test_scheduler.py 34.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Patrick von Platen's avatar
Patrick von Platen committed
15
import tempfile
Patrick von Platen's avatar
Patrick von Platen committed
16
import unittest
17
from typing import Dict, List, Tuple
Patrick von Platen's avatar
Patrick von Platen committed
18

Patrick von Platen's avatar
Patrick von Platen committed
19
20
21
import numpy as np
import torch

Nathan Lambert's avatar
Nathan Lambert committed
22
from diffusers import DDIMScheduler, DDPMScheduler, PNDMScheduler, ScoreSdeVeScheduler
Patrick von Platen's avatar
Patrick von Platen committed
23
24
25
26
27
28


torch.backends.cuda.matmul.allow_tf32 = False


class SchedulerCommonTest(unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
29
30
    scheduler_classes = ()
    forward_default_kwargs = ()
Patrick von Platen's avatar
Patrick von Platen committed
31
32

    @property
33
    def dummy_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
34
35
36
37
38
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

39
        sample = torch.rand((batch_size, num_channels, height, width))
Patrick von Platen's avatar
Patrick von Platen committed
40

41
        return sample
Patrick von Platen's avatar
Patrick von Platen committed
42
43

    @property
44
    def dummy_sample_deter(self):
Patrick von Platen's avatar
Patrick von Platen committed
45
46
47
48
49
50
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        num_elems = batch_size * num_channels * height * width
51
        sample = torch.arange(num_elems)
52
53
        sample = sample.reshape(num_channels, height, width, batch_size)
        sample = sample / num_elems
54
        sample = sample.permute(3, 0, 1, 2)
Patrick von Platen's avatar
Patrick von Platen committed
55

56
        return sample
Patrick von Platen's avatar
Patrick von Platen committed
57
58
59
60
61

    def get_scheduler_config(self):
        raise NotImplementedError

    def dummy_model(self):
62
63
        def model(sample, t, *args):
            return sample * t / (t + 1)
Patrick von Platen's avatar
Patrick von Platen committed
64
65
66

        return model

Patrick von Platen's avatar
Patrick von Platen committed
67
68
69
    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)

70
71
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
72
        for scheduler_class in self.scheduler_classes:
73
74
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
75
76
77
78
79
80
81
82

            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

83
84
85
86
87
88
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

89
90
            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
91

92
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
93
94
95
96
97

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        kwargs.update(forward_kwargs)

98
99
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
100
        for scheduler_class in self.scheduler_classes:
101
102
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
103
104
105
106
107
108
109
110

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

111
112
113
114
115
116
117
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            torch.manual_seed(0)
118
            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
119
            torch.manual_seed(0)
120
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
121

122
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
123

Patrick von Platen's avatar
Patrick von Platen committed
124
    def test_from_pretrained_save_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
125
126
        kwargs = dict(self.forward_default_kwargs)

127
128
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
129
        for scheduler_class in self.scheduler_classes:
130
131
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
132
133
134
135
136
137
138
139

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

140
141
142
143
144
145
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

146
            torch.manual_seed(0)
147
            output = scheduler.step(residual, 1, sample, **kwargs).prev_sample
148
            torch.manual_seed(0)
149
            new_output = new_scheduler.step(residual, 1, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
150

151
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
152
153
154
155

    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

156
157
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
158
159
160
161
        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

162
163
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
164

165
166
167
168
169
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

170
171
            output_0 = scheduler.step(residual, 0, sample, **kwargs).prev_sample
            output_1 = scheduler.step(residual, 1, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
172

173
            self.assertEqual(output_0.shape, sample.shape)
Patrick von Platen's avatar
Patrick von Platen committed
174
175
            self.assertEqual(output_0.shape, output_1.shape)

Patrick von Platen's avatar
Patrick von Platen committed
176
177
178
    def test_pytorch_equal_numpy(self):
        kwargs = dict(self.forward_default_kwargs)

179
180
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
181
        for scheduler_class in self.scheduler_classes:
182
            sample_pt = self.dummy_sample
183
            residual_pt = 0.1 * sample_pt
Patrick von Platen's avatar
Patrick von Platen committed
184

185
186
187
            sample = sample_pt.numpy()
            residual = 0.1 * sample

Patrick von Platen's avatar
Patrick von Platen committed
188
            scheduler_config = self.get_scheduler_config()
189
            scheduler = scheduler_class(tensor_format="np", **scheduler_config)
Patrick von Platen's avatar
Patrick von Platen committed
190
191
192

            scheduler_pt = scheduler_class(tensor_format="pt", **scheduler_config)

