train_unconditional.py 16.7 KB
Newer Older
anton-l's avatar
anton-l committed
1
import argparse
2
import inspect
3
import math
anton-l's avatar
anton-l committed
4
import os
5
6
from pathlib import Path
from typing import Optional
anton-l's avatar
anton-l committed
7
8
9
10

import torch
import torch.nn.functional as F

11
from accelerate import Accelerator
12
from accelerate.logging import get_logger
anton-l's avatar
anton-l committed
13
from datasets import load_dataset
14
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
15
from diffusers.optimization import get_scheduler
anton-l's avatar
anton-l committed
16
from diffusers.training_utils import EMAModel
17
from diffusers.utils import check_min_version
18
from huggingface_hub import HfFolder, Repository, whoami
anton-l's avatar
anton-l committed
19
from torchvision.transforms import (
Patrick von Platen's avatar
Patrick von Platen committed
20
    CenterCrop,
anton-l's avatar
anton-l committed
21
22
    Compose,
    InterpolationMode,
anton-l's avatar
anton-l committed
23
    Normalize,
anton-l's avatar
anton-l committed
24
25
26
27
    RandomHorizontalFlip,
    Resize,
    ToTensor,
)
anton-l's avatar
anton-l committed
28
from tqdm.auto import tqdm
anton-l's avatar
anton-l committed
29
30


31
32
33
34
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")


35
logger = get_logger(__name__)
anton-l's avatar
anton-l committed
36
37


38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def _extract_into_tensor(arr, timesteps, broadcast_shape):
    """
    Extract values from a 1-D numpy array for a batch of indices.

    :param arr: the 1-D numpy array.
    :param timesteps: a tensor of indices into the array to extract.
    :param broadcast_shape: a larger shape of K dimensions with the batch
                            dimension equal to the length of timesteps.
    :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
    """
    if not isinstance(arr, torch.Tensor):
        arr = torch.from_numpy(arr)
    res = arr[timesteps].float().to(timesteps.device)
    while len(res.shape) < len(broadcast_shape):
        res = res[..., None]
    return res.expand(broadcast_shape)


56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that HF Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default=None,
        help=(
            "A folder containing the training data. Folder contents must follow the structure described in"
            " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
            " must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="ddpm-model-64",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--overwrite_output_dir", action="store_true")
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument(
        "--resolution",
        type=int,
        default=64,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
110
111
112
113
114
115
116
117
118
119
        "--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation."
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main"
            " process."
        ),
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    )
    parser.add_argument("--num_epochs", type=int, default=100)
    parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.")
    parser.add_argument(
        "--save_model_epochs", type=int, default=10, help="How often to save the model during training."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="cosine",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument(
        "--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer."
    )
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.")
    parser.add_argument(
        "--use_ema",
        action="store_true",
        default=True,
        help="Whether to use Exponential Moving Average for the final model weights.",
    )
    parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.")
    parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.")
    parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--hub_private_repo", action="store_true", help="Whether or not to create a private repository."
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )

198
    parser.add_argument(
199
200
201
202
        "--prediction_type",
        type=str,
        default="epsilon",
        choices=["epsilon", "sample"],
203
        help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.",
204
205
206
207
208
    )

    parser.add_argument("--ddpm_num_steps", type=int, default=1000)
    parser.add_argument("--ddpm_beta_schedule", type=str, default="linear")

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.dataset_name is None and args.train_data_dir is None:
        raise ValueError("You must specify either a dataset name from the hub or a train data directory.")

