduler.config.solver_order + 1):
                output = scheduler.step(residual, t, output, **kwargs).prev_sample
                new_output = new_scheduler.step(residual, t, new_output, **kwargs).prev_sample

                assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

    def test_from_pretrained_save_pretrained(self):
        pass

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)
        sample = self.dummy_sample
        residual = 0.1 * sample
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)
            scheduler.set_timesteps(num_inference_steps)

            # copy over dummy past residuals (must be after setting timesteps)
            scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
898
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
                # copy over dummy past residuals
                new_scheduler.set_timesteps(num_inference_steps)

                # copy over dummy past residual (must be after setting timesteps)
                new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order]

            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample

            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

    def full_loop(self, **config):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(**config)
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 10
        model = self.dummy_model()
        sample = self.dummy_sample_deter
        scheduler.set_timesteps(num_inference_steps)

        for i, t in enumerate(scheduler.timesteps):
            residual = model(sample, t)
            sample = scheduler.step(residual, t, sample).prev_sample

        return sample

    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            # copy over dummy past residuals (must be done after set_timesteps)
            dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]
            scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]

            time_step_0 = scheduler.timesteps[5]
            time_step_1 = scheduler.timesteps[6]

            output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample
            output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

    def test_timesteps(self):
        for timesteps in [25, 50, 100, 999, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_thresholding(self):
        self.check_over_configs(thresholding=False)
        for order in [1, 2, 3]:
            for solver_type in ["midpoint", "heun"]:
                for threshold in [0.5, 1.0, 2.0]:
965
                    for prediction_type in ["epsilon", "sample"]:
966
967
                        self.check_over_configs(
                            thresholding=True,
968
                            prediction_type=prediction_type,
969
970
971
972
973
974
975
976
977
978
                            sample_max_value=threshold,
                            algorithm_type="dpmsolver++",
                            solver_order=order,
                            solver_type=solver_type,
                        )

    def test_solver_order_and_type(self):
        for algorithm_type in ["dpmsolver", "dpmsolver++"]:
            for solver_type in ["midpoint", "heun"]:
                for order in [1, 2, 3]:
979
                    for prediction_type in ["epsilon", "sample"]:
980
981
982
                        self.check_over_configs(
                            solver_order=order,
                            solver_type=solver_type,
983
                            prediction_type=prediction_type,
984
985
986
987
988
                            algorithm_type=algorithm_type,
                        )
                        sample = self.full_loop(
                            solver_order=order,
                            solver_type=solver_type,
989
                            prediction_type=prediction_type,
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
                            algorithm_type=algorithm_type,
                        )
                        assert not torch.isnan(sample).any(), "Samples have nan numbers"

    def test_lower_order_final(self):
        self.check_over_configs(lower_order_final=True)
        self.check_over_configs(lower_order_final=False)

    def test_inference_steps(self):
        for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
            self.check_over_forward(num_inference_steps=num_inference_steps, time_step=0)

    def test_full_loop_no_noise(self):
        sample = self.full_loop()
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_mean.item() - 0.3301) < 1e-3

1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
    def test_fp16_support(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(thresholding=True, dynamic_thresholding_ratio=0)
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 10
        model = self.dummy_model()
        sample = self.dummy_sample_deter.half()
        scheduler.set_timesteps(num_inference_steps)

        for i, t in enumerate(scheduler.timesteps):
            residual = model(sample, t)
            sample = scheduler.step(residual, t, sample).prev_sample

        assert sample.dtype == torch.float16

1024

Patrick von Platen's avatar
Patrick von Platen committed
1025
1026
1027
1028
1029
1030
class PNDMSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (PNDMScheduler,)
    forward_default_kwargs = (("num_inference_steps", 50),)