193
194
195
196
197
198
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                scheduler_pt.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

199
200
            output = scheduler.step(residual, 1, sample, **kwargs).prev_sample
            output_pt = scheduler_pt.step(residual_pt, 1, sample_pt, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
201

Patrick von Platen's avatar
Patrick von Platen committed
202
            assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
203

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    def test_scheduler_outputs_equivalence(self):
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

        def recursive_check(tuple_object, dict_object):
            if isinstance(tuple_object, (List, Tuple)):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif isinstance(tuple_object, Dict):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif tuple_object is None:
                return
            else:
                self.assertTrue(
                    torch.allclose(
                        set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                    ),
                    msg=(
                        "Tuple and dict output are not equal. Difference:"
                        f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                        f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                        f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                    ),
                )

        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            outputs_dict = scheduler.step(residual, 0, sample, **kwargs)

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            outputs_tuple = scheduler.step(residual, 0, sample, return_dict=False, **kwargs)

            recursive_check(outputs_tuple, outputs_dict)

Patrick von Platen's avatar
Patrick von Platen committed
257
258

class DDPMSchedulerTest(SchedulerCommonTest):
Patrick von Platen's avatar
Patrick von Platen committed
259
    scheduler_classes = (DDPMScheduler,)
Patrick von Platen's avatar
Patrick von Platen committed
260
261
262

    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
263
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
264
265
266
267
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
            "variance_type": "fixed_small",
Patrick von Platen's avatar
Patrick von Platen committed
268
            "clip_sample": True,
269
            "tensor_format": "pt",
Patrick von Platen's avatar
Patrick von Platen committed
270
271
272
273
        }

        config.update(**kwargs)
        return config
Patrick von Platen's avatar
update  
Patrick von Platen committed
274

Patrick von Platen's avatar
Patrick von Platen committed
275
276
    def test_timesteps(self):
        for timesteps in [1, 5, 100, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
277
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
278
279
280
281
282
283
284
285
286
287
288
289
290

    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_variance_type(self):
        for variance in ["fixed_small", "fixed_large", "other"]:
            self.check_over_configs(variance_type=variance)

291
    def test_clip_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
292
293
        for clip_sample in [True, False]:
            self.check_over_configs(clip_sample=clip_sample)
Patrick von Platen's avatar
Patrick von Platen committed
294
295
296
297
298
299
300
301
302
303

    def test_time_indices(self):
        for t in [0, 500, 999]:
            self.check_over_forward(time_step=t)

    def test_variance(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

304
305
306
307
308
309
310
        assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.00979)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1e-5

    # TODO Make DDPM Numpy compatible
    def test_pytorch_equal_numpy(self):
        pass
Patrick von Platen's avatar
Patrick von Platen committed
311
312
313

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
Patrick von Platen's avatar
Patrick von Platen committed
314
        scheduler_config = self.get_scheduler_config()
Patrick von Platen's avatar
Patrick von Platen committed
315
316
317
318
319
        scheduler = scheduler_class(**scheduler_config)

        num_trained_timesteps = len(scheduler)

        model = self.dummy_model()
320
        sample = self.dummy_sample_deter
321
        generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
322
323
324

        for t in reversed(range(num_trained_timesteps)):
            # 1. predict noise residual
325
            residual = model(sample, t)
Patrick von Platen's avatar
Patrick von Platen committed
326

327
            # 2. predict previous mean of sample x_t-1
328
            pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
329

330
331
332
333
334
335
            # if t > 0:
            #     noise = self.dummy_sample_deter
            #     variance = scheduler.get_variance(t) ** (0.5) * noise
            #
            # sample = pred_prev_sample + variance
            sample = pred_prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
336

337
338
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
339

340
        assert abs(result_sum.item() - 258.9070) < 1e-2
341
        assert abs(result_mean.item() - 0.3374) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
342

Patrick von Platen's avatar
update  
Patrick von Platen committed
343

Patrick von Platen's avatar
Patrick von Platen committed
344
345
class DDIMSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (DDIMScheduler,)
346
    forward_default_kwargs = (("eta", 0.0), ("num_inference_steps", 50))
Patrick von Platen's avatar
update  
Patrick von Platen committed
347

Patrick von Platen's avatar
Patrick von Platen committed
348
349
    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
350
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
351
352
353
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
Patrick von Platen's avatar
Patrick von Platen committed
354
            "clip_sample": True,
Patrick von Platen's avatar
Patrick von Platen committed
355
        }
Patrick von Platen's avatar
Patrick von Platen committed
356