    return args


def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"


anton-l's avatar
anton-l committed
230
def main(args):
231
    logging_dir = os.path.join(args.output_dir, args.logging_dir)
232
    accelerator = Accelerator(
233
        gradient_accumulation_steps=args.gradient_accumulation_steps,
234
235
236
237
        mixed_precision=args.mixed_precision,
        log_with="tensorboard",
        logging_dir=logging_dir,
    )
anton-l's avatar
anton-l committed
238

anton-l's avatar
anton-l committed
239
240
    model = UNet2DModel(
        sample_size=args.resolution,
241
242
        in_channels=3,
        out_channels=3,
anton-l's avatar
anton-l committed
243
244
245
246
247
248
249
250
251
        layers_per_block=2,
        block_out_channels=(128, 128, 256, 256, 512, 512),
        down_block_types=(
            "DownBlock2D",
            "DownBlock2D",
            "DownBlock2D",
            "DownBlock2D",
            "AttnDownBlock2D",
            "DownBlock2D",
252
        ),
anton-l's avatar
anton-l committed
253
254
255
256
257
258
259
        up_block_types=(
            "UpBlock2D",
            "AttnUpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
260
        ),
anton-l's avatar
anton-l committed
261
    )
262
    accepts_prediction_type = "prediction_type" in set(inspect.signature(DDPMScheduler.__init__).parameters.keys())
263

264
    if accepts_prediction_type:
265
266
267
        noise_scheduler = DDPMScheduler(
            num_train_timesteps=args.ddpm_num_steps,
            beta_schedule=args.ddpm_beta_schedule,
268
            prediction_type=args.prediction_type,
269
270
271
272
        )
    else:
        noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule)

273
274
275
276
277
278
279
    optimizer = torch.optim.AdamW(
        model.parameters(),
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )
anton-l's avatar
anton-l committed
280
281
282

    augmentations = Compose(
        [
anton-l's avatar
anton-l committed
283
            Resize(args.resolution, interpolation=InterpolationMode.BILINEAR),
anton-l's avatar
anton-l committed
284
            CenterCrop(args.resolution),
anton-l's avatar
anton-l committed
285
286
            RandomHorizontalFlip(),
            ToTensor(),
anton-l's avatar
anton-l committed
287
            Normalize([0.5], [0.5]),
anton-l's avatar
anton-l committed
288
289
        ]
    )
290
291
292
293
294
295
296
297
298
299

    if args.dataset_name is not None:
        dataset = load_dataset(
            args.dataset_name,
            args.dataset_config_name,
            cache_dir=args.cache_dir,
            split="train",
        )
    else:
        dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train")
anton-l's avatar
anton-l committed
300
301
302
303
304

    def transforms(examples):
        images = [augmentations(image.convert("RGB")) for image in examples["image"]]
        return {"input": images}

305
306
    logger.info(f"Dataset size: {len(dataset)}")

anton-l's avatar
anton-l committed
307
    dataset.set_transform(transforms)
308
309
310
    train_dataloader = torch.utils.data.DataLoader(
        dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
    )
anton-l's avatar
anton-l committed
311

anton-l's avatar
anton-l committed
312
    lr_scheduler = get_scheduler(
313
        args.lr_scheduler,
anton-l's avatar
anton-l committed
314
        optimizer=optimizer,
315
        num_warmup_steps=args.lr_warmup_steps,
anton-l's avatar
anton-l committed
316
        num_training_steps=(len(train_dataloader) * args.num_epochs) // args.gradient_accumulation_steps,
anton-l's avatar
anton-l committed
317
318
319
320
321
322
    )

    model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, lr_scheduler
    )

323
324
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)

325
326
327
328
329
330
    ema_model = EMAModel(
        accelerator.unwrap_model(model),
        inv_gamma=args.ema_inv_gamma,
        power=args.ema_power,
        max_value=args.ema_max_decay,
    )
anton-l's avatar
anton-l committed
331

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)

            with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
anton-l's avatar
anton-l committed
348

