train_unconditional.py 30.5 KB
Newer Older
anton-l's avatar
anton-l committed
1
import argparse
2
import inspect
3
import logging
4
import math
anton-l's avatar
anton-l committed
5
import os
6
import shutil
7
from datetime import timedelta
8
from pathlib import Path
anton-l's avatar
anton-l committed
9

10
import accelerate
11
import datasets
12
13
import torch
import torch.nn.functional as F
14
from accelerate import Accelerator, InitProcessGroupKwargs
15
from accelerate.logging import get_logger
16
from accelerate.utils import ProjectConfiguration
anton-l's avatar
anton-l committed
17
from datasets import load_dataset
18
from huggingface_hub import create_repo, upload_folder
19
from packaging import version
20
from torchvision import transforms
anton-l's avatar
anton-l committed
21
from tqdm.auto import tqdm
anton-l's avatar
anton-l committed
22

23
24
25
26
import diffusers
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
27
from diffusers.utils import check_min_version, is_accelerate_version, is_tensorboard_available, is_wandb_available
28
from diffusers.utils.import_utils import is_xformers_available
29

anton-l's avatar
anton-l committed
30

31
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
Sayak Paul's avatar
Sayak Paul committed
32
check_min_version("0.36.0.dev0")
33

34
logger = get_logger(__name__, log_level="INFO")
anton-l's avatar
anton-l committed
35
36


37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
def _extract_into_tensor(arr, timesteps, broadcast_shape):
    """
    Extract values from a 1-D numpy array for a batch of indices.

    :param arr: the 1-D numpy array.
    :param timesteps: a tensor of indices into the array to extract.
    :param broadcast_shape: a larger shape of K dimensions with the batch
                            dimension equal to the length of timesteps.
    :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
    """
    if not isinstance(arr, torch.Tensor):
        arr = torch.from_numpy(arr)
    res = arr[timesteps].float().to(timesteps.device)
    while len(res.shape) < len(broadcast_shape):
        res = res[..., None]
    return res.expand(broadcast_shape)


55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
def _ensure_three_channels(tensor: torch.Tensor) -> torch.Tensor:
    """
    Ensure the tensor has exactly three channels (C, H, W) by repeating or truncating channels when needed.
    """
    if tensor.ndim == 2:
        tensor = tensor.unsqueeze(0)
    channels = tensor.shape[0]
    if channels == 3:
        return tensor
    if channels == 1:
        return tensor.repeat(3, 1, 1)
    if channels == 2:
        return torch.cat([tensor, tensor[:1]], dim=0)
    if channels > 3:
        return tensor[:3]
    raise ValueError(f"Unsupported number of channels: {channels}")


73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that HF Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
91
92
93
94
95
96
    parser.add_argument(
        "--model_config_name_or_path",
        type=str,
        default=None,
        help="The config of the UNet model to train, leave as None to use standard DDPM configuration.",
    )
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default=None,
        help=(
            "A folder containing the training data. Folder contents must follow the structure described in"
            " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
            " must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="ddpm-model-64",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--overwrite_output_dir", action="store_true")
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument(
        "--resolution",
        type=int,
        default=64,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    parser.add_argument(
        "--center_crop",
        default=False,
        action="store_true",
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
    )
    parser.add_argument(
        "--random_flip",
        default=False,
        action="store_true",
        help="whether to randomly flip images horizontally",
    )
144
145
146
147
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
148
149
150
151
152
153
154
155
156
157
        "--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation."
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main"
            " process."
        ),
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    )
    parser.add_argument("--num_epochs", type=int, default=100)
    parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.")
    parser.add_argument(
        "--save_model_epochs", type=int, default=10, help="How often to save the model during training."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="cosine",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument(
        "--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer."
    )
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.")
    parser.add_argument(
        "--use_ema",
        action="store_true",
        help="Whether to use Exponential Moving Average for the final model weights.",
    )
    parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.")
    parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.")
    parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--hub_private_repo", action="store_true", help="Whether or not to create a private repository."
    )
213
214
215
216
217
218
219
220
221
222
    parser.add_argument(
        "--logger",
        type=str,
        default="tensorboard",
        choices=["tensorboard", "wandb"],
        help=(
            "Whether to use [tensorboard](https://www.tensorflow.org/tensorboard) or [wandb](https://www.wandb.ai)"
            " for experiment tracking and logging of model metrics and model checkpoints"
        ),
    )
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )
244
    parser.add_argument(
245
246
247
248
        "--prediction_type",
        type=str,
        default="epsilon",
        choices=["epsilon", "sample"],
249
        help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.",
250
251
    )
    parser.add_argument("--ddpm_num_steps", type=int, default=1000)
252
    parser.add_argument("--ddpm_num_inference_steps", type=int, default=1000)
253
    parser.add_argument("--ddpm_beta_schedule", type=str, default="linear")
254
255
256
257
258
259
260
261
262
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
263
    parser.add_argument(
264
        "--checkpoints_total_limit",
265
266
        type=int,
        default=None,
267
        help=("Max number of checkpoints to store."),
268
    )
269
270
271
272
273
274
275
276
277
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
278
279
280
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
281
282
283
284
285
    parser.add_argument(
        "--preserve_input_precision",
        action="store_true",
        help="Preserve 16/32-bit image precision by avoiding 8-bit RGB conversion while still producing 3-channel tensors.",
    )
286