Patrick von Platen's avatar
Patrick von Platen committed
357
358
359
360
        config.update(**kwargs)
        return config

    def test_timesteps(self):
361
        for timesteps in [100, 500, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
362
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
363
364
365
366
367
368
369
370
371

    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

372
    def test_clip_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
373
374
        for clip_sample in [True, False]:
            self.check_over_configs(clip_sample=clip_sample)
Patrick von Platen's avatar
Patrick von Platen committed
375
376
377
378
379
380
381

    def test_time_indices(self):
        for t in [1, 10, 49]:
            self.check_over_forward(time_step=t)

    def test_inference_steps(self):
        for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]):
382
            self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
383
384
385
386
387
388
389

    def test_eta(self):
        for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0]):
            self.check_over_forward(time_step=t, eta=eta)

    def test_variance(self):
        scheduler_class = self.scheduler_classes[0]
Patrick von Platen's avatar
Patrick von Platen committed
390
        scheduler_config = self.get_scheduler_config()
Patrick von Platen's avatar
Patrick von Platen committed
391
392
        scheduler = scheduler_class(**scheduler_config)

393
394
395
396
397
398
        assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(420, 400) - 0.14771)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(980, 960) - 0.32460)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(487, 486) - 0.00979)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(999, 998) - 0.02)) < 1e-5
Patrick von Platen's avatar
Patrick von Platen committed
399
400
401
402
403
404

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

405
        num_inference_steps, eta = 10, 0.0
Patrick von Platen's avatar
Patrick von Platen committed
406
407

        model = self.dummy_model()
408
        sample = self.dummy_sample_deter
Patrick von Platen's avatar
Patrick von Platen committed
409

410
411
412
        scheduler.set_timesteps(num_inference_steps)
        for t in scheduler.timesteps:
            residual = model(sample, t)
Patrick von Platen's avatar
Patrick von Platen committed
413

414
            sample = scheduler.step(residual, t, sample, eta).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
415

416
417
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
418

419
420
        assert abs(result_sum.item() - 172.0067) < 1e-2
        assert abs(result_mean.item() - 0.223967) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
421
422
423
424
425
426
427
428


class PNDMSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (PNDMScheduler,)
    forward_default_kwargs = (("num_inference_steps", 50),)

    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
429
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
430
431
432
433
434
435
436
437
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
        }

        config.update(**kwargs)
        return config

438
    def check_over_configs(self, time_step=0, **config):
Patrick von Platen's avatar
Patrick von Platen committed
439
        kwargs = dict(self.forward_default_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
440
        num_inference_steps = kwargs.pop("num_inference_steps", None)
441
442
        sample = self.dummy_sample
        residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
443
444
445
446
447
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)
Patrick von Platen's avatar
Patrick von Platen committed
448
            scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
449
450
451
452
453
454
            # copy over dummy past residuals
            scheduler.ets = dummy_past_residuals[:]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
455
                new_scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
456
457
458
                # copy over dummy past residuals
                new_scheduler.ets = dummy_past_residuals[:]

459
460
            output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
461

462
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
463

464
465
            output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
466

467
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
468
469
470
471
472

    def test_from_pretrained_save_pretrained(self):
        pass

    def check_over_forward(self, time_step=0, **forward_kwargs):
Patrick von Platen's avatar
Patrick von Platen committed
473
        kwargs = dict(self.forward_default_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
474
        num_inference_steps = kwargs.pop("num_inference_steps", None)
475
476
        sample = self.dummy_sample
        residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
477
478
479
480
481
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)
Patrick von Platen's avatar
Patrick von Platen committed
482
            scheduler.set_timesteps(num_inference_steps)
483

Nathan Lambert's avatar
Nathan Lambert committed
484
            # copy over dummy past residuals (must be after setting timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
485
486
487
488
489
490
            scheduler.ets = dummy_past_residuals[:]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)
                # copy over dummy past residuals
Patrick von Platen's avatar
Patrick von Platen committed
491
                new_scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
492

Nathan Lambert's avatar
Nathan Lambert committed
493
494
495
                # copy over dummy past residual (must be after setting timesteps)
                new_scheduler.ets = dummy_past_residuals[:]

496
497
            output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
498

499
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
500

501
502
            output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
503

504
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
505

506
507
508
509
510
    def test_pytorch_equal_numpy(self):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
511
            sample_pt = self.dummy_sample
512
513
514
            residual_pt = 0.1 * sample_pt
            dummy_past_residuals_pt = [residual_pt + 0.2, residual_pt + 0.15, residual_pt + 0.1, residual_pt + 0.05]