    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
1031
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
1032
1033
1034
1035
1036
1037
1038
1039
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
        }

        config.update(**kwargs)
        return config

1040
    def check_over_configs(self, time_step=0, **config):
Patrick von Platen's avatar
Patrick von Platen committed
1041
        kwargs = dict(self.forward_default_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
1042
        num_inference_steps = kwargs.pop("num_inference_steps", None)
1043
1044
        sample = self.dummy_sample
        residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
1045
1046
1047
1048
1049
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)
Patrick von Platen's avatar
Patrick von Platen committed
1050
            scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
1051
1052
1053
1054
1055
            # copy over dummy past residuals
            scheduler.ets = dummy_past_residuals[:]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
1056
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
1057
                new_scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
1058
1059
1060
                # copy over dummy past residuals
                new_scheduler.ets = dummy_past_residuals[:]

1061
1062
            output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
1063

1064
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
1065

1066
1067
            output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
1068

1069
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
1070
1071
1072
1073
1074

    def test_from_pretrained_save_pretrained(self):
        pass

    def check_over_forward(self, time_step=0, **forward_kwargs):
Patrick von Platen's avatar
Patrick von Platen committed
1075
        kwargs = dict(self.forward_default_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
1076
        num_inference_steps = kwargs.pop("num_inference_steps", None)
1077
1078
        sample = self.dummy_sample
        residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
1079
1080
1081
1082
1083
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)
Patrick von Platen's avatar
Patrick von Platen committed
1084
            scheduler.set_timesteps(num_inference_steps)
1085

Nathan Lambert's avatar
Nathan Lambert committed
1086
            # copy over dummy past residuals (must be after setting timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
1087
1088
1089
1090
            scheduler.ets = dummy_past_residuals[:]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
1091
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
1092
                # copy over dummy past residuals
Patrick von Platen's avatar
Patrick von Platen committed
1093
                new_scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
1094

Nathan Lambert's avatar
Nathan Lambert committed
1095
1096
1097
                # copy over dummy past residual (must be after setting timesteps)
                new_scheduler.ets = dummy_past_residuals[:]

1098
1099
            output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
1100

1101
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
1102

1103
1104
            output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
1105

1106
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
1107

1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
    def full_loop(self, **config):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(**config)
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 10
        model = self.dummy_model()
        sample = self.dummy_sample_deter
        scheduler.set_timesteps(num_inference_steps)

        for i, t in enumerate(scheduler.prk_timesteps):
            residual = model(sample, t)
            sample = scheduler.step_prk(residual, t, sample).prev_sample

        for i, t in enumerate(scheduler.plms_timesteps):
            residual = model(sample, t)
            sample = scheduler.step_plms(residual, t, sample).prev_sample

        return sample

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

Nathan Lambert's avatar
Nathan Lambert committed
1145
1146
1147
1148
            # copy over dummy past residuals (must be done after set_timesteps)
            dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
            scheduler.ets = dummy_past_residuals[:]

1149
1150
            output_0 = scheduler.step_prk(residual, 0, sample, **kwargs).prev_sample
            output_1 = scheduler.step_prk(residual, 1, sample, **kwargs).prev_sample
1151
1152
1153
1154

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

1155
1156
            output_0 = scheduler.step_plms(residual, 0, sample, **kwargs).prev_sample
            output_1 = scheduler.step_plms(residual, 1, sample, **kwargs).prev_sample
1157
1158
1159
1160

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

Patrick von Platen's avatar
Patrick von Platen committed
1161
1162
    def test_timesteps(self):
        for timesteps in [100, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
1163
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
1164

1165
1166
1167
1168
1169
1170
1171
1172
    def test_steps_offset(self):
        for steps_offset in [0, 1]:
            self.check_over_configs(steps_offset=steps_offset)

        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(steps_offset=1)
        scheduler = scheduler_class(**scheduler_config)
        scheduler.set_timesteps(10)
1173
        assert torch.equal(
1174
            scheduler.timesteps,
1175
1176
1177
1178
            torch.LongTensor(
                [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]
            ),
        )
1179

Patrick von Platen's avatar
Patrick von Platen committed
1180
    def test_betas(self):
1181
        for beta_start, beta_end in zip([0.0001, 0.001], [0.002, 0.02]):
Patrick von Platen's avatar
Patrick von Platen committed
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_time_indices(self):
        for t in [1, 5, 10]:
            self.check_over_forward(time_step=t)

    def test_inference_steps(self):
        for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]):
1194
            self.check_over_forward(num_inference_steps=num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
1195