287
288
289
290
291
292
293
294
295
296
297
    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.dataset_name is None and args.train_data_dir is None:
        raise ValueError("You must specify either a dataset name from the hub or a train data directory.")

    return args


anton-l's avatar
anton-l committed
298
def main(args):
299
    logging_dir = os.path.join(args.output_dir, args.logging_dir)
300
    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
301

Patrick von Platen's avatar
Patrick von Platen committed
302
    kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=7200))  # a big number for high resolution or big dataset
303
    accelerator = Accelerator(
304
        gradient_accumulation_steps=args.gradient_accumulation_steps,
305
        mixed_precision=args.mixed_precision,
306
        log_with=args.logger,
307
        project_config=accelerator_project_config,
308
        kwargs_handlers=[kwargs],
309
    )
anton-l's avatar
anton-l committed
310

311
312
313
314
315
316
317
318
319
    if args.logger == "tensorboard":
        if not is_tensorboard_available():
            raise ImportError("Make sure to install tensorboard if you want to use it for logging during training.")

    elif args.logger == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
        import wandb

320
321
322
323
    # `accelerate` 0.16.0 will have better support for customized saving
    if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
        # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
        def save_model_hook(models, weights, output_dir):
324
325
326
            if accelerator.is_main_process:
                if args.use_ema:
                    ema_model.save_pretrained(os.path.join(output_dir, "unet_ema"))
327

328
329
                for i, model in enumerate(models):
                    model.save_pretrained(os.path.join(output_dir, "unet"))
330

331
332
                    # make sure to pop weight so that corresponding model is not saved again
                    weights.pop()
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

        def load_model_hook(models, input_dir):
            if args.use_ema:
                load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DModel)
                ema_model.load_state_dict(load_model.state_dict())
                ema_model.to(accelerator.device)
                del load_model

            for i in range(len(models)):
                # pop models so that they are not loaded again
                model = models.pop()

                # load diffusers style into model
                load_model = UNet2DModel.from_pretrained(input_dir, subfolder="unet")
                model.register_to_config(**load_model.config)

                model.load_state_dict(load_model.state_dict())
                del load_model

        accelerator.register_save_state_pre_hook(save_model_hook)
        accelerator.register_load_state_pre_hook(load_model_hook)

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # Handle the repository creation
    if accelerator.is_main_process:
371
        if args.output_dir is not None:
372
373
            os.makedirs(args.output_dir, exist_ok=True)

374
375
376
377
378
        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

379
    # Initialize the model
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
    if args.model_config_name_or_path is None:
        model = UNet2DModel(
            sample_size=args.resolution,
            in_channels=3,
            out_channels=3,
            layers_per_block=2,
            block_out_channels=(128, 128, 256, 256, 512, 512),
            down_block_types=(
                "DownBlock2D",
                "DownBlock2D",
                "DownBlock2D",
                "DownBlock2D",
                "AttnDownBlock2D",
                "DownBlock2D",
            ),
            up_block_types=(
                "UpBlock2D",
                "AttnUpBlock2D",
                "UpBlock2D",
                "UpBlock2D",
                "UpBlock2D",
                "UpBlock2D",
            ),
        )
    else:
        config = UNet2DModel.load_config(args.model_config_name_or_path)
        model = UNet2DModel.from_config(config)
407

408
409
410
411
412
413
414
415
    # Create EMA for the model.
    if args.use_ema:
        ema_model = EMAModel(
            model.parameters(),
            decay=args.ema_max_decay,
            use_ema_warmup=True,
            inv_gamma=args.ema_inv_gamma,
            power=args.ema_power,
416
417
            model_cls=UNet2DModel,
            model_config=model.config,
418
419
        )

420
421
422
423
424
425
426
427
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
        args.mixed_precision = accelerator.mixed_precision
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16
        args.mixed_precision = accelerator.mixed_precision

428
429
430
431
432
433
    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
434
                logger.warning(
435
436
437
438
439
440
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
            model.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