515
516
517
518
            sample = sample_pt.numpy()
            residual = 0.1 * sample
            dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

519
            scheduler_config = self.get_scheduler_config()
520
            scheduler = scheduler_class(tensor_format="np", **scheduler_config)
521
522
523
524
525
526
527
528
529

            scheduler_pt = scheduler_class(tensor_format="pt", **scheduler_config)

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                scheduler_pt.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

Nathan Lambert's avatar
Nathan Lambert committed
530
531
532
533
            # copy over dummy past residuals (must be done after set_timesteps)
            scheduler.ets = dummy_past_residuals[:]
            scheduler_pt.ets = dummy_past_residuals_pt[:]

534
535
            output = scheduler.step_prk(residual, 1, sample, **kwargs).prev_sample
            output_pt = scheduler_pt.step_prk(residual_pt, 1, sample_pt, **kwargs).prev_sample
536
537
            assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical"

538
539
            output = scheduler.step_plms(residual, 1, sample, **kwargs).prev_sample
            output_pt = scheduler_pt.step_plms(residual_pt, 1, sample_pt, **kwargs).prev_sample
540
541
542

            assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical"

543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
    def test_set_format(self):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(tensor_format="np", **scheduler_config)
            scheduler_pt = scheduler_class(tensor_format="pt", **scheduler_config)

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                scheduler_pt.set_timesteps(num_inference_steps)

            for key, value in vars(scheduler).items():
                # we only allow `ets` attr to be a list
                assert not isinstance(value, list) or key in [
                    "ets"
                ], f"Scheduler is not correctly set to np format, the attribute {key} is {type(value)}"

            # check if `scheduler.set_format` does convert correctly attrs to pt format
            for key, value in vars(scheduler_pt).items():
                # we only allow `ets` attr to be a list
                assert not isinstance(value, list) or key in [
                    "ets"
                ], f"Scheduler is not correctly set to pt format, the attribute {key} is {type(value)}"
                assert not isinstance(
                    value, np.ndarray
                ), f"Scheduler is not correctly set to pt format, the attribute {key} is {type(value)}"

572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

Nathan Lambert's avatar
Nathan Lambert committed
589
590
591
592
            # copy over dummy past residuals (must be done after set_timesteps)
            dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
            scheduler.ets = dummy_past_residuals[:]

593
594
            output_0 = scheduler.step_prk(residual, 0, sample, **kwargs).prev_sample
            output_1 = scheduler.step_prk(residual, 1, sample, **kwargs).prev_sample
595
596
597
598

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

599
600
            output_0 = scheduler.step_plms(residual, 0, sample, **kwargs).prev_sample
            output_1 = scheduler.step_plms(residual, 1, sample, **kwargs).prev_sample
601
602
603
604

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

Patrick von Platen's avatar
Patrick von Platen committed
605
606
    def test_timesteps(self):
        for timesteps in [100, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
607
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01], [0.002, 0.02, 0.2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_time_indices(self):
        for t in [1, 5, 10]:
            self.check_over_forward(time_step=t)

    def test_inference_steps(self):
        for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]):
            self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
    def test_pow_of_3_inference_steps(self):
        # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3
        num_inference_steps = 27

        for scheduler_class in self.scheduler_classes:
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            scheduler.set_timesteps(num_inference_steps)

            # before power of 3 fix, would error on first step, so we only need to do two
            for i, t in enumerate(scheduler.prk_timesteps[:2]):
                sample = scheduler.step_prk(residual, t, sample).prev_sample

642
    def test_inference_plms_no_past_residuals(self):
Patrick von Platen's avatar
Patrick von Platen committed
643
644
645
646
647
        with self.assertRaises(ValueError):
            scheduler_class = self.scheduler_classes[0]
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

648
            scheduler.step_plms(self.dummy_sample, 1, self.dummy_sample).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
649
650
651
652
653
654
655
656

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 10
        model = self.dummy_model()
657
        sample = self.dummy_sample_deter
658
        scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
659

660
661
        for i, t in enumerate(scheduler.prk_timesteps):
            residual = model(sample, t)
662
            sample = scheduler.step_prk(residual, i, sample).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
663

664
665
        for i, t in enumerate(scheduler.plms_timesteps):
            residual = model(sample, t)
666
            sample = scheduler.step_plms(residual, i, sample).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
667