1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
    def test_pow_of_3_inference_steps(self):
        # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3
        num_inference_steps = 27

        for scheduler_class in self.scheduler_classes:
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            scheduler.set_timesteps(num_inference_steps)

            # before power of 3 fix, would error on first step, so we only need to do two
            for i, t in enumerate(scheduler.prk_timesteps[:2]):
                sample = scheduler.step_prk(residual, t, sample).prev_sample

1213
    def test_inference_plms_no_past_residuals(self):
Patrick von Platen's avatar
Patrick von Platen committed
1214
1215
1216
1217
1218
        with self.assertRaises(ValueError):
            scheduler_class = self.scheduler_classes[0]
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

1219
            scheduler.step_plms(self.dummy_sample, 1, self.dummy_sample).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
1220
1221

    def test_full_loop_no_noise(self):
1222
1223
1224
        sample = self.full_loop()
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
1225

1226
1227
        assert abs(result_sum.item() - 198.1318) < 1e-2
        assert abs(result_mean.item() - 0.2580) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
1228

1229
1230
1231
1232
1233
    def test_full_loop_with_set_alpha_to_one(self):
        # We specify different beta, so that the first alpha is 0.99
        sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01)
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
1234

1235
1236
        assert abs(result_sum.item() - 230.0399) < 1e-2
        assert abs(result_mean.item() - 0.2995) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
1237

1238
1239
1240
    def test_full_loop_with_no_set_alpha_to_one(self):
        # We specify different beta, so that the first alpha is 0.99
        sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01)
1241
1242
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
1243

1244
1245
        assert abs(result_sum.item() - 186.9482) < 1e-2
        assert abs(result_mean.item() - 0.2434) < 1e-3
Nathan Lambert's avatar
Nathan Lambert committed
1246
1247


1248
1249
class ScoreSdeVeSchedulerTest(unittest.TestCase):
    # TODO adapt with class SchedulerCommonTest (scheduler needs Numpy Integration)
Nathan Lambert's avatar
Nathan Lambert committed
1250
    scheduler_classes = (ScoreSdeVeScheduler,)
1251
    forward_default_kwargs = ()
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283

    @property
    def dummy_sample(self):
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        sample = torch.rand((batch_size, num_channels, height, width))

        return sample

    @property
    def dummy_sample_deter(self):
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        num_elems = batch_size * num_channels * height * width
        sample = torch.arange(num_elems)
        sample = sample.reshape(num_channels, height, width, batch_size)
        sample = sample / num_elems
        sample = sample.permute(3, 0, 1, 2)

        return sample

    def dummy_model(self):
        def model(sample, t, *args):
            return sample * t / (t + 1)

        return model
Nathan Lambert's avatar
Nathan Lambert committed
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 2000,
            "snr": 0.15,
            "sigma_min": 0.01,
            "sigma_max": 1348,
            "sampling_eps": 1e-5,
        }

        config.update(**kwargs)
        return config

    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)

        for scheduler_class in self.scheduler_classes:
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
1309
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
Nathan Lambert's avatar
Nathan Lambert committed
1310

1311
1312
1313
1314
1315
1316
            output = scheduler.step_pred(
                residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
            new_output = new_scheduler.step_pred(
                residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
1317

1318
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
1319

1320
1321
1322
1323
            output = scheduler.step_correct(residual, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
            new_output = new_scheduler.step_correct(
                residual, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
1324

1325
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        kwargs.update(forward_kwargs)

        for scheduler_class in self.scheduler_classes:
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
1340
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
Nathan Lambert's avatar
Nathan Lambert committed
1341

1342
1343
1344
1345
1346
1347
            output = scheduler.step_pred(
                residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
            new_output = new_scheduler.step_pred(
                residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
1348

1349
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
1350

1351
1352
1353
1354
            output = scheduler.step_correct(residual, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
            new_output = new_scheduler.step_correct(
                residual, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
1355