441
442
    # Initialize the scheduler
    accepts_prediction_type = "prediction_type" in set(inspect.signature(DDPMScheduler.__init__).parameters.keys())
443
    if accepts_prediction_type:
444
445
446
        noise_scheduler = DDPMScheduler(
            num_train_timesteps=args.ddpm_num_steps,
            beta_schedule=args.ddpm_beta_schedule,
447
            prediction_type=args.prediction_type,
448
449
450
451
        )
    else:
        noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule)

452
    # Initialize the optimizer
453
454
455
456
457
458
459
    optimizer = torch.optim.AdamW(
        model.parameters(),
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )
anton-l's avatar
anton-l committed
460

461
462
    # Get the datasets: you can either provide your own training and evaluation files (see below)
    # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
463

464
465
    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
466
467
468
469
470
471
472
473
474
    if args.dataset_name is not None:
        dataset = load_dataset(
            args.dataset_name,
            args.dataset_config_name,
            cache_dir=args.cache_dir,
            split="train",
        )
    else:
        dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train")
475
476
477
478
        # See more about loading custom images at
        # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder

    # Preprocessing the datasets and DataLoaders creation.
479
480
481
482
483
484
    spatial_augmentations = [
        transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
        transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
        transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
    ]

485
    augmentations = transforms.Compose(
486
487
        spatial_augmentations
        + [
488
489
            transforms.ToTensor(),
            transforms.Normalize([0.5], [0.5]),
490
491
        ]
    )
anton-l's avatar
anton-l committed
492

493
494
495
496
497
498
499
500
501
502
    precision_augmentations = transforms.Compose(
        [
            transforms.PILToTensor(),
            transforms.Lambda(_ensure_three_channels),
            transforms.ConvertImageDtype(torch.float32),
        ]
        + spatial_augmentations
        + [transforms.Normalize([0.5], [0.5])]
    )

503
    def transform_images(examples):
504
505
506
507
508
509
510
511
512
513
        processed = []
        for image in examples["image"]:
            if not args.preserve_input_precision:
                processed.append(augmentations(image.convert("RGB")))
            else:
                precise_image = image
                if precise_image.mode == "P":
                    precise_image = precise_image.convert("RGB")
                processed.append(precision_augmentations(precise_image))
        return {"input": processed}
anton-l's avatar
anton-l committed
514

515
516
    logger.info(f"Dataset size: {len(dataset)}")

517
    dataset.set_transform(transform_images)
518
519
520
    train_dataloader = torch.utils.data.DataLoader(
        dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
    )
anton-l's avatar
anton-l committed
521

522
    # Initialize the learning rate scheduler
anton-l's avatar
anton-l committed
523
    lr_scheduler = get_scheduler(
524
        args.lr_scheduler,
anton-l's avatar
anton-l committed
525
        optimizer=optimizer,
526
527
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=(len(train_dataloader) * args.num_epochs),
anton-l's avatar
anton-l committed
528
529
    )

530
    # Prepare everything with our `accelerator`.
anton-l's avatar
anton-l committed
531
532
533
    model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, lr_scheduler
    )
534

535
536
    if args.use_ema:
        ema_model.to(accelerator.device)
anton-l's avatar
anton-l committed
537

538
539
    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
540
541
542
543
    if accelerator.is_main_process:
        run = os.path.split(__file__)[-1].split(".")[0]
        accelerator.init_trackers(run)

544
545
546
547
548
549
550
551
552
553
554
555
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    max_train_steps = args.num_epochs * num_update_steps_per_epoch

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(dataset)}")
    logger.info(f"  Num Epochs = {args.num_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {max_train_steps}")

anton-l's avatar
anton-l committed
556
    global_step = 0
557
558
    first_epoch = 0

559
    # Potentially load in the weights and states from a previous save
560
561
562
563
564
565
566
567
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

            resume_global_step = global_step * args.gradient_accumulation_steps
            first_epoch = global_step // num_update_steps_per_epoch
            resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
583

584
    # Train!
585
    for epoch in range(first_epoch, args.num_epochs):
anton-l's avatar
anton-l committed
586
        model.train()
587
        progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process)
588
589
        progress_bar.set_description(f"Epoch {epoch}")
        for step, batch in enumerate(train_dataloader):
590
591
592
593
594
595
            # Skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                if step % args.gradient_accumulation_steps == 0:
                    progress_bar.update(1)
                continue

596
            clean_images = batch["input"].to(weight_dtype)
597
            # Sample noise that we'll add to the images
598
            noise = torch.randn(clean_images.shape, dtype=weight_dtype, device=clean_images.device)
599
            bsz = clean_images.shape[0]
600
601
            # Sample a random timestep for each image
            timesteps = torch.randint(
602
                0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device
603
            ).long()
604