668
669
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
670

671
672
        assert abs(result_sum.item() - 428.8788) < 1e-2
        assert abs(result_mean.item() - 0.5584) < 1e-3
Nathan Lambert's avatar
Nathan Lambert committed
673
674


675
676
class ScoreSdeVeSchedulerTest(unittest.TestCase):
    # TODO adapt with class SchedulerCommonTest (scheduler needs Numpy Integration)
Nathan Lambert's avatar
Nathan Lambert committed
677
    scheduler_classes = (ScoreSdeVeScheduler,)
678
    forward_default_kwargs = ()
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710

    @property
    def dummy_sample(self):
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        sample = torch.rand((batch_size, num_channels, height, width))

        return sample

    @property
    def dummy_sample_deter(self):
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        num_elems = batch_size * num_channels * height * width
        sample = torch.arange(num_elems)
        sample = sample.reshape(num_channels, height, width, batch_size)
        sample = sample / num_elems
        sample = sample.permute(3, 0, 1, 2)

        return sample

    def dummy_model(self):
        def model(sample, t, *args):
            return sample * t / (t + 1)

        return model
Nathan Lambert's avatar
Nathan Lambert committed
711
712
713
714
715
716
717
718

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 2000,
            "snr": 0.15,
            "sigma_min": 0.01,
            "sigma_max": 1348,
            "sampling_eps": 1e-5,
719
            "tensor_format": "pt",  # TODO add test for tensor formats
Nathan Lambert's avatar
Nathan Lambert committed
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
        }

        config.update(**kwargs)
        return config

    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)

        for scheduler_class in self.scheduler_classes:
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

739
740
741
742
743
744
            output = scheduler.step_pred(
                residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
            new_output = new_scheduler.step_pred(
                residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
745

746
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
747

748
749
750
751
            output = scheduler.step_correct(residual, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
            new_output = new_scheduler.step_correct(
                residual, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
752

753
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        kwargs.update(forward_kwargs)

        for scheduler_class in self.scheduler_classes:
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

770
771
772
773
774
775
            output = scheduler.step_pred(
                residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
            new_output = new_scheduler.step_pred(
                residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
776

777
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
778

779
780
781
782
            output = scheduler.step_correct(residual, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
            new_output = new_scheduler.step_correct(
                residual, sample, generator=torch.manual_seed(0), **kwargs
            ).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
783

784
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
785
786
787
788
789
790
791
792
793
794

    def test_timesteps(self):
        for timesteps in [10, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_sigmas(self):
        for sigma_min, sigma_max in zip([0.0001, 0.001, 0.01], [1, 100, 1000]):
            self.check_over_configs(sigma_min=sigma_min, sigma_max=sigma_max)

    def test_time_indices(self):
795
        for t in [0.1, 0.5, 0.75]:
Nathan Lambert's avatar
Nathan Lambert committed
796
797
798
            self.check_over_forward(time_step=t)

    def test_full_loop_no_noise(self):
799
800
        kwargs = dict(self.forward_default_kwargs)

Nathan Lambert's avatar
Nathan Lambert committed
801
802
803
804
805
806
807
808
809
810
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 3

        model = self.dummy_model()
        sample = self.dummy_sample_deter

        scheduler.set_sigmas(num_inference_steps)
811
        scheduler.set_timesteps(num_inference_steps)
812
        generator = torch.manual_seed(0)
Nathan Lambert's avatar
Nathan Lambert committed
813
814
815
816
817
818

        for i, t in enumerate(scheduler.timesteps):
            sigma_t = scheduler.sigmas[i]

            for _ in range(scheduler.correct_steps):
                with torch.no_grad():
819
                    model_output = model(sample, sigma_t)
820
                sample = scheduler.step_correct(model_output, sample, generator=generator, **kwargs).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
821
822

            with torch.no_grad():
823
                model_output = model(sample, sigma_t)
Patrick von Platen's avatar
Patrick von Platen committed
824

825
            output = scheduler.step_pred(model_output, t, sample, generator=generator, **kwargs)
826
            sample, _ = output.prev_sample, output.prev_sample_mean
Patrick von Platen's avatar
Patrick von Platen committed
827

828
829
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
830

831
832
        assert np.isclose(result_sum.item(), 14372758528.0)
        assert np.isclose(result_mean.item(), 18714530.0)
Patrick von Platen's avatar
Patrick von Platen committed
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850

    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

851
852
            output_0 = scheduler.step_pred(residual, 0, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
            output_1 = scheduler.step_pred(residual, 1, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
853
854
855

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)