1356
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366

    def test_timesteps(self):
        for timesteps in [10, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_sigmas(self):
        for sigma_min, sigma_max in zip([0.0001, 0.001, 0.01], [1, 100, 1000]):
            self.check_over_configs(sigma_min=sigma_min, sigma_max=sigma_max)

    def test_time_indices(self):
1367
        for t in [0.1, 0.5, 0.75]:
Nathan Lambert's avatar
Nathan Lambert committed
1368
1369
1370
            self.check_over_forward(time_step=t)

    def test_full_loop_no_noise(self):
1371
1372
        kwargs = dict(self.forward_default_kwargs)

Nathan Lambert's avatar
Nathan Lambert committed
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 3

        model = self.dummy_model()
        sample = self.dummy_sample_deter

        scheduler.set_sigmas(num_inference_steps)
1383
        scheduler.set_timesteps(num_inference_steps)
1384
        generator = torch.manual_seed(0)
Nathan Lambert's avatar
Nathan Lambert committed
1385
1386
1387
1388

        for i, t in enumerate(scheduler.timesteps):
            sigma_t = scheduler.sigmas[i]

1389
            for _ in range(scheduler.config.correct_steps):
Nathan Lambert's avatar
Nathan Lambert committed
1390
                with torch.no_grad():
1391
                    model_output = model(sample, sigma_t)
1392
                sample = scheduler.step_correct(model_output, sample, generator=generator, **kwargs).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
1393
1394

            with torch.no_grad():
1395
                model_output = model(sample, sigma_t)
Patrick von Platen's avatar
Patrick von Platen committed
1396

1397
            output = scheduler.step_pred(model_output, t, sample, generator=generator, **kwargs)
1398
            sample, _ = output.prev_sample, output.prev_sample_mean
Patrick von Platen's avatar
Patrick von Platen committed
1399

1400
1401
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
1402

1403
1404
        assert np.isclose(result_sum.item(), 14372758528.0)
        assert np.isclose(result_mean.item(), 18714530.0)
Patrick von Platen's avatar
Patrick von Platen committed
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422

    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

1423
1424
            output_0 = scheduler.step_pred(residual, 0, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
            output_1 = scheduler.step_pred(residual, 1, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
1425
1426
1427

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449


class LMSDiscreteSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (LMSDiscreteScheduler,)
    num_inference_steps = 10

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 1100,
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
        }

        config.update(**kwargs)
        return config

    def test_timesteps(self):
        for timesteps in [10, 50, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_betas(self):
1450
        for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "scaled_linear"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_time_indices(self):
        for t in [0, 500, 800]:
            self.check_over_forward(time_step=t)

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps)

        model = self.dummy_model()
1469
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
1470
1471

        for i, t in enumerate(scheduler.timesteps):
1472
            sample = scheduler.scale_model_input(sample, t)
1473
1474
1475

            model_output = model(sample, t)

1476
            output = scheduler.step(model_output, t, sample)
1477
1478
1479
1480
1481
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

1482
        assert abs(result_sum.item() - 1006.388) < 1e-2
1483
        assert abs(result_mean.item() - 1.31) < 1e-3
1484

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
    def test_full_loop_device(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps, device=torch_device)

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
        sample = sample.to(torch_device)

        for i, t in enumerate(scheduler.timesteps):
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 1006.388) < 1e-2
        assert abs(result_mean.item() - 1.31) < 1e-3

1510

hlky's avatar
hlky committed
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
class EulerDiscreteSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (EulerDiscreteScheduler,)
    num_inference_steps = 10

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 1100,
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
        }

        config.update(**kwargs)
        return config

    def test_timesteps(self):
        for timesteps in [10, 50, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_betas(self):
        for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "scaled_linear"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps)

1545
1546
1547
1548
1549
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
hlky's avatar
hlky committed
1550
1551
1552