605
            # Add noise to the clean images according to the noise magnitude at each timestep
606
            # (this is the forward diffusion process)
607
608
609
610
            noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)

            with accelerator.accumulate(model):
                # Predict the noise residual
611
612
                model_output = model(noisy_images, timesteps).sample

613
                if args.prediction_type == "epsilon":
614
                    loss = F.mse_loss(model_output.float(), noise.float())  # this could have different weights!
615
                elif args.prediction_type == "sample":
616
617
618
619
                    alpha_t = _extract_into_tensor(
                        noise_scheduler.alphas_cumprod, timesteps, (clean_images.shape[0], 1, 1, 1)
                    )
                    snr_weights = alpha_t / (1 - alpha_t)
620
621
                    # use SNR weighting from distillation paper
                    loss = snr_weights * F.mse_loss(model_output.float(), clean_images.float(), reduction="none")
622
                    loss = loss.mean()
623
624
                else:
                    raise ValueError(f"Unsupported prediction type: {args.prediction_type}")
625

626
                accelerator.backward(loss)
627

628
629
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(model.parameters(), 1.0)
630
631
632
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
633

634
635
            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
636
637
                if args.use_ema:
                    ema_model.step(model.parameters())
638
639
640
                progress_bar.update(1)
                global_step += 1

641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

663
664
665
666
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

667
668
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
            if args.use_ema:
669
                logs["ema_decay"] = ema_model.cur_decay_value
670
671
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)
672
        progress_bar.close()
anton-l's avatar
anton-l committed
673

anton-l's avatar
anton-l committed
674
        accelerator.wait_for_everyone()
anton-l's avatar
anton-l committed
675

anton-l's avatar
anton-l committed
676
        # Generate sample images for visual inspection
anton-l's avatar
anton-l committed
677
        if accelerator.is_main_process:
anton-l's avatar
anton-l committed
678
            if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1:
679
                unet = accelerator.unwrap_model(model)
680

681
                if args.use_ema:
682
                    ema_model.store(unet.parameters())
683
                    ema_model.copy_to(unet.parameters())
684

685
                pipeline = DDPMPipeline(
686
                    unet=unet,
687
                    scheduler=noise_scheduler,
anton-l's avatar
anton-l committed
688
                )
anton-l's avatar
anton-l committed
689

690
                generator = torch.Generator(device=pipeline.device).manual_seed(0)
anton-l's avatar
anton-l committed
691
                # run pipeline in inference (sample random noise and denoise)
692
693
694
                images = pipeline(
                    generator=generator,
                    batch_size=args.eval_batch_size,
695
                    num_inference_steps=args.ddpm_num_inference_steps,
696
                    output_type="np",
697
                ).images
anton-l's avatar
anton-l committed
698

699
700
701
                if args.use_ema:
                    ema_model.restore(unet.parameters())

anton-l's avatar
anton-l committed
702
703
                # denormalize the images and save to tensorboard
                images_processed = (images * 255).round().astype("uint8")
704

705
                if args.logger == "tensorboard":
706
707
708
                    if is_accelerate_version(">=", "0.17.0.dev0"):
                        tracker = accelerator.get_tracker("tensorboard", unwrap=True)
                    else:
709
                        tracker = accelerator.get_tracker("tensorboard")
710
                    tracker.add_images("test_samples", images_processed.transpose(0, 3, 1, 2), epoch)
711
                elif args.logger == "wandb":
712
                    # Upcoming `log_images` helper coming in https://github.com/huggingface/accelerate/pull/962/files
713
714
715
716
                    accelerator.get_tracker("wandb").log(
                        {"test_samples": [wandb.Image(img) for img in images_processed], "epoch": epoch},
                        step=global_step,
                    )
anton-l's avatar
anton-l committed
717

718
719
            if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
                # save the model
720
721
722
723
724
725
726
727
728
729
730
                unet = accelerator.unwrap_model(model)

                if args.use_ema:
                    ema_model.store(unet.parameters())
                    ema_model.copy_to(unet.parameters())

                pipeline = DDPMPipeline(
                    unet=unet,
                    scheduler=noise_scheduler,
                )

731
                pipeline.save_pretrained(args.output_dir)
732
733
734
735

                if args.use_ema:
                    ema_model.restore(unet.parameters())

736
                if args.push_to_hub:
737
738
739
740
741
742
                    upload_folder(
                        repo_id=repo_id,
                        folder_path=args.output_dir,
                        commit_message=f"Epoch {epoch}",
                        ignore_patterns=["step_*", "epoch_*"],
                    )
anton-l's avatar
anton-l committed
743

744
745
    accelerator.end_training()

anton-l's avatar
anton-l committed
746
747

if __name__ == "__main__":
748
    args = parse_args()
anton-l's avatar
anton-l committed
749
    main(args)