349
350
351
352
    if accelerator.is_main_process:
        run = os.path.split(__file__)[-1].split(".")[0]
        accelerator.init_trackers(run)

anton-l's avatar
anton-l committed
353
    global_step = 0
anton-l's avatar
anton-l committed
354
    for epoch in range(args.num_epochs):
anton-l's avatar
anton-l committed
355
        model.train()
356
        progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process)
357
358
359
        progress_bar.set_description(f"Epoch {epoch}")
        for step, batch in enumerate(train_dataloader):
            clean_images = batch["input"]
360
361
            # Sample noise that we'll add to the images
            noise = torch.randn(clean_images.shape).to(clean_images.device)
362
            bsz = clean_images.shape[0]
363
364
            # Sample a random timestep for each image
            timesteps = torch.randint(
365
                0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device
366
            ).long()
367

368
            # Add noise to the clean images according to the noise magnitude at each timestep
369
            # (this is the forward diffusion process)
370
371
372
373
            noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)

            with accelerator.accumulate(model):
                # Predict the noise residual
374
375
                model_output = model(noisy_images, timesteps).sample

376
                if args.prediction_type == "epsilon":
377
                    loss = F.mse_loss(model_output, noise)  # this could have different weights!
378
                elif args.prediction_type == "sample":
379
380
381
382
383
384
385
386
                    alpha_t = _extract_into_tensor(
                        noise_scheduler.alphas_cumprod, timesteps, (clean_images.shape[0], 1, 1, 1)
                    )
                    snr_weights = alpha_t / (1 - alpha_t)
                    loss = snr_weights * F.mse_loss(
                        model_output, clean_images, reduction="none"
                    )  # use SNR weighting from distillation paper
                    loss = loss.mean()
387
388
                else:
                    raise ValueError(f"Unsupported prediction type: {args.prediction_type}")
389

390
                accelerator.backward(loss)
391

392
393
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(model.parameters(), 1.0)
394
395
                optimizer.step()
                lr_scheduler.step()
396
397
                if args.use_ema:
                    ema_model.step(model)
398
                optimizer.zero_grad()
399

400
401
402
403
404
            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

405
406
407
408
409
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
            if args.use_ema:
                logs["ema_decay"] = ema_model.decay
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)
410
        progress_bar.close()
anton-l's avatar
anton-l committed
411

anton-l's avatar
anton-l committed
412
        accelerator.wait_for_everyone()
anton-l's avatar
anton-l committed
413

anton-l's avatar
anton-l committed
414
        # Generate sample images for visual inspection
anton-l's avatar
anton-l committed
415
        if accelerator.is_main_process:
anton-l's avatar
anton-l committed
416
            if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1:
417
418
419
                pipeline = DDPMPipeline(
                    unet=accelerator.unwrap_model(ema_model.averaged_model if args.use_ema else model),
                    scheduler=noise_scheduler,
anton-l's avatar
anton-l committed
420
                )
anton-l's avatar
anton-l committed
421

422
                generator = torch.Generator(device=pipeline.device).manual_seed(0)
anton-l's avatar
anton-l committed
423
                # run pipeline in inference (sample random noise and denoise)
424
425
426
427
428
                images = pipeline(
                    generator=generator,
                    batch_size=args.eval_batch_size,
                    output_type="numpy",
                ).images
anton-l's avatar
anton-l committed
429

anton-l's avatar
anton-l committed
430
431
432
433
434
                # denormalize the images and save to tensorboard
                images_processed = (images * 255).round().astype("uint8")
                accelerator.trackers[0].writer.add_images(
                    "test_samples", images_processed.transpose(0, 3, 1, 2), epoch
                )
anton-l's avatar
anton-l committed
435

436
437
            if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
                # save the model
438
                pipeline.save_pretrained(args.output_dir)
439
                if args.push_to_hub:
440
                    repo.push_to_hub(commit_message=f"Epoch {epoch}", blocking=False)
anton-l's avatar
anton-l committed
441
        accelerator.wait_for_everyone()
anton-l's avatar
anton-l committed
442

443
444
    accelerator.end_training()

anton-l's avatar
anton-l committed
445
446

if __name__ == "__main__":
447
    args = parse_args()
anton-l's avatar
anton-l committed
448
    main(args)