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
Patrick von Platen's avatar
Patrick von Platen committed
1553
        sample = sample.to(torch_device)
hlky's avatar
hlky committed
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568

        for i, t in enumerate(scheduler.timesteps):
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample, generator=generator)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 10.0807) < 1e-2
        assert abs(result_mean.item() - 0.0131) < 1e-3

1569
1570
1571
1572
1573
1574
1575
    def test_full_loop_device(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps, device=torch_device)

1576
1577
1578
1579
1580
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
        sample = sample.to(torch_device)

        for t in scheduler.timesteps:
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample, generator=generator)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 10.0807) < 1e-2
        assert abs(result_mean.item() - 0.0131) < 1e-3

hlky's avatar
hlky committed
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634

class EulerAncestralDiscreteSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (EulerAncestralDiscreteScheduler,)
    num_inference_steps = 10

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 1100,
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
        }

        config.update(**kwargs)
        return config

    def test_timesteps(self):
        for timesteps in [10, 50, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_betas(self):
        for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "scaled_linear"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps)

1635
1636
1637
1638
1639
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
hlky's avatar
hlky committed
1640
1641
1642

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
Patrick von Platen's avatar
Patrick von Platen committed
1643
        sample = sample.to(torch_device)
hlky's avatar
hlky committed
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654

        for i, t in enumerate(scheduler.timesteps):
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample, generator=generator)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
1655

1656
        if torch_device in ["cpu", "mps"]:
Patrick von Platen's avatar
Patrick von Platen committed
1657
1658
1659
1660
1661
1662
            assert abs(result_sum.item() - 152.3192) < 1e-2
            assert abs(result_mean.item() - 0.1983) < 1e-3
        else:
            # CUDA
            assert abs(result_sum.item() - 144.8084) < 1e-2
            assert abs(result_mean.item() - 0.18855) < 1e-3
hlky's avatar
hlky committed
1663

1664
1665
1666
1667
1668
1669
1670
    def test_full_loop_device(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps, device=torch_device)

1671
1672
1673
1674
1675
        if torch_device == "mps":
            # device type MPS is not supported for torch.Generator() api.
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
        sample = sample.to(torch_device)

        for t in scheduler.timesteps:
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample, generator=generator)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
1691
1692

        if str(torch_device).startswith("cpu"):
1693
1694
1695
            # The following sum varies between 148 and 156 on mps. Why?
            assert abs(result_sum.item() - 152.3192) < 1e-2
            assert abs(result_mean.item() - 0.1983) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
1696
        elif str(torch_device).startswith("mps"):
1697
1698
            # Larger tolerance on mps
            assert abs(result_mean.item() - 0.1983) < 1e-2
Patrick von Platen's avatar
Patrick von Platen committed
1699
1700
1701
1702
        else:
            # CUDA
            assert abs(result_sum.item() - 144.8084) < 1e-2
            assert abs(result_mean.item() - 0.18855) < 1e-3
1703

hlky's avatar
hlky committed
1704

1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
class IPNDMSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (IPNDMScheduler,)
    forward_default_kwargs = (("num_inference_steps", 50),)

    def get_scheduler_config(self, **kwargs):
        config = {"num_train_timesteps": 1000}
        config.update(**kwargs)
        return config

    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)
        sample = self.dummy_sample
        residual = 0.1 * sample
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)
            scheduler.set_timesteps(num_inference_steps)
            # copy over dummy past residuals
            scheduler.ets = dummy_past_residuals[:]

            if time_step is None:
                time_step = scheduler.timesteps[len(scheduler.timesteps) // 2]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
1733
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
                new_scheduler.set_timesteps(num_inference_steps)
                # copy over dummy past residuals
                new_scheduler.ets = dummy_past_residuals[:]

            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample

            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample

            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

    def test_from_pretrained_save_pretrained(self):
        pass

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)
        sample = self.dummy_sample
        residual = 0.1 * sample
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)
            scheduler.set_timesteps(num_inference_steps)

            # copy over dummy past residuals (must be after setting timesteps)
            scheduler.ets = dummy_past_residuals[:]

            if time_step is None:
                time_step = scheduler.timesteps[len(scheduler.timesteps) // 2]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
1771
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
                # copy over dummy past residuals
                new_scheduler.set_timesteps(num_inference_steps)

                # copy over dummy past residual (must be after setting timesteps)
                new_scheduler.ets = dummy_past_residuals[:]

            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample

            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample

            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

    def full_loop(self, **config):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(**config)
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 10
        model = self.dummy_model()
        sample = self.dummy_sample_deter
        scheduler.set_timesteps(num_inference_steps)

        for i, t in enumerate(scheduler.timesteps):
            residual = model(sample, t)
            sample = scheduler.step(residual, t, sample).prev_sample

        for i, t in enumerate(scheduler.timesteps):
            residual = model(sample, t)
            sample = scheduler.step(residual, t, sample).prev_sample

        return sample

    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            # copy over dummy past residuals (must be done after set_timesteps)
            dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
            scheduler.ets = dummy_past_residuals[:]

            time_step_0 = scheduler.timesteps[5]
            time_step_1 = scheduler.timesteps[6]

            output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample
            output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

            output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample
            output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

    def test_timesteps(self):
        for timesteps in [100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps, time_step=None)

    def test_inference_steps(self):
        for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]):
            self.check_over_forward(num_inference_steps=num_inference_steps, time_step=None)

    def test_full_loop_no_noise(self):
        sample = self.full_loop()
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_mean.item() - 2540529) < 10
Will Berman's avatar
Will Berman committed
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906


class VQDiffusionSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (VQDiffusionScheduler,)

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_vec_classes": 4097,
            "num_train_timesteps": 100,
        }

        config.update(**kwargs)
        return config

    def dummy_sample(self, num_vec_classes):
        batch_size = 4
        height = 8
        width = 8

        sample = torch.randint(0, num_vec_classes, (batch_size, height * width))

        return sample

    @property
    def dummy_sample_deter(self):
        assert False

    def dummy_model(self, num_vec_classes):
        def model(sample, t, *args):
            batch_size, num_latent_pixels = sample.shape
            logits = torch.rand((batch_size, num_vec_classes - 1, num_latent_pixels))
            return_value = F.log_softmax(logits.double(), dim=1).float()
            return return_value

        return model

    def test_timesteps(self):
        for timesteps in [2, 5, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_num_vec_classes(self):
        for num_vec_classes in [5, 100, 1000, 4000]:
            self.check_over_configs(num_vec_classes=num_vec_classes)

    def test_time_indices(self):
        for t in [0, 50, 99]:
            self.check_over_forward(time_step=t)

    def test_add_noise_device(self):
        pass
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997


class HeunDiscreteSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (HeunDiscreteScheduler,)
    num_inference_steps = 10

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 1100,
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
        }

        config.update(**kwargs)
        return config

    def test_timesteps(self):
        for timesteps in [10, 50, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_betas(self):
        for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "scaled_linear"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps)

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
        sample = sample.to(torch_device)

        for i, t in enumerate(scheduler.timesteps):
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        if torch_device in ["cpu", "mps"]:
            assert abs(result_sum.item() - 0.1233) < 1e-2
            assert abs(result_mean.item() - 0.0002) < 1e-3
        else:
            # CUDA
            assert abs(result_sum.item() - 0.1233) < 1e-2
            assert abs(result_mean.item() - 0.0002) < 1e-3

    def test_full_loop_device(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps, device=torch_device)

        model = self.dummy_model()
        sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma

        for t in scheduler.timesteps:
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        if str(torch_device).startswith("cpu"):
            # The following sum varies between 148 and 156 on mps. Why?
            assert abs(result_sum.item() - 0.1233) < 1e-2
            assert abs(result_mean.item() - 0.0002) < 1e-3
        elif str(torch_device).startswith("mps"):
            # Larger tolerance on mps
            assert abs(result_mean.item() - 0.0002) < 1e-2
        else:
            # CUDA
            assert abs(result_sum.item() - 0.1233) < 1e-2
            assert abs(result_mean.item() - 0.0002) < 1e-3